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Abstract

A major goal of the Human Genome Project is to con-
struct detailed physical maps of thc human genome.
A physical map is an assignment of DNA fragments
to their locations on the genome. Complete maps of
large genomes require the integration of many kinds
of experimental data, each with its own forms of noise
and experimental error. To facilitate this integra-
tion. we are developing a flexible approach to map
assembly based on logic programming and data visu-
alization. Logic programming provides a convenim,t
and mathematically rigorous way of reasoning about
d~,ta, while data visualization provides layout algo-
rithms for assembling and displaying genome maps.
To demonstrate the approach, this paper describes nu-
merous rules for map assembly implemented in a dat a-
visualization system called Hy+. Using these rules,
we have successfully assembled contigs (parti’,d maps)
from real and simulated mapping data--data that is
noisy, imprecise and contradictory. The main advan-
tage of t|,e approach is that it allows a user to rapidly
develop, implement and test new rules for genome map
assembly, with a minimum of programming effort.

Introduction

A major goal of the Human Genome Project is to con-
struct detailed physical maps of the human genome.
A physical map is an assignment of DNA fragments to
their locations on the genome. In assembling a physi-
cal map, a genetics expert typically reasons about the
experimental data and how it fits together. The prob-
lena is to construct a coherent picture of the gcnome
from data that is incomplete, imprecise, anabiguous
and often contradictory. Usually, only an approximate
map can be constructed, and sometimes only the rel-
ative order of the DNA fragments can be determined.
For snmll-scale mapping projects, maps are often con-
structed manually, perhaps with the aid of a graphical
editor. This is a tedious and time-consuming task.
Large-scale mapping projects require better compu-
tational tools to efficiently handle the large volumes
of data and the explosive combinatorics of the map-
assembly problem.

Most existing work in computer-aided map assem-

bly lies somewhere between two extremes: specialized
editors and automatic map-assembly algorithms. Ed-
itors provide a conwmient wax., to rearrange mapping
data, but provide little or no rea,s,.ming capabilities.
The SIGMA sysl.em developed at Los Alamos National
Laboratories is an example of such an editor. Even
with a good editor, however, constructing a genome
map is a tedious and lime-consuming task. Algorithras
for map assembly alleviate this tedium by rearranging
the data automatically. However, most current algo-
rithms are limited to a narrow range of data. Some
algorithms make strict, assumptions about the data
and the errors (somel.imes assuming no error at all)
in order to achieve mathematical proofs of correct-
ness and optimality (Alizadeh et el. 1993; Karl) 1993;
Lee et al. 1993). Map-assembly programs used at large
genome centers make more realistic assumptions, but
they can be inflexible, monolithic progr~ns that are
hard to modify or extend. The MAPMAKER program
for genetic mapping, developed at the Whitehead/MIT
Centre for Genome Research, is an example of such a
program (Lander et al. 1987). Programs for aut.omal.]c
assembly of integrated physical maps will be even more
complex.

The reason for this complexity is that mapping data
comes in a wide variety of forms, each with its own
forms of imprecision and experimental error. Prograr,ts
for integrating data into a single genomic map should
therefore be flexible, so they can easily accommodate
many forms of data, including new forms of data as
they are developed, qb address this need, we are de-
veloping a new approach to map assembly based on
logic programnaing and data visualization. Logic pro-
gramming provides a convenient and mathematically
rigorous way of reasoning about data. while data visu-
alization provides layout algorithms for a~sembling and
displaying genome maps. The goal is to permit new
ideas and techniques for map assembly to be rapidly
impleinented and tested with a minimum of prograin-
ruing effort. Logic programming is already known to
facilitate the rapid prototyping and testing of software.
Within our framework, contigs (partial maps) are as-
sembled not by writing programs, but by specifying de-
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ductive rules for the logic of map assembly. The frame-
work automatically translates these specifications lute
progra n-Ls.

Logical rules carl encode much of the biological
knowledge used in assembling physical genome maps.
These rules }lave a premise (if part), and a conclusion
(then part.), l"or example,1

if two STS probes hit a common. YAC.
then the two probes are close together

o7~ o chromosome.

I,ogical rules can also integrate different kinds of map-
ping data, such as STS and fingerprint data. For ex-
aruple.

if probe sl hits YAC yl,
and probe s~ hits )::4C y~,
and the fingerprints of Ya and Y2 overlap.
lhen probes st and s,, are close together

on a chromosome.

This is the kind of reasoning that a biologist would
employ in a small-scale mapping project. I,ogic pro-
gramming provides a convenient and mathematically-
rigorous way to auLomate this kind of reasoning for
mapping projects of any size.

Even when the experimental data is flawed, it of_
ten contains useful information that can be extracted
wil.h logical rules. For example, a YAC. insert may be
ch*meric, containing two DNA fragments from differ-
ent parts of the genome. For data containing these
chimers, two STS probes are considered close if they
hit two common YACs (This is the double-linkage
strategy of (Arratia et al. 1991)). Other rules can
specify how to resolve data ambiguities. I"or example,
the Whitehead/MlT Genome Center has found that
the pooling schenae used in their Y&C screening leads
to a high rate of false negatives. This often makes it
impossible to say’ precise, ly which Y±£C’. is hit by an STS
probe, though it is possible to say that the probe hits
one of a small set of 8 to 12 YACs. This paper gives
deduclive rules for dealing with such anabiguities.

To test our approach, we have encoded rules for
map assembly using the Hy+ data visualization sys-
tem. Developed at the University of Toronto (Con-
sens 19941, Ily+ provides a graphical user interface
to a number of logic-progranmfing systems: including
PROLOG, CORAL and LDL (Ramakrishnan. Srivas-
tava.,& Seshadri 1993; Tsur & Zaniolo 19861. It also
has a rmmber of algorithms for graph layout. Unlike
many data visualization systems, Hy+ represents both
logical rules a.nd query answers as graphs. Using logi-
cal rules, lly+ transforms mapping data into a graph,
which is then displayed using layout algorithms. Each

1 As explained in more detail later, an STS is ~t Sequence
Tagged Site, and a YAC is a Yeast Artificial Chromosome.
Different. laboratory techniques can be used to determine if
an STS probe "hits" a YAC, such as hybridization or PCR.

162 ISMB-94

contig appears on the screen ,as a connected component
with a linear structure.

Using Hy+, we have been able to rapidly iinplemeut
and test numerous rules for assembling and exploring
physical maps. We have lest.e(] these rules on real
and simulated data provided by the Whitehead In-
sl,itute/MIT Centre for Genome Research. The real
data consists of their December 1993 release of 733
STS probes screened on the CEPH YAC library. The
simulated data represents 876 STS probes screened on
2A90 YAC’s, inch,ding 5,388 hybridizations and 1,766
ambiguous hybridizations. To test and refine our ap-
proach, the Hy+ system has been installed at White-
head/MIT, where it. will be used in their large-scale
mapping projects.

An important aspect of our work is that. Hy+ is a
general tool for querying and visualizing data, and was
not designed with geuomes or biology in mind. In
fact, the initial applications of the lty+ system were in
software engineering and network management (Con-
sens 19941. In our apt)lication, all biological knowledge
is embodied in logical rules. Display of tile resulting
graphs is carried out by the graph layout algorithms
in Hy+. These algorithms know a lot. about graphs,
but nothing about biology. In this way, we can as-
semble contigs with a minimum of programnfing effort.
by using a flexible and general-purpose database pack-
age. lndee.d, the only prograinnfing involved is using a
mouse to draw graphical patterns representirlg logical
rules. By drawing different patterns, we can quickly
and easily test the effect of different map-assembly
rules. In addition, the query and data visualization
facilities of Hy+ facilitate the exploration mad debug-
ging of genome maps, allowing a user to quickly locate
interesting or problematic regions in a map. This is
comparable to the use of Hy+ in understanding and
debugging large software systems (C, onsens 1994).

’[b illustrate our approach to map assembly and
analysis, this paper focuses on a particular kind of
physical map. called an STS content, map. We show
how experimental error in this data can be accommo-
dated (and even exploited) by rules that account for
the biological origins of the errors. We illustrate the
eft‘cot of the rules on synthetic but realistic STS data
provided by the Whitehead Institvtc/MIT Center for
Genome Research (R,ozen el al. 1993). This data con-
1,ains simulated noise and experimental error, includ-
ing chimers and false negatives. It was made available
expressly for the purpose of testing new logic-based
at)preaches to map assembly. In (Rozen et el. 19931,
a mJmber of queries to physical maps are suggested,
queries that an investigator might reasonably ask. We
show how to answer these queries, assemble contigs,
and more.

STS Content Mapping
The aim of STS content mapping is to determine the
order of S’IS probes along a chromosonle. Each Sq’S
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Figure 1: The hit and ambiguous-hit data for two probes.

probe is a very short piece of DNA that "sticks" to a
particular site on the chromosome (a Sequence Tagged
Site, or STS). We do not know the exact location of
each STS, but we would like to know their relative
order. In a detailed map, there are thousands of sites
per chromosome.

The usual first step is to deterntine which pairs of
probes are "close" together on the chromosome, rib
do this, the experimenter randomly cuts many copies
of the chromosome into small fragments, called YACs
(Yeast Artificial Chromosomes). If two STS probes
"stick" to the same YAC, then one can infer that the
two probes are close together, since they are no more
than one YAC-length apart. This, at least, is the ideal
situation. As we shall see shortly, because of noise and
ambiguities in the data, additional reasoning is often
needed to infer proximity. This kind of reasoning is
easily automat, ed as a logic program.

The Data

In a perfect, experiment, the data tell us whether a
probe "sticks" to or "hits" a YAC. This can be deter-
mined by different lab techniques, such as hybridiza-
tion or polymerase chain reaction (PCR). The exper-
imental results are not always clear cut however. For
example, the MIT genome centre has found that. the
pooling scheme used in their YAC screening leads to
a high rate of false negatives. This often makes it inl-
possible to say precisely which YAC is hit by an STS
probe, though it is possible to say that the probe hits
one of a small set of 8 to 12 YACs. The data provided
to us by Whitehead/MIT are comprised of two kinds
of tuples:

¯ hit(P, Y), meaning probe P definitely hits YAC Y,

¯ arab_hit(P, }’set), meaning probe P hits one of the
YACs in the set Yset.

The relation arab_hit contains more information them
is needed for the purposes of this paper. To simplify
the presentation (and to avoid dealing with nested re-
lations), we have transformed each tuple of the form
amb_hit(P, Yset) into a set of t.uples of the form
amb(P,Y), which means that probe P ambiguously
hits YAC Y, (i.e., probe P might hit YAC Y).

All of the logic programs described in this paper were
tested on this data. The data is not ideal and includes
nun]erous false negatives and chimers. The data in-
chides 5,388 tuples of the form hit(Y, P), involving 876
probes and 2,,t90 YACs. It also includes 16,520 tuples
of the form amb(P,Y), derived from 1,766 tuples of
the form arab_hits(P, Yset). Figure 1 shows a graph-
ical representation (using tty+) of the hit and arnb
relations for two probes, sts(874) and sts(875). In the
figure, the nodes on the left represent the two STS
probes, and the nodes on the right represent the YACs
which are hit or ambiguously hit. by these probes. The
rectangular insert in the figure shows a graphical pat.-
tern, which is the query that. generated the graph. The
next sections explain such queries.

Hy+

Hy+ is a data visualization system based on a gener-
alization of labeled directed graphs, called hygraphs
(Consens 1989; Consens & Men(lelzon 1990). 
graphs can be effectively used to organize the visual
presentation into a more informative one than would
be possible in normal graphs. The user interface to
Hy+ is a menu driven windowing system offering many
graphical facilities and color options for the visual dis-
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play of data and reLations. Tile front cud, writ.ten in
Smalhalk, (-onununicates with other programs includ-
ing database backends written in PROI,OG, CORAL
and LI)I, (l{amakrishnan, Srivastava. & Seshadri 1993;
’l.’sur & Zaniolo 1986), which evaluate queries. Hy+
offers visual facilities for filtering the dala to be dis-
played, and for defining new relations on the data.
These query facilities arc., written in a graphical query
language called Graphl..og ((’,onsens 1989: (:onsens 
Mendelzon 1990).

A graphical query in Graph Log is composed of d~flne
graphs and show graphs. A define-grap[,-query defines
new graphical relations, and a show--graph-query filters
the data. before presenting it to the user. Briefly, a de-
fine graph delines a logical rule of inference. The graph
has a single distinguished edge, which appears as a. bold
arc. If this arc is la.beled r(Z), and connects ,,odes 
and Y, then the graph defines a Horn rule whose head
is the atomic fornmla r(X, Y, Z). Likewise, each undis-
tinguished edge in the graph contributes an atomic for-
nmla t.o the premise of this rule. The translation from
query graphs to Horn rules is described in detail in
(Consens 1989, p. 44). Intuitively, a detine graph says
thal if the undistinguished edges appear in a graph,
then the distinguished edge shouhl be added to the
graph. In centrals, to define graphs, a show graph may
have more than om~ distinguished edge. A show graph
has the effect of filtering the data: only distinguished
nodes and edges in the show graph are displayed to the
user. To reduce the number of define graphs, an edge
may be labelled with a path regular cxpre.s.~ion. Rather
than define these facilities precisely here. the next sec-
tion illustrates some of them through examples of the
a~ssembly and analysis of mapping daI a.

Inference and Visualization
This section illustrates the use of the Hy+ system for
assembling, visualizing and interrogating STS content
ma.l~S. All examples in this section use the sinmlated
data described above and were run on a SPAII(" station
10 workstation.

Proximity of Probes
The usual first step in an STS mapping project is to
det.ermine which probes are close together on a chro-
mosome. ’]’his can often be inferred directly from the
experimeutal data, but. noise and ambiguity in the data
can complicate the process. Each kind of data has its
own kind of noise, and each must be given special treat-
ment by a map-assembly program.

In the simplest case, if two probes, P1 and pu, both
hit the same YAC, y, then we immediately infer that. Pl
and P2 are close together on the chl:on,osome. In logic
programming, this rule of inference can be written as
follows:

close(P,, P=,) ~ hit(P1.Y), h.it(P2,Y), (1)
t’1 ¢ P2.

164 ISMB--94

Although simple, this inference is warrauted only un-
der ideal experimental conditions. Such conditions do
not always hoht. This is the c;,se, for instance, if tile
YAC library is chimeric, i.e., if a YAC may be a con-
catenation of two DNA fragments from different parts
of tile genome.

In such cases, we can sti]l infer proximity of two
probes, but. we need difl’erent rules of inference. For
example, if two probes hh two common YAC, s, then
there is a w~ry high probability that the two YAC, s
are not chimeric and that tile prol)es are indeed close
together. In tl,is case, we have two distinct probes, Pl
and P2, two distinct YACs, yj and Y2 and four tuples
in the hit relation:

hit(pl,yt) hit(pl,y2)
(2)

hil(p2, Yl) hit(p,,. Y2)

(This is the double linkage strategy of (Arratia el el.
1991)). In logic progranmfing, this inference can 
written as the following rule:

close(P1.1½) -- h.it(Pl, }"1),hit(P1, }~),
hit(P2, )\), hit(P2, Y=,), (3)

}’t -~ }), P~ ¢ P2.

Hy+ represents such rules of inference as graphical
patterns. These patterns act. on one graph to produce
another graph. The two boxes on the right side of Fig-
ure 2 show how the rule above is expressed visually in
Ity+. These boxes show two graphical patterns. In the
top box (the defin.eGraphLog box), nodes P1 and P2
denote probes, and nodes G and f denote YAC.s. The
crossed out edges mean that the two probes are dis-
tinct, and tim two YACs are distinct. The four edges
labeled hit specify that both probes hil both YACs. If
the data fits this pattern, then Hy+ will add a new
edge to the grapth tile boM edge labelled hh between
PI and P2. Intuitively, this edge means that probes
P1 and P2 are close together. (Tim label hh reminds
us that the inference conies from a double hit.) The
pattern in the bottom box (the showGraphLog box)
has a single boht edge labeled hh. This pattern spec-
ities that. only edges labelled hh. should be displayed
to the user. The two patterns are evaluated by lty+
in about 3 minutes on the sinmlated data described
above. The result is the graph of connected compo-
nents shown on the left side of Figure 2. The Hy+
overview browser has pan and zoom buttons, so only a
few of the connected components are visible in the fig-
ure. Each node in the graph represents an STS probe,
and an edge means that two probes are close together
O11 a c;hronlosonle.

Contig Assembly
The rules discussed above infer which probes are close
together on a chromosome. Using l his proximity infor-
mation, the next step is to assemble a map of the chro-
mosome, i.e.. to infer the relative order of the probes
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Figure 2: Inferring adjacent. STS probes

on the chromosome. Unfortunately, there is often in-
sufficient data to infer a complete map. Typically, all
experimenter will be able to deternline the order of
probes along certain contiguous regions of the chro-
mosome ("eontigs"), but there will be other regions
("gaps") about which nothing is known, because none
of tile probes stick to these regions.

This situation is apparent in the graph on the left.
side of Figure 2. In this graph, each connected com-
ponent represents a distinct contig: and each simple
(loop-free) path through a component is a potential
map of the contig. Notice that each component has a
somewhat linear structure. The structure is not com-
pletely linear because the data and/or analysis do not
yet support a unique linear order of the probes on the
contig. The data also do not tell us how one con-
tig is related to another, i.e., which is first, second,
third, etc. We thus have a partial map with numer-
ous contigs, but. we do not yet know the location (or
orientation) of each contig on the chromosome.

The graph in Figure 2 has 233 connected compo-
nents, representing 233 contigs. Since the graph has
876 nodes (probes), the average contig contains 3.8
probes. A small number of large eontigs would be
better, and the ideal is a single huge contig, i.e., a
completely connected graph representing a complete
map of the chromosome. Recall that the graph in Fig-
ure 2 was generated by rule (3). Rule (1) should 
to a slnaller number of contigs, since it demands less
evidence before concluding that two probes are adja-
cent.. Indeed, the graph that it generates h~ only 69
connected components, with an average of 12.7 nodes
each. Unfortunately, because of chimerism, we cannot
be confident that each of these components represents
contigs. In the next. subsection, we explore a more

reliable way of producing larger contigs.

Ambiguous Data
Rule (3) above provides a way of dealing with certain
problems in experimental data (chimerism). However,
this rule only uses unambiguous data, i.e., data stored
in the relation hit(P, Y). There is not always enough
data in this relation to infer that two STS probes are
close together. In such cases, we can exploit ambiguous
data, i.e., data stored in the relation arab(P, Y).

A simple way of doing this is suggested in (Rozen et
al. 1993): if one of the four ]tit t.,ples in (2) above 
actually an ambiguous hit, then we can still infer that
probes Pl and p2 are close. We can represent this idea
in logic programming by the following three rules:

closel(P1, P~) ~ amb(Pl,}"~),b.it(Pl, )~),
hit(P2, }"~ ), hit( P~, ~) 

Y~ # Y’.,, P1 # P2. (4)
close(P1, P2) *-- c.losel(Pl,t½)
close(P2, Pt) -- closel(P1, P2)

Unlike rule (3), the first rule above is not symmetric 
PI and P2. This is why we first detine closel (which is
not symmetric), and then define close (which is sym-
metric). Intuitively, the second two rules say that if P1
is close to P2, then P2 is close to Ih.

We now have two reliable ways of inferring that two
probes are close together, depending on whether the
probe hits are unambiguous or not. Rule (3) is based
on unambiguous hits, and rules (4) are based on both
ambiguous and unambiguous hits. Using Hy+, we
combined all four of these rules into a single query. The
resulting graph has 161 connect.ed components, repre-
senting 161 contigs with an average size of 5.,I probes
each. We t.hus get larger contigs than by using rule

Harley 165



eprobably_hits
defineGraphLog

........................... ),. "2 ........

nit /’hit N~ arab ~rc

ehit_or_pro

defineGraphLog

P.-....,.......

ph ’!"hit I pro

rV.. ........... i

otwo_link etwo_link._paths

defineGrap.~Log,,,
.: ........... .............-iillk =. ........,,

’1~:-D- ...... --------~a. " ~Q

’ ~tph

.................... ~’~W
..........................

showGraphLog
P

Figure 3: A query defining probably-adjacent probes

(3) ah)ne, which gives a.n average contig size of only
3.8 probes, r[’[liS improvement comes from exploiting
information implicit in the anabiguous data.

Probable Proximity

As the examples above show, the experimental data
may h’ad to a. large number of small contigs. This is
a long way froin a complete physical map, i.~., a sin-
gle large contig. However. by being less rigorous with
the evidence, we can create a smaller nuinber of larger
contigs. (Additional experiinents could then confirm
or refllte these putative contigs.) One way to do this
is to search the database for evidence suggesting that
two probes are p,vbably close on the chromosome, from
which we can infer a set of probable contigs (Rozen el
al. 1993).

Tim first step is to find evidence that an ambiguous
hit is actually a probable hit. To see how, suppose
that probe p ambiguously hits YAC y. We infer that
this is a probable hit if (i) a second probe, q. also
hits y, and (ii) both probes hit a second YAC., w. This
inference can be expressed a.s a logic-programming rule
as follows:

probHit(P. Y) arab(P, ):). hit(Q. Y),
hit(P, W), Mr(Q, W),

}"#14..P#Q.

In I"igure 3, the box labelled probably_hgts shows a
graphical pattern that expresses this rule. The pat-
tern adds an edge labelled pro from probe P to ~\’%("
Y if P probably hits Y.

Using the notions of hits and probable hits, we can
infer when two probes are probably close on a chromo-
some. Previously we defined two probes to be close if
they both hit the same two YAC’,s. Likewise, we de-
fine two probes to be probably close if they both hit
or 1)robably hit the same two YACs. This notion is
defined by the following rules:

ph(P,Y) --- hit(P,Y)
ph(tJ, Y) ~ probttit(P,Y)

probClosr(P,Q) ~ ph(P,Y),ph(Q,Y),
ph(t’, W),ph(Q. 

Y #w,],#Q.

The remaining boxes in Figure 3 show graphical pat-
terns that express these rules. The hit_or_pro box adds
an edge labelled ph from a probe to a YAC if the probe
either hits or probably hits the YAC. The box labelled
two_link then adds an edge labelled a (for "adjacent")
between two probes if they hit or probably hit two
YACs. Finally, the box labelled paths specifies that
only edges labelled a should be displayed.

These rules use more of the ambiguous data than
rules (3) and (4) do. They can therefore infer 
adjacency edges between pairs of probes; so the)’ c;m
generate graphs with fewer, but larger, connccted com-
ponents. This can be seen in the table below, which
rcprcsents a set of ambiguous and unambiguous hits.
Each colunm represents a probe, and each row repre-
sents a YAC.

9"1

Y2
Y3
Y4

Pl P2 Ps t)4
hit arab hit
hil hit

hit arab hit
hit hit

Using rules (3) and (4), we ca,n only infer two adja-
cencies, a(pt, p2) and a(pu,p4); but using the rules 
this section, we can infer a third (probable) adjacency,
a(p2,p3). The former set of rules therefore generates
an adjacency graph with two connected components,
while the latter set generates one large compotmnt.
This behavior has a simple biological interpretation:
we are using high quality data to form coutigs, and
lower quality data to merge contigs. That is, rules
(3) and (4) infer contigs b&sed largely on unambigu-
Oils data. Using more of the ambiguous data. the rules
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Figure 5: The shortest paths between probes sts(286) and sts(995)

of this section infer the probable order of one contig
relative to another.

The query of Figure 3 when run on the simulated
data described above generates 1,353 pro edges. The
amount of time required to execute the query varies
depending on the order Hy+ chooses for the predicates
in tile corresponding logical rules. When the query is
rcwritten to force an optimal order of evaluation of
joins in the rule bodies, the time stabilizes to about 9
minutes. The result is a graph similar to that on the
left side of Figure 2. t~ach simple path in this graph
is called a 2-1inked YAC path in (Rozen et aL 1993),
and is a potential map of the contig. There are 161
connected components in the graph, representing 161
probahle contigs with an average size of 5.4 probes.

Inferring Probe Order
In the graph of Figure 2, any (simple) path between
two probes is a possible ordering of the probes. Mere
possibility, however, is a weak conclusion. We would
prefer to know what ordering relationships are nec-
essary, i.e., are implied by the data. A number of
strategies of different complexity can be used to extract
these relationships. For simplicity, we illustrate an ap-
proach that works with good experimental data. If the
data contain no false negatives, or if we have a suffi-
cient amount of data, then a minimal path between
two probes expresses only necessary relationships. A
minimal path may not include all the probes in a con-
tig, but for those that it does include, we shall know
their relative order on the chromosome.

Figure 4 shows a query that defines the. minimal
paths between two probes, sts(286) and sts(295) in 

graph of Figure 2. The query uses four define graphs
to express a variation of Dijkstra’s shortest path al-
gorithm (Aho, Hopcroft, & Ullman 1983). The first
two boxes (define_st.art and count_edges) compute the
shortest paths from the start node (sts(286)) to every
other node in the same connected component. This is
done by adding arcs labelled b(M) to the graph. In-
tuitively, such an arc from node P to node Q means
that beginning at the start, node, the shortest, paths
to node Q have length M, and furthermore, P is the
predessesor o[" Q on one of these paths. T’hese edges
are inferred recursively as follows. First, add an edge
labelled b(1) from the start node to each of its neigh-
bouts. Second, for any node pointed t.o by b(M), add
an edge labelled b(M+ 1) from this node to each neigh-
bouring node (other than the start node) that is not al-
ready pointed to by a b edge. The second two boxes in
the query (path_end and trace_back) isolate the short-
est paths from the start node to a particular end node
(sts(295)) by tracing the path backwards: each 
an edge labelled b(M) is traversed, it is labelled it.
with p(M). Finally, the show box specifies that only
those edges on a minimal path (i.e., those edges la-
belled p(M)) should be displayed. The result is shown
in Figure 5. In this case, there are two minimal paths.

Exploratory Queries
Until enough data (and the right data) are generated, 
physical map of a chromosome will remain incomplete,
and we will not know the order of the STS probes.
In Figure 2. for instance, we do not know the relative
order of the contigs on the chromosome, and we do not
know the relative order of the probes on each contig.
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Figure 6: Evaluating a contig hypothesis

Sev(..l’al possible orders are consislent with tile data. In
fact., any simt)le path through a connected component
is a possible map of the corresponding contig. Not all
probe orderings are equally likely however. In some
orderings, the links between probes may be weak, or
the ordering may imply too many false negatives in
the data. (~iven a proposed probe ordering, we can
use Ily+ to highlight its weaknesses.

For example, our data is not. good enough to infer un-
ambiguously the order of probes s/s(868) to sts(874).
tfowever, let us suppose hypothetically that their order
is sts(868), sts(869), sts(870) .... sis(878). Figure 
shows this proposed contig and seine of the problems
wilh it. In this figure, the path whose edges are [a-
belle.d a (for "’adjacent") repr(’sents the proposed con-
tig. Other edges represent potential problems. For
instance, edges labelled weak indicate that two probes
are not tightly linked; tbat is, there is little evidence to
support the hypothesis that they are adjacent.2 Three
of the l.en edges in Figure 6 are weak.

Edges labelled miss 1 and miss2 indicate false nega-
tives. Unlike other edges, these edges start, at a probe
and I;erminate at a YAC. An edge labelled miss1 indi-
cates I hat the probe does not hit the YAC, but should
hit it according to our proposed ordering. A probe
should hit a YAC if its left and right neighbours hit
it. For example, in Figure 6, probe sis(869) does not
hit YAC 20-5B1, but should, since its two neighbor-
ing probes, sis(868) and sts(870), both hit this ~(?.
If our proposed probe ordering is correct, then there
must be a false negative in our experimental data. The
more false negatives we find, the less likely it is that
our probe ordering is correct,. Figure 6 indicates five
false negatives. Notice that probe sts(877) is partic-
ularly problematic. Not only is it connected by two
weak edges, but. it. is associated with two false neg-
atives. This wouM suggest correcting our proposed

2In particular, they are not inferre(t to be close by rules
(3) and (4).

probe ordering by removing probe sis(877) from the
contig.

The graph in Figure 6 was constructed by writing
visual queries in Ily+. Other inconsistencies t)etween
the eXl)erinlental data and a proposed map can easily
be highlighted by constructing other I[y+ queries.

Summary and Discussion

We are developing a flexible approach to physical map
assembly, an approach based on logic programming
and data visualization. To demonstrate the advan-
tages and the potential of the approach, we have imple-
mented numerous rules for map assembly in the IIy+
data visualization system. We illustrated the use of
tIy+ in assembling and analyzing contigs from simu-
lated STS content data. We showed how to acconmao-
dat.e (and even exploit,) noise in the data by using rules
that encode biological knowledge. By using sinmlated
data, we can compare our contigs to the correct probe
order, and the results are encouraging.

The rules in this paper addressed forms of noise and
experimental error that are relatively discrete. More
generally, rules for probabilistic inference are needed.
One could then reason about contimmus noise and
about known rates of false positives, false negatives,
and chimerism. Probabilistic inference can be dealt
with by logical expressions of the form q(x) : p, which
intuitively means that statement q(x) is true with
probability p. These ideas have been extensively in-
vestigated in the Logic Programming and AI commu-
nities, e.g., (Kifer & Li 1988).

It should be noted that Hy+ was designed and built
without genomes or biology in mind. In fact, its initial
applications were in software engineering and network
management (Consens 1994). In our application, all
biological knowledge is encoded in graphical patterns,
like those in l"igure 4). tty+ translates these patterns
into logical rules, which are then passed to a logic-
programming system for evaluation. In this paper,
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the resulting inferences provide information on what
probes are close together on a chromosome. Contig
assembly itself is carried out by graph layout algo-
rithnrs in Hy+. These algorithms know a lot about
graphs, but nothing about biology. The layout, algo-
rithm used in this paper isolates the connected compo-
nents of a graph and displays them in a linear manner.
In this way, contigs can be assembled with a minimum
of programnfing effort by using a flexible and general-
purpose database package. Indeed, the only program-
ruing involw~d is to use a mouse to draw graphical pat-
terns (i.e., rules). By drawing different patterns we
can quickly aud easily test the effects of different map-
assembly rules.

Hy+ provides a number of logic-programming back-
ends. including PROLOG, CORAL and LDL. Al-
though PROLOG is the most well-known, we did not
use it, for two reasons: recursive rules may not ter-
minate in PROLOG, and PROLOG may reprove a
fact many times, which can lead to gross inefficiency.
Modern logic-programming systems have solved these
problems. For instance, the CORAL system evaluates
queries from the bottom up (forward chaining) and
uses a process known as "magic sets" to provide the
necessary goal-directed behavior (Ramakrishnan, Sri-
vastava, &. Seshadri 1993). Using CORAL, each of the
queries in this paper was evaluated in a few minutes or
less. Other logic-programm.ing systems provide even
more speed. For instance, the XSB system is an order
of magnitude faster than CORAL (Sagonas, Swift, 
Warren 1994). This efficiency is achieved by memoing
and by compiling logical rules into code for an extended
Warren Abstract Machine (XWAM) (Ait-Kaci 1991).
We plan to install XSB as a back end for Ity+ and test
its effectiveness in assembling and analyzing physical
genolne maps.
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