From: ISMB-94 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

Assigning Function to CDS Through Qualified Query Answering:
Beyond Alignment and Motifs

Terry Gaasterland Natalia Maltsev
Mathematics and Computer Science
Argonne National Laboratory
Argonne, 1L 60439

gaasterland@mes.anl.gov

Abstract

In this paper, we show how to use qualitative
query answering to annotate CCDS-to-function re-
lationships with confidence in the score, confi-
dence in the tool, and confidence in the decision
about the function. The system, implemented in
Prolog, provides users with a powerful tool to an-
alyze large quantities of data that have been pro-
duced by multiple sequence analysis programs.
Using qualified query answering techniques, users
can easily change the criteria for how tools re-
inforce each other and for how numbers of oc-
currences of particular functions reinforce each
other. They can also alter how different scores
for different tools are categorized.

Introduction

When analyzing new DNA sequence data through
available pairwise alignment and matching software,
a series of issues arise: how does one compare the out-
puts from different software packages? how does one
determine whether one package or another is more re-
liable? how can one use the results from one package
to reinforce the results from another in a systematic
way? And not least. how does one deal with the sheer
volume of the output (e.g. for 300 sequences of length
100-300 nucleotides, the Blastx output is 25 megabytes
of human-readable files).

In this paper, we show how to use qualitative query
answering ((GL94) to address these questions. Qual-
ified query answering enables users to specify prefer-
ences and then receive answers according to those pref-
erences. Specifically, it allows a user to specify a set
of user constraints over the query domain and rank
the constraints by annotating them according to pref-
erences; accepts a query from a user and return a set
of annotated answers; and allows the user to annotate
queries and receive answers that satisfy the annotation.

A data collection system built by (raasterland and
Overbeek ((G0O94) sends contiguous DNA sequences
out to a variety of software packages and parses the
human-readable output into logical facts. Each fact
represents a match between a section of an input query

130 ISMB-%4

Jorge Lobo

Dept. of EECS
University of Illinois at Chicago Illinois Institute of Technology
Chicago, lilinois 60607

Jjorge®@eecs.uic.edu

Guo-Hua Chen
Dept. of Chemistry

Chicago, IL

chen@mes.anl.gov

sequence and a section of a sequence in some database,
e.g. GenBank, SwissProt, or the EMBL Nucleotide
Databank, or a similarity between a query sequence
and a motif pattern, linked in turn to local multiple
sequence alignments of entries in sequence databases.

From the logical form of the output data, we use
qualified query answering to merge the “opinions” from
each different piece of software and make a qualified de-
cision about what region of an input query sequence is
a CDS and what its function is. The basic property
of this scheme is that the criteria for making a judge-
ment about the data are represented separately from
the data itself and from rules for deriving new informa-
tion from the data. This means that a set of rules for
deriving a CDS to function mapping need be written
only once. After that, it is straightforward for a user
to change the combination criteria.

'To show the power of qualified query answering for
combining similarity hits against new DNA sequences,
we have devised a scheme which adheres to the follow-
ing combination considerations: (1) Within a sequence
analysis tool, partition similarities by score; (2) Within
a set of similarities involving a single protein, partition
similarities by tool; (3) Let tools reinforce each other;
(4) Look for families of proteins represented by mul-
tiple similarities against related proteins and partition
similarities by confidence in family. These criteria al-
low weak similarities in one tool to be reinforced by
other similarities in other tools. They also allow the
occurrence of many different proteins from the same
family to reinforce each other.

Once a basic set of rules are written for mapping
similarity hits to CDS and function pairs, the criteria
above are captured in a separate set of data, called user
constraints. The user constraints, declarative state-
ments that arc easily changed, represent goodness of
scores, goodness of tools, and goodness of families. In
addition to the user constraints, a user provides a lat-
tice hierarchy over the symbols assigned to each tool
and to each category of score. The user can easily
change these lattices to see how making one or another
tool take precedence changes the outcome.

The next section discusses how the output from se-

quence analysis tools is represented through logical
facts and a method to derive CDS-to-function rela-
tionships from those facts. Then a background sec-
tion discusses qualified query answering and logic pro-
gramming. The following sections show how to qualify
CDS-to-function relationships with judgements about
scores and tools in a way that allows different tools to
reinforce each other. Finally, we show how the same
approach is used to combine similarities against pro-
teins into a judgement about a function.

Representing Sequence Analysis Data
Through Logic

Available sequence analysis tools can be thought of
as producing connections between the query sequence
and sequences that appear in a variety of sequence
databases (including versions of SwissProt (BB91;
Baig3b), GDB (Pea9l), and the EMBL Nucleic Acid
Database (EMB93)). Those connections have a score
assoclated with them. This functionality is clear in
the Blast, Blaize, and Fasta families of sequence anal-
ysis tools (AGM190; CC90; WL83). Each of these
tools matches a section of a query sequence with sec-
tions of database sequences and assigns a score to that
match. Blast, Blaize, and Fasta perform pairwise lo-
cal sequence alignments. the functionality also applies
to Blocks (HH93), which searches for Prosite motif
patterns (Bai91) in a query sequence and associates
that region of the query sequence with a multiple lo-
cal sequence alignment -— called a “block” — in which
the block sequences each exhibit the prosite pattern in
question. Blocks associates the query sequence with
the best matching sequence in a “block.”

Gaasterland and Overbeek (GO94) have built a sys-
tem that runs sequences through a set of tools (Blocks,
Blaize, Blastx, Blastn, Tblastn, and Fasta) and con-
verts the output into logical facts that capture connec-
tions between query sequences and database sequences.
Each fact has the following form:!

similarity([Contig, Fr, To],
[ProteinlD, Fr_p, To_p],
Score, Tool).

This logical fact can be read as There 1s a similarily
between the input contig from DNA sequence localion
from Fr to To and ProteinlD sequence location from
Fr_p to To_p, with a score of Score using the tool Tool.

For example, for a contiguous DNA sequence, say
c030, in the region between 330 and 430, blastx asso-
ciates it with SwissProt entry P04540 and blaize asso-

'Users who send a sequence to the system choose
whether or not to use default parameter settings for ma-
trices, genetic codes, fileters, and gap penalties; currently,
the parameter information is not included in the similar-
ity facts. However, the method described here does not
preclude utilizing that information as well.

ciates it with ‘ARYB_MANSE":

similarity([c030,6,208],
[score(160),expect(0.0064),p(0.0064)],
[emb| M62622,51493,51695],blastn).
similarity([c030,689,1018],
[score(73),expect(1.3e-08),p(1.3e-8)],
[gb| X05182,865,536] thlastn).
similarity([c030,713,1024],
[score(99),per_match(4.3),pred_-no(4.09e-5)],
[YM71_TRYBB,{69,57}] blaize).
With two straightforward rules, we have a declarative
program that derives CDS /function pairs from the sim-
ilarity facts for a sequence. The first rule invokes a
search for an open reading frame (ORF) in a contig
and for a similarity contained within that ORF:

hit(Contig, Fr, To, Protein) «—
orf(Contig, Fr, To),
stmilarity([Contig, Fr1,Tol],
[Protein, Fr2, To2],Score, Tool),
within(Fr1,Tol,Fr,To).

The orfrelation can be read as There is an Orf in se-
quence Contig from Fr to To. The orf relation can be
derived in many ways? The within relation is read as
the range Fri-Tol is contained within the range Fr-To,
and both ranges have the same direction (i.e. tncreas-
ing or decreasing).

Thus, the rule for a kit can be read as there is a
hit on Contig from Fr lo To against protein Protein if
there is an orf between Fr and To and a similarily with
that protein within that region, using the tool Tool.

A second rule derives a relation that relates a CDS
to function:

cds_function(Contig, Fr, To, Fen) «—
hit(Contig, Fr, To, Protein),
Junction_of_protein(Protein, Fen).

The relation funciion_of_proiein simply relates a pro-
tein to its function. For now, this relation ties en-
zyme proteins to their enzyme code (obtained from the
EMBL Enzyme Database (Bai93a)) and other proteins
to themselves. A refinement of this rule would not as-
sume that a protein has a single function. Rather, it
would ensure that the part of the protein associated
with a given function is the part that is matches the
CDS.

Using just these two rules and a collection of sim-
tlarity facts, one can ask the following query about a
particular contig, called say c030:

2We used a method devised by Overbeek which can be
described simply as follows: look for a stop codon and then
look upstream (downstream on negative reading frames) for
a start codon that is not preceded by a stop codon. If the
upstream (downstream) search hits the end of the sequence,
that is temporarily considered to be the “start” of the ORF.

Gaasterland 131

?- cds_function(c030, Fr.To, Fen).

The result is a list of ('DS-to-function relationships
defined by Fr, To and the potential CDS Fen.

However, although this is helpful in inspecting the
data from all of the tools, it does not address the prob-
lem of how to combine the data from different tools.
We must do more to accomplish the following: (1) al-
low various categorizations of scores for each tool to be
used in determining how good a particular similarity
is; (2) allow similarities from one tool to be preferred
over similarities from another tool; (3) Allow multiple
sitnilarities from different tools to reinforce each other
in a variety of ways; (4) Allow multiple hits against
proteins in the same family to reinforce each other.
Before showing how to accomplish these itemns, we first
provide some background in the next section.

Qualified Query Answering

Much work has been done to explore methods to
handle user preferences in databases (see (C:(CL90;
('D89)), human computer interaction (see (AWS92)).
user models (see (Mc(!88; KF88)), and artificial in-
telligence (see (AP86; Pol90; Par87)). Cooperative
answering systerns try to enable users to receive an-
swers that they are actually seeking rather than lit-
eral answers to the posed questions (see (Mot90;
GGM88; GAMNI2)). Qualified query answering (GL94)
presents a complementary approach that incorporates
handling user preferences into the query answering pro-
cedure of a database. Once a declarative formalism
for expressing user preferences and needs as a body
of information separate fromn the database is defined, a
query answering procedure then takes both preferences
and data into account when providing answers.

The major advantages of qualified query answering
are threefold. Preferences can be casily altered without
touching the database. Users can ask for all answers
either with or without the annotation of preference or
for all answers that meet some level of preference. Pref-
erences are captured by separate bodies of declarative
information that can be changed independently. They
are: (1) qualitative labels with an ordering expressed
as an upper semi-lattice, (2) logical statements, and
(3) a function for combining preferences.

The notions of need and preference are reflected
through a lattice of values provided by the user. Lat-
tice values are used together with logical statements
Lo express preferences. As an illustration, consider a
traveler, Kass, who wants to travel fromn Chicago to
Amsterdatn, preferably nonstop. If she has to make
a stop, she would rather stop in Washington, where
her boyfriend lives than in any other city. She abso-
lutely does not want to stop in London. We can define
a set of annotated user constraints that express Kass'
restrictions:

nonstop_flight(A, B, Date, Flight):good.

132 ISMB-94

direct_flight(A, B, Date, Flight):okay.
indirect_flight(A, B, Date, Flights):bad.
stopover(Flight, Airport):fine

«— de_atrport(Atrport).
stopover(Flights, Airport):ierrible

— london_airport(Atrport).

('onsider the rule with the annotation terrible. The
predicate london_airportin the body (to the right of the
arrow) may be read as “Airport is located in London.”
The atom in the head (to the left of the arrow) may
be read as “The flights in Flights involve a stopover in
Airport.” The entire constraint may be read as “A list
of Flights that involves a stopover in Airport is terrible
if the airport is a London airport.” (See ((Gaa92) for
a discussion of natural language descriptions of con-
straints.) Furthermore, any answer that depends on
a flight that stops over in a London airport should be
annotated as terrible.

In this example, a set of five symbols {terrible, bad,
okay, good, fine} reflects preference levels. Suppose the
order terrible < bad, bad < okay, okay < good, okay
< fine is assigned to the symbols; then a higher rank
indicates a higher preference. Any upper semilattice
of values may be used for ordering the symbols.

Now, when Kass asks the query “How can I
travel to Amsterdam from Chicago on May 177, ex-
pressed logically as, say, < travel(chicago, amsterdam,
(may,1,Time), TravelPlan), the search space of the
query should be modified with the constraints so that
nonstop flights are noted as good; direct flights through
Washington as fine; flights through any other city, ex-
cept London noted as okay, and so on. Alternatively,
she may want to ask for flights that are fine or better.
Then all answers below this level must be discharged.

Suppose the lattice conlains only two values, say un-
acceptable and acceptable with the order unaccepiable
< acceptable. Let the user constraints on direct_flight
and nonstop_flight be annotated with acceptable and
the rest with unacceptable. In this case, the annotated
user constraints reflect Kass’ needs.

The method for handling user needs and preferences
i1s suminarized as follows: Once a user has provided
a lattice of values and a set of user constraints anno-
tated with the values, the constraints are automatically
incorporated into a relational or deductive database
through a series of syntactic transformations that pro-
duces an annotated deductive database. Query an-
swering procedures for deductive databases are then
used, with minor modifications, to obtain annotated
answers to queries. In contrast with earlier work, the
only burden on users is lo express their preferences.
The separation of preference declaration from data rep-
resentation is achieved through the use of the theory
of annotated logic programs, deductive databases, and
the series of simple transformations that are invisible
at the user level.

Now, we shall discuss annotation in logic programs.

following closely the notation in Kifer and Subrahma-
nian (KS92). An annotated logic program comprises a
set of annotated clauses of the from:

Aia—B;:3,...,Bn: .

Intuitively, this may be read as “A is true with con-
fidence (or quality) c if we can prove B; is true with
confidence (or quality) 8y, ..., and if we can prove B,
is true with confidence (or quality) 8,.” The 3s on the
right hand are usually combined in some way to pro-
duce the value « for the derived head atom. To illus-
trate this, we will modify the example above slightly.
The following annotated rule says that a stopover has
the annotation c if the airport on the right hand side
has the annotation «:

stopover(Flights, Airport):c — airport(Airport):c.

Suppose we have two airport facts: air-
port(dc_national):fine airport(heathrow):terrible. Then
stopover(Flighis,heathrow) would receive the annota-
tion terrible and stopover(Flights,dc_national) would
receive the annotation fine.

A and the Bs are atoms as usually defined in logic
programs; « and the 8s are annolation lerms. A : « is
the head of the annotated clause, and B; : 3y,..., By :
Bn the body. The annotation terms are defined based
upon an upper semi-lattice 7,

The lattice reflects the rankings of the user about
the importance of states expressed in a user constraint.
For example, consider the constraints from Section .
They included a constraint about not stopping in Lon-
don, a constraint about preferring direct flights over
indirect flights, that is flights with a change of planes,
and a constraint about preferring nonstop flights over
direct flights. The user may assign the value terrible
to the constraint about London and the value bad to
the constraint about indirect flights, the value okay to
the constraint about direct flights, and the value good
to the constraint about nonstop flights. The bottom of
the lattice is ferrible. The lattice is completed with the
top element very good, and the partial order is given
by the transitive and reflexive closure of the following
relation: terrible < bad, bad < okay, okay < fine, okay
< good, fine < very good, good < very good.

We want to allow negation in the rules and facts of a
deductive database. This can be easily done by extend-
ing the concepts of negation in normal logic programs
to annotated programs. Such an extension based on
the stable model semantics can be found in ((+L94).

Definition 0.1 A user constraint v is an annotated
normal clause of the form:

Ata—By:p1,...,Bpn: fn, notCr: L,..., notCp, : L.

where 4 : « is a c-annotated atom and the B; : 3; are
c- or v-annotated atoms. -

The user constraint v can be interpreted as say-
ing that if the antecedent of the implication, (B

Bi,..., By : Bn, notCy : L,..., notCy, : 1), is true
then at most A : ¢ can be accepted to be true. For-
mally,

Definition 0.2 Let the annotated clause
Atc—B1:B1,...,By: Bn, notC, : L,..., notC,, : L

be a user constraint v and /4 an annotated interpre-
tation. 74 satisfies v iff for any ground instance A :

¢ — B : ,8;,...,3; . Ba, motC : L, ..., not(’, :
L of v such that (B, : 8;,...,B., : Bn. not(’,

4., not(,','n : 1) is satisfied in [4. 14 satisfies A’ : ¢
only when ¢ <e. =

As a simplification to the user interface, we allow
users to pair an annotation with the head of each con-
straint as follows:

A:e— By, ...,B,, not(y,..., not(,.

To incorporate a set of user constraints into a logic
program to produce an annotated logic program, two
transformations are necessary. An initial transforma-
tion translates normal logic programs into annotated
normal logic programs. Then a second transformation
incorporates a set of user constraints, i, into an anno-
tated program, Il 4.

For more information on annotated logic programs
and the compilation procedures, the reader is referred

to (GL94)

Qualifying similarities by score and tool

The first two requirements listed two sections ago spec-
ified that each answer be prioritized according to what
tool was used to obtain it and according to the score
within that tool. To achieve this using Qualified Query
Answering, two sets of information is added to the pro-
gram in the form of user constraints:

Partition by score for each tool For each tool,
we add a set of user constraints of the form:

stmilarity(_,_, Score, Tool):S— Tool=tooll,Score>N.

where tooll is the name of a tool and N is a nurneri-
cal cut-off level for Score.3 S is a symbolic value from
the lattice used for scores. For now, we use strong,
medium, and weak as score symbols. An “.” denotes
an argument of the predicate similarity that is not rel-
evant in the user constraint.

Partition by tool For each tool, we add a set of
user constraints of the form:

3This last expression, Score > N becomes a bit more
complicated when Score actually consists of more than one
number, as it does in the Blast family of tools. The actual
implementation accommodates this complication.

Gaasterland 133

sumilarity(_,-.-, Tool). T+~ Tool=tooll.

where fool! is the name of a tool and T is some sym-
bolic value in the lattice used for tools.

In addition to the user constraints, a lattice for each
set of symbols must also added to the program. For ex-
ample, for the scores, we might impose a simple lattice
in which strong > mediuvin > weak.

Suppose that the symbols that have been assigned to
each tool is the name of the tool itself. Then, for the
tool lattice, we might impose something like the fol-
lowing for the set of tools that includes blaize, blocks,
blastx, tblastn, and fasta;

blastx
/ | \
blocks blaize tblastn
\ I /
fasta

Using a method called semantic compilation, the
user constraints are compiled into the basic program,
that is, into the two rules defined above, to produce the
following new annolated program, in which SCORF,
TOOL, S and T are annotation variables:

cds_function(Conlig, Fr, To, Fen):SCORE, TOOL—
hit(Contig, Fr,To, Protein):SCORE, TOOL,
Sunction_of_protein(Protein, Fen).

hit(Contig, Fr, To, Protein):SCORE, TOOL—
orf(Contig, Fr, To),
similarity([Contig, Fri, Tol],
[Protein, Fr2,To?],
Score, Tool):SCORE, TOOL,
within(Fr1,Tol, Fr,To).

Semantic compilation is also used to compile the the
user constraints into the similarily data. With the user
constraints above for score and tool, each similarity
fact is transforined into the following annotated form:

stmilarity([Contig, Fr1. Tol],
[Protein, Fr2, To?],
Score, Tool):SCORE, TOOL.

where the values for SCORE and TOQL are obtained
by applying the user constraints for scores and tools to
each similarity fact.

So, for example, the following similarity fact:

stmilarity(c030,[c030,354,383],
[score(35),expect(5.0e+03),p(1.0)],
[sp| P04540.566,575], blastz).

would be compiled into the following annotated fact:

similarity(c030,{c030,354,383],
[score(35). expect(5.0¢+03),p(1.0)],

134 ISMB-94

[sp|P04540,566.575], blastz):weak, blastx.

given that the expression [score(35), ezpect(5.0e+03),
p(1.0)] evaluates into the annotation value weak.

With this new annotated version of the program,
users can ask for cds_function relations that meet cer-
tain levels of score or tool or both. For example, to
ask for eds_function relations with strong scores and
a blastx level of tool a user would ask the following
query:

?- cds_function(c030, Fr, To, Fuction):strong,blastx.

Users can also ask for each cds_function together with
its qualitative annotation as follows:

?. cds_function(c030, Fr,Toe,Fcn):5,T.

From the similarity facts described above, the follow-
ing answers are returned. (Notice that in the second
and third cases, the names of the proteins have been
retained as an indicator of the function; in the first and
last cases, the SwissProt ID is used since there is no
EC code for YM7I_TRYBB — in the database that we

are using):

cds_function(c030,350,404,”YM71_TRYBB’):weak,blastx.
cds_function(c030,2,208,emb|M62622
cds_function(c030,968,1024,9b| X05182)medium, tblastn.

eds_function(c030,968,1024,"YM71_TRYBB’):medium,blaize

Allowing tools to reinforce each other

To allow tools to reinforce each other, we must spec-
ify a combination function for the tool symbols. One
possible combination function is an enumeration of a
variety of combination criteria as follows, where f is
the combination function:

f(blocks,blasiz) = blastz
f(blaize blocks) = blasiz

This function defines that a hit from blaize and from
blocks should be regarded as having the same quality
as a hit from blastx? and that a hit from blocks and
from blastz should remain at the blastz level.

Another possible combination function is least-
upper-bound, or LUB, within the lattice over the sym-
bols in question. Using LUB over the lattice above,
a similarity from blocks and a similarity from blaize
would combine to have the quality blastx.

As described in the previous section, the user con-
straints and the combination function are compiled
into the basic program. Now, the rule for cds_function

*Regardless of score, for now, for simplicity of presenting

the approach.

MISCCG) :weak,blasta

is replaced with the following two rules (the compiled
rule for hif remains the same as in the previous sec-
tion):

cds_function(Contig, Fr, To, Fcn):SCORE, TOOL«
combo_hit(Contig, Fr, To, Protein):SCORE, TOOL,
function_of-protein(Protein, Fen).

combo_hit(Contig, Fr, To, Protein):SCORE, TOOL —
setof((S,T), (hit(Contig,Fr,To,Protein):S,T), STs),
combine_scores(STs,SCORE),
combine_tools(STs, TOOL).

Careful inspection of this automatically generated
program reveals that for a particular protein, a
eds.function mapping takes the set of similarities be-~
tween a particular ORF and that protein, applies the
combination function for scores ond for tools, and re-
turns a cds_function fact with a score and tool qualifi-
cation.

Using this new program and the compiled data, the
user can again ask for cds_function facts about con-
tig c030 that are of a blastz quality with strong scores,
but this time, the tool qualification reflects the com-
bination of all similarities within an ORF. Again, this
query looks like the following:

2. cds_function(c030, Fr, To, Fen):strong, blastx.

As before, the user may also ask for cds_function rela-
tions qualified by their annotations.

Suppose the user wants to change how the tools com-
bine to reinforce each other. Continuing to use the
LUB combination function, the user would alter the
tool lattice of symbols. So, for example, to allow fasta
and tblasin similarities to combine to produce a simi-
larity of a blaize level and to allow blaize and blocks sim-
ilarities to combine to produce a similarity of a blastz
level, the lattice is the following:

blastx
/ \
blocks blaize
\ / \
tblastn fasta

To change the cutoff levels for the scores, the user must
alter the set of user constraints, and recompile the pro-
gram.

Now, we shall turn to the issue of how to allow mul-
tiple hits against the same family reinforce each other.
Again, we can achieve this by adding user constraints,
a lattice, and a combination function to the program.

Allowing multiple similarities to
reinforce each other

When analyzing matches of a query sequence against a
database of known amino acid or DNA sequences, it is
important to remember that a set of weak similarities

against different proteins, or DNA sequence that codes
for different proteins, may be meaningful if many of
those proteins are related in function. The collection of
weak hits may indicate that the query sequence region
codes for a protein that has a similar function.

A single user constraint together with a combination
function over the symbols specified by the user con-
straint captures enough knowledge to make the rank-
ing of a cds_function relation higher when reinforced
by multiple occurrences of proteins with stmilar func-
tion. The necessary user constraint simply annotates
the function_of_protein relation used in the rule for
cds_function above with the function itself:

function_of_protein(Protein, FCN):FCN.

The combination function must reflect how the user
wants to combine a set of functions to rank a particu-
lar function. Recall that in an earlier analogous situa-
tion with the TOOL annotation, LUB was used for a
combination function. If the user desired, they could
use LUB here as well, but for this domain, it does not
make intuitive sense. Instead, we shall illustrate the
approach with a combination function that calculates
the number of times that a particular protein function
appears divided by the total number of appearances of
protein functions.

More formally, for a particular ORF, the function
for each protein that has a simtlarity relation with it
is obtained. Then a list made up of each protein’s
function is obtained. Let the list have length L. Let
the functions that appear in the list be denoted by
Fy,---, F,. Let count(F;) be the number of times that
F; appears in the list, where 1 < 7 < n. Then the
annotation for F; is

count(F;)
L

This is just one possibility for a combination function.
Users are free to use whatever combination function
they wish to define.

The compilation of the original basic program with
the user constraints and combination functions for
SCORE (now abbreviated SC) and TOOL as well as
FCN produces the following program:

cds_function(Contig, Fr, To, Fen) :FON sGURE, TOOL +—
combo_cds_fen(Contig, Fr, To, Fen) :FeN,sCORE, TOOL.

combo_cds_fen(Contig, Fr, To, Fen) FON 3CORE, TOOL «—
selof((F,S,T),

(cds_function(Contig, Fr, To, Fen):v 5.1, FSTs),
combine_functions(FSTs,FCN),
combine_scores(FSTs,SC),
combine_tools(FSTs, TOOL).

cds_function(Contig, Fr, To, Fen):scorE,TooL &
combo_hit(Contig, Fr, To, Protein):scorg,TooL,

Gaasteriand 135

function_of_protcin(Protein,Fen).

combo_hit(Contig, Fr,To, Protein):scorE,TouL —
setof((S,T), (hit{Contig, Fr,To, Protein):s,t), STs),
combine_scores(STs,5C),

combine_tools(STs, TOOL).

hit(Contig, Fr. To, Protein):score,TooL —
orf(Conlig, Fr,To),
similarity([Contig, Fri,Tol],
[Protein, Fr2, To2],Score, Tool):score,Tu0L,
within(Fr1,Tol, Fr,To).

Recall that above we chose that both combine_scores
and combine_tools use LUB, the least upper bound in
the lattice, for the combination function. Note that
either or both of these combination functions can be
made more complex as the user wishes in order to re-
flect a different view of the data.

With this compiled programn, a user can qualify
querics with the following: (1) specification of a par-
ticular level of score; (2) specification of a particular
level of tool; and (3) specification of a particular con-
fidence in the cds to function mapping. Users can also
ask queries that qualify each cds_function relation with
its annotation scores.

Conclusion

The ability to annotate ((DS-to-function relationships
with confidence in the score, confidence in the tool, and
confidence in the decision about the function provides
users with a powerful tool to analyze large quantities
of data that have been produced by sequence analysis
programs. Using qualified query answering techniques,
users can easily change the criteria for how tools rein-
force each other and for how numbers of occurrences
of particular functions reinforce each other. They can
also alter how different scores for different tools are
categorized. Without an automated method to dcal
with this data, the gap between the amount of known
DNA sequence and the amount of interpreted DNA se-
quence will continue to increase. We have implemented
the program described here and are in the midst of run-
ning it to evaluate the output from a set of sequence
analysis software packages run on a set of DNA se-
quences for the Mycoplasma capricolum genome. The
approach easily extends to new tools. To add a new
tool, a set of user constraints defining score partitions
and one user constraint that assigns a tool symbol to
the tool must be added to the system. The tool symbol
must also be added to the tool lattice.

For the Mycoplasma capricolum data, Chris Sander’s
group is also looking for hits among the contiguous My-
coplasma capricolum sequences by hand. They gather
the data from the outpul of a wide array of analysis
tools and then display it in a manner that is easy for a
user to peruse visually (S5891; BOSgy). Our approach
goes a large step further: it allows the user to build cri-

136 ISMB-94

teria for making judgements into the analysis system.
With our approach, the same system that sends con-
tiguous DNA sequences through each analysis package
and parses the output files into Prolog facts can take
the next step of analyzing the output and assigning
function to ('DSs within the sequences.

It is critical to validate the judgements about (C:DS-
to-function relationships produced by our system with
the judgements made by hand by Sander’s group and
by Maltsev at Argonne. So far, the results are consis-
tent. Once we have worked through the Mycoplasina
capricolum sequence data, we expect to have a tuned
and validated system that will be useful for automat-
ically assigning CDS-to-function through logical post-
processing of output from sequence analysis tools.

Acknowledgments We thank Ross Overbeek and
Pat Gillevet for their inspiration in this work and Zo-
ran Budimlik for taking the time to implement the
qualified query answering system. Terry (iaasterland
was supported for this work by the Office of Scientific
Computing, U.S. Department of Energy, under Con-
tract W-31-109-Eng-38. The NSF partially supported
Jorge Lobo for this work under grant #IRI-9210220.

References

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and
D. J. Lipman. Basic local alignment search tool. Journal
of Molecular Biology, 215:403-410, 1990.

J. F. Allen and C. R. Perrault. Analyzing intention in ut-
terances. In Barbara J. (irosz, Karen Sparck Jones, and
Bonnie Lynn Weber, editors, Readings in Natural Lan-
guage Processing, pages 441-458. Morgan Kaufmann Pub-
lishers, Inc., Los Altos, Clalifornia, 1986.

C. Ahlberg, C. Williamson, and B. Shneidcrman. Dy-
namic queries for information exploration: An implemen-
tation and evaluation. In Proc. of the ACM ('HI '92, pages
619-626, California, 1992.

A. Bairoch. Prosite: A dictionary of sites and patterns in
proteins. Nucleic Acids Research, 19:2241-2245, 1991.

A. Bairoch. The enzyme data bank. Nucleic Acids Re-
search, 21:3155--3156, 1993.

A. Bairoch. The swiss-prot protein sequence data
bank: User manual. release 25, april 1993. (e-mail to
netserv@embl-heidelberg.dc get prot:userman.tst)

A. Bairochand and B. Boeckmann. The swiss-prot protein
sequence data bank. Nucleic Acids Rescarch, 19:2247—
2249, 1991.

P. Bork, €. Ouzounis, and €. Sander. From genome se-
quences to protein function. 1994 (submitted to Current
Opinion in Structural Biology).

J.F. Collins and A. Coulson. Significance of protein se-
quence similarities. In R.F. Doolittle, editor, Methods in
Enzymology, 183:474-486. Academic Press, 1990.

W. W. Chu, Qiming Chen, and Rei-Chi Lee. Cooper-
ative Query Answering via Type Abstraction Hierarchy.
In Draft Proc. of the Intl. Working Conf. on (ooperative
Knowledge Based Systems, pages 67-68, U, of Keele, Eng-
land, Oct. 1990.

F. Cuppens and R. Demolombe. How to Recognize Inter-
esting Topics to Provide Cooperative Answering. Infor-
mation Systems, 14(2):163-173, 1989.

EMBL. Embl data library: Nucleotide sequence database:

User manual release 36, september 1993. (ftp to ftp.embl-
heidelberg.de in /pub/databases/embl/doc).

T. (Gaasterland. Cooperative Answers for Database
Queries. PhD thesis, U. of Maryland, Dept. of Computer
Science, College Park, 1992.

T. Gaasterland, P. Godfrey, J. Minker, and L. Novik. A
Cooperative Answering System. In Andrei Voronkov, edi-
tor, Proc. of the Logic Programming and Automated Rea-
soning Conf., pages 101-120, Vol. 2, St. Petersburg, Rus-
sia, July 1992.

T. Gaasterland and J. Lobo. Qualified answers that reflect
user needs and preferences. In 20th Intl. Conf. on Very
Large Databases, Santiago, Chile, 1994.

A. Gal and J. Minker. Informative and Cooperative
Answers in Databases Using Integrity Constraints. In
V. Dahl and P. Saint-Dizier, editors, Natural Language
Understanding and Logic Programming, pages 277-300.
North Holland, 1988.

T. Gaasterland and R. Overbeek. An automated system
for gathering sequence analysis data from multiple tools.
Technical report, 1994. In preparation.

S. Henikoff and J. Henikoff. Protein family classification
based on searching a database of blocks (document: block-
man.ps). (ftp to sparky.fherc.org in /blocks).

R. Kass and T. Finin. Modeling the user in natural lan-
guage systems. Computational Linguistics, 14(3):5-22,
Sept. 1988.

Michael Kifer and V.S. Subrahmanian. Theory of gener-
alized annotated logic programming and its appli cations.
Journal of Logic Programming, 1992.

K. McCoy. Reasoning on a highlighted user model to
respond to misconceptions. Computational Linguistics,
14:52-63, Sept. 1988.

A. Motro. FLEX: A Tolerant and Cooperative User Inter-
face to Database. IEEE Transactions on Knowledge and
Data Engineering, 2(2):231-245, June 1990.

(.. Paris. Combining discourse strategies to generate de-
scriptions to users along a naive/expert spectrum. In Proc.
of IJCAI pages 626--632, Milan, Ttaly, 1987 Aug. 1987.
P. Pearson. The genome data base (gdb) — a human gene
mapping repository. Nucleic Acids Research, 19:2237-
2239, 1991.

M. E. Pollack. Plans as complex mental attitudes. In
M.E. Pollack P.R. Cohen, J. Morgan, editor, Intentions
in Communication, pages 77-103. MIT Press, 1990.

C. Sander and R. Schneider. Databases of homology-
derived protein structures and the structural meaning of
sequence alignment. PROTEINS: Structure, Function,
and Genetics, 9:56-68, 1991.

W. Wilbur and D. Lipman. Rapid similarity searches of
nucleic acid and protein data banks. Proc. Natl. Acad.
Seci. U.S.A., 80:726-730, 1983.

Gaasterland

137

