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Abstract

A major goal of the Human Genome Project is to con-
struct detailed physical maps of the human genome.
A physical map is an assignment of DNA fragments
to their locations on the genome. Complete maps of
large genomes require the integration of many kinds
of experimental data, each with its own forms of noise
and experimental error. To facilitate this integra-
tion, we are developing a flexible approach to map
assembly based on logic programming and data visu-
alization. Logic programming provides a convenient
and mathematically rigorous way of reasoning about
data, while data visualization provides layout algo-
rithms for assembling and displaying genome maps.
To demonstrate the approach, this paper describes nu-
merous rules for map assembly implemented in a data-
visualization system called Hy+. Using these rules,
we have successfully assembled contigs (partial maps)
{from real and simulated mapping data—data that is
noisy, imprecise and contradictory. The main advan-
tage of the approach is that it allows a user to rapidly
develop, implement and test new rules for genome map
assembly, with a minimum of programming effort.

Introduction

A major goal of the Human Genome Project is to con-
struct detailed physical maps of the human genome.
A physical map is an assignment of DNA fragments to
their locations on the genome. In assembling a physi-
cal map, a genetics expert typically reasons about the
experimental data and how it fits together. The prob-
lem is to construct a coherent picture of the genome
from data that is incomplete, imprecise, ambiguous
and often contradictory. Usually, only an approximate
map can be constructed, and sometimes only the rel-
ative order of the DNA fragments can be determined.
For small-scale mapping projects, maps are often con-
structed manually, perhaps with the aid of a graphical
editor. This is a tedious and time-consuming task.
Large-scale mapping projects require better compu-
tational tools to efficiently handle the large volumes
of data and the explosive combinatorics of the map-
assernbly problem.

Most existing work in computer-aided map assem-
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bly lies somewhere between two extremes: specialized
editors and automatic map-assembly algorithnis. Ed-
itors provide a convenient way to rearrange mapping
data. but provide little or no reasoning capabilities.
The SIGMA system developed at Los Alamos National
Laboratories is an example of such an editor. Even
with a good editor, however, constructing a genome
map is a tedious and time-consuming task. Algorithras
for map assembly alleviate this tedium by rearranging
the data autornatically. However, most current algo-
rithms are limited to a narrow range of data. Some
algorithms make strict assumptions about the data
and the errors (sometimes assuming no error at all)
in order to achieve mathematical proofs of correct-
ness and optimality (Alizadeh ef al. 1993; Karp 1993;
Lee et al. 1993). Map-assembly programs used at large
genome centers rmake more realistic assumptions, but
they can be inflexible, monolithic programs that are
hard to modify or extend. The MAPMAKER program
for genetic mapping, developed at the Whitehead /MIT
Centre for Genome Research, is an example of such a
program (Lander i al. 1987). Programs for automatic
assembly of inlfegrated physical maps will be even more
complex.

The reason for this complexity is that mapping data
comes in a wide variety of forms. each with its own
forms of imprecision and experiinental error. Programs
for integrating data into a single genomic map should
therefore be flexible, so they can easily accommodate
many forms of data, including new forms of data as
they are devcloped. To address this need, we are de-
veloping a new approach to map assembly based on
logic programming and data visualization. Logic pro-
gramming provides a convenient and mathematically
rigorous way of reasoning about data, while data visu-
alization provides layout algorithms for assembling and
displaying genome maps. The goal is to permit new
ideas and techniques for map assembly to be rapidly
implemented and tested with a minimum of prograin-
ming effort. Logic programming is already known to
facilitate the rapid prototyping and testing of software.
Within our framework, contigs (partial maps) are as-
sembled not by writing programs, but by specifying de-
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ductive rules for the logic of map assembly. The frame-
work automatically translates these specifications into
programs.

Logical rules can encode much of the biological
knowledge used in assembling physical genome maps.
These rules have a premise (if part), and a conclusion
(then part). For example,’

if two STS probes hit ¢ common YAC,
then the lwo probes are close together
on a chromosome.

Logical rules can also integrate different kinds of map-
ping data, such as STS and fingerprint data. For ex-
arple.

if probe s, hits YAC y,,

and  probe sa hils YAC yo,

and  the fingerprints of y; and y» overlap,

then probes sy and s4 are close together
on a chromosome.

This is the kind of reasoning that a biologist would
employ in a small-scale mapping project. Logic pro-
gramming provides a convenient and mathematically-
rigorous way to automate this kind of reasoning for
mapping projects of any size.

Even when the experimental data is flawed, it of-
ten contains useful information that can be extracted
with logical rules. For example, a YAC insert may be
chimeric, containing two DNA fragments from difter-
ent parts of the genome. For data containing these
chimers, two STS probes are considered close i they
hit twe common YACs (This is the double-linkage
strategy of (Arratia et al. 1991)). Other rules can
specify how Lo resolve data ambiguities. For example,
the Whitehead/MIT Genome Center has found that
the pooling scheme used in their YAC screening leads
to a high rate of false negatives. This often makes it
impossible to say precisely which YAC is hit by an STS
probe, though it is possible to say that thc probe hits
one of a small sct of 8 to 12 YACs. This paper gives
deductive rules for dealing with such ambiguities.

To test our approach, we have encoded rules for
map assembly using the Hy+ data visualizalion sys-
tem. Developed at the University of Toronto (Con-
sens 1994), lly+ provides a graphical user interface
to a number of logic-programming systems, including
PROLOG, CORAL and LDIL (Ramakrishnan. Srivas-
tava, & Seshadri 1993; Tsur & Zaniolo 1986). 1t also
has a number of algorithms for graph layout. Unlike
many data visualization systems, Hy+ represents both
logical rules and query answers as graphs. Using logi-
cal rules, lly+ transforms mapping data into a graph,
which is then displayed using layout algorithms. Each

! As explained in more detail later, an STS is a Sequence
Tagged Site, and a YAC is a Yeast Artificial Chromosome.
Different laboratory techniques can be used to determine if
an STS probe “hits” a YAC, such as hybridization or PCR.
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contig appears on the screen as a connected compouent.
with a linear structure.

Using Hy+, we have been able to rapidly implement
and test numerous rules for assembling and exploring
physical maps. We have lested these rules on real
and simulated data provided by the Whitehead Tn-
stitute/MIT Centre for Genome Research. The real
data consists of their December 1993 release of 733
STS probes screened on the CEPH YAC library. The
simulated data represents 876 STS probes screened on
2490 YAC’s, including 5,388 hybridizations and 1,766
ambiguous hybridizations. To test and refine our ap-
proach, the Hy+ system has been installed at White-
head/MIT, where it will be used in their large-scale
mapping projects.

An 1mportaunt aspect of our work is that Hy+ is a
general tool for querying and visualizing data, and was
not designed with genomes or biology in mind. In
fact, the initial applications of the Hy+ system were in
software engineering and network management (Con-
scns 1994). In our application, all biological knowledge
1s embodied in logical rules. Display of the resulting
graphs is carried out by the graph layout algorithms
in Hy+. These algorithms know a lot about graphs,
but nothing about biology. In this way, we can as-
semble contigs with a minimum of programming cflort
by using a flexible and general-purpose database pack-
age. Indeed, the only programnming involved is using a
mouse to draw graphical patterns representing logical
rules. By drawing different patterns, we can quickly
and easily test the effect of different map-assembly
rules. In addition, the query and data visualization
facilities of Hy+ facilitate the exploration and debug-
ging of genome maps, allowing a user to quickly locate
interesting or problemnatic regions in a map. This is
comparable o the use of Hy+ in understanding and
debugging large software systems (Consens 1994).

To illustrate our approach to map assembly and
analysis, this paper focuses on a particular kind of
physical map. called an STS content map. We show
how experimental error in this data can be accomro-
dated (and even exploited) by rules that account for
the biological origins of the errors. We illustrate the
effect of the rules on synthetic but realistic STS data
provided by the Whitehead Institute/MIT Center for
Genome Research (Rozen ef al. 1993). This data con-
{tains simulatcd noise and experimental error, includ-
ing chimers and false negatives. It was made available
expressly for the purpose of lesting new logic-based
approaches to map assembly. In (Rozen et al. 1993),
a number of queries to physical maps are suggested,
queries that an investigator might reasonably ask. We
show how to answer these queries, assemble contigs,
and more.

STS Content Mapping

The aim of STS content mapping is to determine the
order of STS probes along a chroinosome. kKach STS
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Figure 1: The hit and ambiguous-hit data for two probes.

probe is a very short piece of DNA that “sticks” to a
particular site on the chromosome (a Sequence Tagged
Site, or STS). We do not know the exact location of
each STS, but we would like to know their relative
order. In a detailed map, there are thousands of siles
per chromosome.

The usual first step is to determine which pairs of
probes are “close” together on the chromosome. To
do this, the experimenter randomly cuts many copies
of the chromosome into small fragments, called YACs
(Yeast Artificial Chromosomes). If two STS probes
“stick” to the same YAC, then one can infer that the
two probes are close together, since they are no more
than one YAC-length apart. This, at least, is the ideal
situation. As we shall see shortly, because of noise and
ambiguities in the data, additional reasoning is often
needed to infer proximity. This kind of reasoning is
easily automated as a logic program.

The Data

In a perfect experiment, the data tell us whether a
probe “sticks” to or “hits” a YAC. This can be deter-
mined by different lab techniques, such as hybridiza-
tion or polymerase chain reaction {PCR). The exper-
imental results are not always clear cut however. For
example, the MIT genome centre has found that the
pooling scheme used in their YAC screening leads to
a high rate of false negatives. This often makes it im-
possible to say precisely which YAC is hit by an STS
probe, though it is possible to say that the probe hits
one of a small set of 8 to 12 YACs. The data provided
to us by Whitehead/MIT are comprised of two kinds
of tuples:

e hit(P,Y), meaning probe P definitely hits YAC Y,

e amb_hit(P,Y set), meaning probe P hits one of the
YACQCs in the set Yset.

The relation amb_hit contains more information than
is needed for the purposes of this paper. To simplify
the presentation (and to avoid dealing with nested re-
lations), we have transformed each tuple of the form
amb_hit(P,Y set) into a set of tuples of the form
amb(P,Y ), which means that probe P ambiguously
hits YAC Y, (i.e., probe P might hit YAC Y').

All of the logic programs described in this paper were
tested on this data. The data is not ideal and includes
numerous false negatives and chimers. The data in-
cludes 5,388 tuples of the form hil(Y, P}, involving 876
probes and 2,490 YACs. It also includes 16,520 tuples
of the form amb(P,Y"), derived from 1,766 tuples of
the form amb_hits(P.Y set). Figure 1 shows a graph-
ical representation (using Hy+) of the hit and amb
relations for two probes, sts(874) and sts(875). In the
figure, the nodes on the left represent the two STS
probes, and the nodes on the right represent the YACs
which are hit or ambiguously hit by these probes. The
rectangular insert in the figure shows a graphical pat-
tern, which is the query that generated the graph. The
next sections explain such queries.

Hy+
Hy+ is a data visualization system based on a gener-
alization of labeled directed graphs, called hygraphs
(Consens 1989; Consens & Mendelzon 1990). Hy-
graphs can be effectively used to organize the visual
presentation into a more informative one than would
be possible in normal graphs. The user interface to
Hy+ is a menu driven windowing system offering many
graphical facilities and color options for the visual dis-
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play of data and relations. The front end, written in
Smalltalk, communicates with other programs includ-
ing database hackends written in PROLOG, CORAL
and LDL (Ramakrishnan, Srivastava. & Seshadri 1993;
Tsur & Zaniolo 1986), which evaluate queries. Hy+
offers visual facilities for filtering the data to be dis-
played, and for defining new relations on the data.
These query facilities are written in a graphical query
language called Graphlog (Consens 1989: Consens &
Mendclzon 1990).

A graphical guery in GraphTLog is composed of define
graphs and show graphs. A define-graph-query defines
new graphical relations, and a show-graph-query filters
the data before presenting it to the user. Briefly, a de-
fine graph defines a logical rule of inference. The graph
has a single distinguished edge, which appears as a bold
arc. If this arc is labeled 7(Z), and connects nodes .\
and Y, then the graph defines a Horn rule whose head
is the atomic formula r( X, Y, Z). Likewise, each undis-
tinguished edge in the graph contributes an atomic for-
mula to the premise of this rule. The translation from
query graphs to Horn rules is described in detail in
(Consens 1989, p. 44). Intuitively, a define graph says
that if the undistinguished edges appear in a graph,
then the distinguished edge should be added to the
graph. In contrast to define graphs, a show graph may
have more than one distinguished edge. A show graph
has the effect of filtering the data: only distinguished
nodes and edges in the show graph are displayed to the
user. 'To reduce the number of definc graphs, an edge
may be labelled with a path regular cxpression. Rather
than define these facilities precisely here, the next sec-
tion illustrates some of them through examples of the
assembly and analysis of mapping data.

Inference and Visualization

This section illustrates the use of the Hy+ system for
assembling, visualizing and interrogating S'I'S content
maps. All examples in this section use the simulated
data described above and were run on a SPARC station
10 workstation.

Proximity of Probes

The usual first step in an STS mapping project is to
determine which probes are close together on a chro-
mosonie. This can often be inferred directly from the
experimental data, but noise and ambiguity in the data
can complicate the process. Each kind of data has its
own kind of noise, and cach must be given special treat-
ment by a map-assembly program.

In the sitnplest case, if two probes, py and py, both
hit the same YAC, y, then we immediately infer that p,
and ps are close together on the chromosome. In logic
prograiming, this rule of inference can be written as
follows:

close(Py, Py) — hit(P.Y ). hit(Ps,Y), 1
Py # P (1)
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Although simple, this inference is warranted only un-
der ideal experimental conditions. Such conditions do
not always hold. This is the case, for instance, if the
YAC library is chimeric. i.e., if a YAC® mnay be a con-
catenation of two DNA fragments from different parts
of the genome.

In such cases, we can still infer proximity of two
probes, but we need different rules of inference. For
example, if two probes hit (we common YACs, then
there is a very high probability that the two YACs
are not chimeric and that the probes are indeed close
together. In this case, we have two distinct probes, py
and pa, two distinct YACs, y; and y». and four tuples
in the hit relation:

hit(pr,31)  hit(pr.y2)

. : . . 2
hil(pa2,y1)  hit(pz.y2) @)
(This is the double linkage strategy of (Arratia el al
1991)). In logic programning, this inference can be
written as the following rule:

close(Pr. a) —  hit(Py YL, Rit(Py, Ya),
hit(Py, Y1), hit(Pa,Ys),  (3)

P3|

Y, 96 Yy, Py ;é Ps.

Hy+ represents such rules of inference as graphical
patterns. These patterns act on one graph to produce
another graph. The two boxes on the right side of Fig-
ure 2 show how the rule above is expressed visually in
Hy+. These boxes show two graphical patterns. In the
top box (the defineGraphlog box), nodes P1 and P2
denote probes, and nodes G and F denote YACU's. The
crossed out edges mean that the two probes are dis-
tinct, and the two YACs are distinct. The four edges
labeled hit specify that both probes hit both YACs. If
the data fits this pattern, then Hy+ will add a new
edge to the graph, the bold edge labelled hth between
P1 and P2. Intuitively, this edge means that probes
P1 and P2 are close together. (The label hh reminds
us that the inference comes from a double hit.) The
pattern in the bottom hox (the showGraphLog box)
has a single bold edge labeled hk. This pattern spec-
ifies that only edges labelled hh should be displayed
to the user. The two patlerns are evaluated by Hy+
in about 3 minutes on the simulated data described
above. "The result is the graph of connected compo-
nents shown on the left side of Figure 2. The Hy+
overview browser has pan and zoom buttons, so only a
few of the connected components are visible in the fig-
ure. Each node in the graph represents an STS probe,
and an edge mcans that two probes are close together
on a chroniosome.

Contig Assembly

The rules discussed above infer which probes are close
together on a chromosonme. Using this proximity infor-
madtion, the next step is 1o asseinble a map of the chro-
mosonie, i.¢.. to infer the relative order of the prohes



sts(225)
Wgststﬂﬂ
MV’— =

829
Rsts(B16)  R®ats(B15) _ Wsts(614)

gadjacent_probes
showGraphLog

Figure 2: Inferring adjacent STS probes

on the chromosome. Unfortunately, there is often in-
sufficient. data to infer a complete map. Typically, an
experimenter will be able to determine the order of
probes along certain contiguous regions of the chro-
mosome (“contigs”), but there will be other regions
(“gaps™) about which nothing is known, because none
of the probes stick to these regions.

This situation is apparent in the graph on the left
side of Figure 2. In this graph, each connected com-
ponent. represents a distinct contig: and each simple
(loop-free) path through a component is a potential
map of the contig. Notice that each component has a
somewhat linear structure. The structure is not com-
pletely linear because the data and/or analysis do not
vet support a unique linear order of the probes on the
contig. The data also do not tell us how one con-
tig is related to another, i.e., which is first, second,
third, etc. We thus have a partial map with numer-
ous contigs, but we do not yet know the locatlion (or
orientation) of each contig on the chromosome.

The graph in Figure 2 has 233 connected compo-
nents, representing 233 contigs. Since the graph has
876 nodes (probes), the average contig contains 3.8
probes. A small number of large contigs would be
better, and the ideal is a single huge contig, i.e., a
completely connected graph representing a complete
map of the chromosome. Recall that the graph in Fig-
ure 2 was generated by rule (3). Rule (1) should lead
to a simaller number of contigs, since it demands less
evidence before concluding that two probes are adja-
cent. Indeed, the graph that it generates has only 69
connected components, with an average of 12.7 nodes
each. Unfortunately, because of chimerism, we cannot
be confident that each of these components represents
contigs. In the next subsection, we explore a more

reliable way of producing larger contigs.

Ambiguous Data

Rule (3) above provides a way of dealing with certain
problems in experimental data (chimerism). However,
this rule only uses unambiguous data, i.e., data stored
in the relation hit(P,Y’). There is not always enough
data in this relation to infer that two STS probes are
close together. In such cases, we can exploit ambiguous
data, i.e., data stored in the relation amb(P,Y).

A simple way of doing this is suggested in (Rozen et
al. 1993): if one of the four hit tuples in (2) above is
actually an ambiguous hit, then we can still infer that
probes p; and ps are close. We can represent this idea
in logic programming by the following three rules:

closel(Py, Ps) — amb(Py,Y1), hit( Py, Y5s),
hit(Pg, Y] ), h.'it(Pg, Yg)
Y] # Yg, Pl 7’: Pg. (4)
close(Py. Py) — closel(Py, Ps)
close(Pa, Py) «— closel( Py, Po)

Unlike rule (3), the first rule above is not symmetric in
P, and P». This is why we first define closel (which is
not symmetric), and then define close (which is sym-
metric). Intuitively, the second two rules say that if P,
is close to P, then P, is close to P;.

We now have two reliable ways of inferring that two
probes are close together, depending on whether the
probe hits are unambiguous or not. Rule (3) is based
on unambiguous hits, and rules (4) are based on both
ambiguous and unambiguous hits. Using Hy+, we
combined all four of these rules into a single query. The
resulting graph has 161 connected coinponents, repre-
senting 161 contigs with an average size of 5.4 probes
each. We thus get larger contigs than by using rule

Harley 165




aProbably_hits ghit_or_pro glwo_link alwo_link_paths
deﬂneGraphLe\g . defineGraphLog defineGraphLog showGraphLog
’P,' — E\\lb\‘ """"" 5 P

P

(3) alone, which gives an average contig size of only
3.8 probes. This improvement comes fromn exploiting

A
pro &ph hit | pro
Q
| N
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ph(P,Y) — hit(P.Y)

ph(P,Y) «— probHit(PY)

probClose(P,.Q) — ph{P.Y),ph(Q.Y).

information implicit in the ambiguous data.

Probable Proximity

As the examples above show, the experimental data
may lead to a large number of small contigs. This is
a long way from a complete physical map, 7.¢., a sin-
gle large contig. However. by being less rigorous with
the evidence, we can create a smaller number of larger
contigs. (Additional experiments could then confirmn
or refute these putative contigs.) One way to do this
is to search the database for evidence suggesting that
two probes are probably close on the chromosome, from
which we can infer a set of probable contigs (Rozen et
al. 1993).

The first step is to find evidence that an ambiguous
hit is actually a probable hit. To see how, suppose
that probe p ambiguously hits YAC y. We infer that
this is a probable hit if ({) a second probe, ¢. also
hits y, and (Zz) both probes hit a second YAC, w.. This
inference can be expressed as a logic-programming rule
as follows:

probHit(P.Y) — amb(P,Y). hil(Q.Y),
hit{ P, W), hit(Q. W),
Y#W P£Q.

In Figure 3, the box labelled probably_hits shows a
graphical pattern that expresses this rule. The pat-
tern adds an edge labelled pro from probe P to YAC
Y if P probably hits Y.

Using the notions of hits and probable hits, we can
infer when two probes are probably close on a chromo-
some. Previously we defined two probes to be close if
they both hit the same two YACs. Likewise, we de-
finc two probes to be probably close if they both hit
or probably hit the same two YACs. This notion is
defined by the following rules:
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ph(P.W). ph(Q. W),
Y # W.P £ Q.

The remaining boxes in Figure 3 show graphical pat-
terns that express these rules. The hit_or_pro box adds
an edge labelled ph from a probe to a YAC if the probe
either hits or probably hits the YAC. The box labelled
two_link then adds an edge labelled a (for “adjacent™)
between two probes if they hit or probably hit two
YACs. Finally, the box labelled paths specifies that
only edges labelled a should be displayed.

These rules use more of the ambiguous data than
rules (3) and (4) do. They can thercfore infer more
adjacency edges between pairs of probes; so they can
generate graphs with fewer, but larger. connected com-
ponents. This can be seen in the table helow, which
represents a set of ambiguous and unambiguous hits.
Each column represents a probe, and each row repre-
sents a YAC.

|P1 P2 I3 P4
v | hidt  amb kit

ya | hil  hat
Y3 hit  amb hit
Y4 hit  hit

Using rules (3) and (4), we can only infer {wo adja-
cencies, a(pi. p2) and a(ps, pa): but using the rules of
this section, we can infer a third (probable) adjacency,
a(p2,pa). The former set of rules therefore generates
an adjacency graph with two connected components,
while the latter set generates one large component.
This behavior has a simple biological interpretation:
we are using high quality data to form contigs, and
lower quality data to merge contigs. That is, rules
(3) and (4) infer contigs based largely on unambigu-
ous data. Using more of the ambiguous data. the rules
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Figure 4: A shortest path query

Figure 5: The shortest paths between probes sts(286) and sts(295)

of this section infer the probable order of one contig
relative to another.

The query of Figure 3 when run on the simulated
data described above generates 1,353 pro edges. The
amount of time required to execute the query varies
depending on the order Hy+ chooses for the predicates
in the corresponding logical rules. When the query is
rewritten to force an optimal order of evaluation of
joins in the rule bodies, the time stabilizes to about 9
minutes. The result is a graph similar to that on the
left side of Figure 2. Each simple path in this graph
is called a 2-linked YAC path in (Rozen et al. 1993),
and is a potential map of the contig. There are 161
connected components in the graph, representing 161
probable contigs with an average size of 5.4 probes.

Inferring Probe Order

In the graph of Figure 2, any (simple) path belween
two probes is a possible ordering of the probes. Mere
possibility, however, is a weak conclusion. We would
prefer to know what ordering relationships are nec-
essary, i.c., are implied by the data. A number of
strategies of different complexity can be used to extract
these relationships. For simplicity, we illustrate an ap-
proach that works with good experimental data. If the
data contain no false negatives, or if we have a suffi-
cient amount of data, then a minimal path between
two probes expresses only necessary relationships. A
minimal path may not include all the probes in a con-
tig, but for those that it does include, we shall know
their relative order on the chromosome.

Figure 4 shows a query that defines the minimal
paths between two probes, sts(286) and sts(295) in the

graph of Figure 2. The query uses four define graphs
to express a variation of Dijkstra's shortest path al-
gorithm (Aho, Hopcroft, & Ullman 1983). The first
two boxes (define_start and couni_edges) compute the
shortest paths from the start node (sts(286)) to every
other node in the same connected component. This is
done by adding arcs labelled 8(Af) to the graph. In-
tuitively, such an arc from node P to node @ means
that beginning at the start node, the shortest paths
to node @ have length M, and furthermore, P is the
predessesor of Q on one of these paths. These edges
are inferred recursively as follows. First, add an edge
labelled b(1) from the start node to each of its neigh-
bours. Second, for any node pointed to by b(M), add
an edge labelled b(AM +1) from this node to each neigh-
bouring node (other than the start node) that is not al-
ready pointed to by a b edge. The second two boxes in
the query (path.end and trace_back) isolate the short-
est paths from the start node to a particular end node
(sts(295)) by tracing the path backwards: each time
an edge labelled b(Af) is traversed, it is labelled it
with p(M). Finally, the show box specifies that only
those edges on a minimal path (i.c., those edges la-
belled p(M)) should be displayed. The result is shown
in Figure 5. In this case, there are two minimal paths.

Exploratory Queries

Until enough data (and the right data) are generated, a
physical map of a chromosome will remain incomplete,
and we will not know the order of the STS probes.
In Figure 2. for instance, we do not know the relative
order of the contigs on the chromosome, and we do not
know the relative order of the probes on each contig.
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Scveral possible orders are consistent with the data. In
fact. any simple path through a connceted component
is a possible map of the corresponding contig. Not all
probe orderings are equally likely however. In some
orderings, the links between probes may be weak, or
the ordering riay imply too many false negatives in
the data. Given a proposed probe ordering, we can
use Ily+ to highlight its weaknesses.

For example. our data is not good enough to infer un-
ambiguously the order of probes sts(868) to sts(874).
However, let us suppose hypothetically that their order
is s1s(868). sts(869), sts(870), ... sts(878). Figure 6
shows this proposed contig and soimne of the problems
with it. In this figure. the path whose edges are la-
belled a (for *adjacent™) represents the proposed con-
tig. Other edges represent potential problems. For
instance, edges labelled weak indicate that two probes
are not tightly linked; that is, there is little evidence to
support the hypothesis that they are adjacent.? Three
of the ten edges in Figure 6 are weak.

Edges labelled miss] and miss2 indicate false nega-
tives. Unlike othier edges, these edges start at a probe
and terminate at a YAC. An edge labelled missl indi-
cates that the probe does not hit the YAC but should
hit it according to our proposed ordering. A probe
should hit a YAC if its left and right neighbours hit
it. For example, in Tigure 6, probe sts(869) does not
hit YAC 20-5B1, but should, since its two neighbor-
ing probes, sts(868) and sts(870), both hit this YAC.
If our proposed probe ordering is correct, then there
must be a false negative in our experimental data. The
more false negatives we find, the less likely it is that
our probe ordering is correct. Figure 6 indicates five
false negatives. Notice that probe sts(877) is partic-
ularly problematic. Not only is it connected by two
weak edges, but it is associated with two false neg-
atives. This would suggest correcting our proposed

2In particular, they arc not inferred to be close by rules

(3) and (4).
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probe ordering by removing probe sts(877) from the
contig.

The graph in Figure 6 was construcied by writing
visual queries in Hy+. Other inconsistencies between
the experimental data and a proposed map cau casily
be highlighted by constructing other Hy+ queries.

Summary and Discussion

We are developing a flexible approach to physical map
asselmbly, an approach based on logic programming
and data visualization. To demonstrate the advan-
tages and the potential of the approach, we have imple-
mented numerous rules for map assembly in the Hy+
data visualization system. We illustrated the use of
Hy+ in assembling and analyzing contligs from simu-
lated STS content data. We showed how ta accommo-
date (and even exploit) noise in the data by using rules
that encode hiological knowledge. By using simulated
data, we can compare our contigs to the correct probe
order, and the results are encouraging.

The rules in this paper addressed forms of noise and
experimental error that are relatively discrete. More
generally, rules for probabilistic inference are needed.
One could then reason about continuous noise and
about known rates of false positives, false negatives,
and chimerism. Probabilistic inference can be dealt
with by logical expressions of the form ¢(z) : p, which
intuitively means that statement q(x) is true with
probability p. These ideas have been extensively in-
vesligated in the Logic Programming and Al commu-
nities, e.q., (Kifer & Li 1988).

[t should be noted that Hy+ was designed and built
without genomes or biology in mind. 1n fact, its initial
applications were in software engineering and network
management (Consens 1994). In our application. all
biological knowledge is encoded in graphical patterns,
like those in Figure 4). Hy+ translates these patterns
into logical rules, which are then passed to a logic-
programming system for evaluation. [n this paper,



the resulting inferences provide information on what
probes are close together on a chromosome. Contig
assembly itself is carried out by graph layout algo-
rithms in Hy+. These algorithms know a lot about
graphs, but nothing about biology. The layout algo-
rithm used in this paper isolates the connected compo-
nents of a graph and displays them in a linear manner.
In this way, contigs can be assembled with a minimum
of programming effort by using a flexible and general-
purpose database package. Indeed, the only program-
ming involved Is to use a mouse to draw graphical pat-
terns (i.e., rules). By drawing different patterns we
can quickly and easily test the effects of different map-
assembly rules.

Hy+ provides a number of logic-programming back-
ends. including PROLOG, CORAL and LDL. Al-
though PROLOG is the most well-known, we did not
use it, for two reasons: recursive rules may not ter-
minate in PROLOG, and PROLOG may reprove a
fact many times, which can lead to gross inefficiency.
Modern logic-programming systems have solved these
problems. For instance, the CORAL system evaluates
queries from the bottom up (forward chaining) and
uses a process known as “magic sets” to provide the
necessary goal-directed behavior (Ramakrishnan, Sri-
vastava, & Seshadri 1993). Using CORAL, each of the
queries in this paper was evaluated in a few minutes or
less. Other logic-programming systems provide even
more speed. For instance, the XSB system is an order
of magnitude faster than CORAL (Sagonas, Swift, &
Warren 1994). This efficiency is achieved by memoing
and by compiling logical rules into code for an extended
Warren Abstract Machine (XWAM) (Ait-Kaci 1991).
We plan to install XSB as a back end for Hy+ and test.
its effectiveness in assembling and analyzing physical
genome maps.
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