
Kinematic Manipulation of Molecular Chains Subject to Rigid
Constraints

Dinesh Manocha * Yunshan Zhu t
Computer Science Department
University of North Carolina
Chapel Hill, NC 27599-3175
{ manocha,zhu } @cs. unc.edu

Abstract

We present algorithms for kinematic manipulation of
molecular chains subject to fixed bond lengths and
bond angles. They are useful for calculating con-
formations of a molecule subject to geometric con-
straints, such as those derived from two-dimensional
NMR experiments. Other applications include search-
ing out the full range of conformations available to a
molecule such as cyclic configurations. We make use
of results from robot kinematics and recently devel-
oped algorithms for solving polynomial systems. In
particular, we model the molecule as a serial chain
using the Denavit-Hartenberg formulation and reduce
these problems to inverse kinematics of a serial chain.
We also highlight the relationship between molecular
embedding problems and inverse kinematics. As com-
pared to earlier methods, the main advantages of the
kinematic formulation are its generality to all molecu-
lar chains without any restrictions on the geometry
and efficiency in terms of performance. The algo-
rithms give us real time performance (order of tens
of milliseconds) on smaller chains and are applicable
to all chains.

Keywords: kinematics, serial chains, loop closure,
conformation search, molecular embedding, model
building

Introduction

One of the fundamental problem in computational
chemistry is the quantitative construction of realistic
3-dimensional structural models of molecules of inter-
est. This includes searching for full range of conforma-
tions available to a given molecule and computation of
molecular embeddings satisfying some geometric con-
straints. In this paper we restrict ourselves to gen-
eration of molecular conformations and embeddings,
given fixed values for bond lengths and vicinal bond
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angles, but certain dihedral or torsional angles are al-
lowed free rotations. In reality bond lengths and angles
are stiff but somewhat flexible, and the physically im-
portant conformations are those having low internal
energy. The rigid geometry assumption greatly simpli-
fies the geometric complexity. Moreover, the minimal
energy conformations found using rigid geometry for-
mulation are a good guess to the actual minima and
can be used along with a perturbation treatment for
the energy minimization (Go g~ Scherga 1970).

Many interactive systems for molecular modeling
such as Sybyl (Tripos 1988) and Insight (Biosym 1991)
provide capabilities for building and changing molec-
ular models by rotating the torsional angles. The
flfll conformation space of acyclic molecules is the
Cartesian product of all the torsional angle with
one-dimensional cycles, known as the n-dimensional
toroidal manifold, where n is the number of rotat-
able bonds. There is a considerable amount of liter-
ature on exhaustive methods. A recent survey of dif-
ferent methods is given in (Howard & Kollman 1988).
The complexity of the search methods is an exponen-
tial function of the number of rotatable joints and
therefore limited to chains with low n. For cyclic
molecules having rotatable bonds in the rings, six de-
grees of freedom are lost due to the closure constraint.
Go and Scheraga have proposed solutions to com-
puting the ring conformations (Go $: Scherga 1970;
1973). The algorithm in (Go & Scherga 1970) is 
stricted to molecular chains where the rotation can
take place about all backbone bonds and the meth-
ods in (Go &~ Scherga 1973) are for symmetric chains
only. They reduce the problem to computing roots of a
univariate polynomial. Algorithms based on distance
geometry to study the ring systems are proposed in
(Weiner et. al. 1983; Peishoff & Dixon 1992). They
use a distance matrix to generate a set of cartesian co-
ordinates that satisfies the original set of distances as
much as possible. A similar approach based on suc-
cessive infinitesimal rotations is presented by (Skle-
nar, Lavery, & Pulhnan 1986). Although these ap-
proaches make no assumption about the geometry of
molecules, they are relatively slow in practice, may
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fail to converge and cannot be used for analytic com-
puter.ion of the conformation space for even small
chains. More recently, Crippen has introduced the
technique of linear embedding and applied it to explore
the confornlation space of cycloalkanes (Crippen 1989;
1992). It is a variant on the usual distance geome-
try methods and makes use of the metric matrix a.s
opposed to distance rnatrix. Ilowever, the applica-
tion to ring struct.urcs has been linlited to molecu-
lar chains, where all bond lengths and bond angles
are equal. Other approaches for molecular conforma-
tions are based on stocita.stic optimization and Monte
Carlo analysis (Go & Scherga 1978: Saunders 1989;
Bruccoleri & Karplus 1985). These can be slow in
practice and are not guaranteed to find all the soh,-
tions.

In this paper we present algorithms for generat-
ing the conformation space of molecular chains using
kinematic analysis. We model tile molecule as a se-
rial kinen,atic chain using Denavit-Hartenbcrg formu-
lation and show how problems of chain closure, loop
deformations and conformation analysis relate to in-
verse kin.emat,es of serial chains and robot, inanipula-
tors. The problem of inverse kinematics is well-studied
in robotics literature and reduces to solving system
of polynomial equations (Spong & Vidya~sagar 1989;
Raghavan & Roth 1989). We make use of fast solutions
to solve these polynomial systems (Manocha 1992;
Manocha, Zhu, & Wright 1994) and apply them to
study the configurations of cyclooctanes. We also show
the application of inverse kinematics to molecular ent-
bedding problems. That corresponds to finding one or
more sets of atomic coordinates such that a given list
of geometric constraints is satisfied. This includes tile
distance constraints from two-dimensional NMR ex-
periments and homology based modeling. The result-
ing algorithms are also useful for structure prediction,
protein folding, model building, 3D molecular match-
ing and drug design (G.R. Marshall et. al. 1979).

The rest of the paper is organizcd in the following
manner. We introduce the inverse kinematics formula-
tion in Section 2 and reduce the problems of molecular
conformation to solving system of polynomial equa-
tions. In Section 3, we apply the kinematic formula-
Lion to cornpute molecular embeddings. We highlight
its application to cyclooctanes and peptide units in
Section 4.

Kinematic Formulation of Molecular
Chains

Kinematics is the science of motion that treats mo-
tion without regard to the forces that cause it. In
our context, kinematics for molecular chains refer to
its geometrical properties in terms of the position and
orientation of the atoms. In order to deal with the
complex geometry of the molecules, we affix frames to
tim various part of a chain and then describe the re-
lationship between these chains. In particular, we use
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Figure 1: C.oordinate systems on a polypeptide Ulfits
based on DH forlnalism

tile Denavit-Ilartenberg (DIt) formalism, (Denavit 
liartenberg 1955), to model a molecule with n rotat-
able bonds. These rotatable bonds need not corre-
spond to a backbone chain. Each bond is represented
by the line along its bond axis and the common nor-
real to the last bond axis. In the case of parallel bonds,
any of the common normals can be chosen. A coordi-
nate system is attached to each bond for describing the
relative arrangements among the various bonds. The
z-axis of frame i, called zi, is coincident with the bond
axis i. Initially a base frame is chosen such that the
origin is on the zl axis and the xl, yl axis are chosen
conveniently to form a right hand frame. The origin of
frame i, oi corresponds to the point where the common
normal to zi attd zi-1 intersection zi. If zi and zi-~
intersect, the origin zi is their point, of intersection.
xi is along the colnmon normal between zi and zi-~
through el, or in the direction normal to the zi-t - zi
platte if zi-l and zi intersect. Given zi and zi, yi is
chosen to coinplete the right hand coordinate system
at el. This formulation is shown for a peptide unit in
Fig. 1. This is repeated for i = 2 ..... n. Given a coor-
dinate system, we create the following parameters for
the molecular chain:

ai = distance along xi from oi to the intersection of
the xi and zi-i axes.

di = distance along zi-t from oi-1 to the intersection
of the xi and zi-1 axes.

oi = the angle between zi-1 and zi measured along
a:i.

t9i = the angle between xi-1 and xi measured about
Zi- 1 ̄
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Figure 2: DH parameters for a polypeptide unit

These parameters for the polypeptide unit are shown
in Fig. 2. The torsional angles correspond to the 0is.
Given this representation of the coordinate systems for
each bond, the 4 × 4 transformation matrix relating i- 1
coordinate system to i coordinate system is:

Ai =- si Ci~i --Ci[~i aisi
0 I-ti Ai di ’ (1)
0 0 0 1

where si = sin0i, ci : cosOi, Ill -~ sinsi, Ai = costal.
Molecular models also contain attractions and re-

pulsions between non-bonded atoms, charge and hy-
drophobicity. Attractions hold nearby atoms together,
whereas repulsions maintain a minimal separation de-
fined by the atoms’ electron shells. In this paper we
limit ourselves to building and changing molecules by
rotating around the torsional angles for adjusting the
interior segments or conformation search. After com-
puting the configuration space of a molecular chain we
can apply model attractions, repulsions and charges.

Direct and Inverse Kinematics

We. denote the pose of the end of the chain with respect
to the base frame as Ae, a 4 × 4 matrix. Given the n
torsional angles, 01, ..., 0,, the pose of the end of the
chain corresponds to

AE = A1A2...A,. (2)

The computation of AE from torsional angles is re-
ferred to as direct kinematics. In most applications,
we are given the pose matrix and the problem of in-
verse kinematics corresponds to computing the tor-
sional angles such that. (2) is satisfied. The relation-
ship is reduced to a s~’stem of algebraic equations by
substituting xi -- t.an~. Therefore, sin0i -- 1+~ and

1--x~cos0i = ~. Eventually we obtain a system of 6 al-

gebraic equations in n unknowns.

Molecular Conformations and Inverse
Kinematics

Many problems related to generation of molecular con-
formations correspond directly to inverse kinematics.
In this section, we show the equivalence for local de-
formations and chain closures.

Chain Closure The chain closure problem turns out
to be a special case of the inverse kinematics problem
highlighted above. In particular for chain closure, the
right hand side matrix AE corresponds to the iden-
tity matrix. As a result, all the solutions to the chain
closure are obtained by substituting for As in (2).

Local Deformations The problem of performing
conformational variations on a local portion of an
acyclic or cyclic chain corresponds to selecting the
bonds formulating thc chain, choosing the subset of
rotatable bonds and the conformation of the end of
the local chain. The algorithm proceeds by a~igning
the frames and computing the DH parameters for the
local chain. The rotatable bonds need not be contigu-
ous. The resulting problem can be posed as shown in
(2). AE corresponds to the conformation of the end 
the chain and n corresponds to the number of rotatable
in the selected chain.

Fast Algorithms for Inverse Kinematics

Inverse kinematics for general serial manipulators has
been a fundamental problem for computer controlled
robots. Most of the literature in robotics has con-
centrated on inverse kinematics of chains with six or
fewer joints. The complexity of inverse kinematics of
a general six jointed chain is a function of the geome-
try of the chain. While the solution can be expressed
in closed form for a variety of special cases, such as
when three consecutive joint axes intersect in a com-
mon point, no such formulation is known for the gen-
eral case. It is not clear whether the solutions for such
a manipulator can be expressed in closed form. It-
erative solutions (based on numerical techniques like
optimization or Newton’s method) to the inverse kine-
matics for general 6R manipulators have been known
for quite some time. However, they suffer from two
drawbacks. Firstly they are slow for practical applica-
tions and secondly they are unable to compute all the
solutions. As a result, most industrial manipulators
are designed sufficiently simply so that a closed form
exists.

Recently fast algorithms for solving polynomial sys-
tems (Manocha 1992) have been applied to the inverse
kinematics of serial chains with six or fewer rotatable
joints. They are based on the algebraic formulation
of the problem and make no assumptions on its ge-
ometry (Manocha, Zhu, & Wright 1994). As a result,
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they are applicable to all molecular chains. The algo-
rithms make use of the algebraic reduction of the prob-
lem to a univariate system presented by Raghavan and
Roth (Raghavan & Roth 1989). lIowever the symbolic
derivation highlighted by Raghavail and Roth does not
take care of all the geometries (e.g. the polypeptide
configurations). As opposed to reducing the problem
to finding roots of a univariate polynomial, we formu-
late it. as an eigenvalue problem. Depending on the
geometry of the molecular chain we obtain matrices of
different order, though the total number of solutions is
still bounded by 16 (assuming a finite number of config-
urations). The main advantages of the matrix formu-
lation are in etficiency and accuracy. The reduction to
a univariate polynomial involves expanding a symbolic
determinant, which is relatively expensive. Moreover
the problem of finding roots of polynomial of degree 16
can be numerically ill-conditioned (Wilkinson 1959).
As a result, we may riot be able to compute accurate
results using IEEE double precision arithmetic on cur-
rent workstations.

Performance
The algorithm for solving inverse kinematics works
very well in practice and on the applications high-
lighted above. It takes Denavit Hartenberg parameters
and the pose of end effector as inputs, and outputs all
possible solutions for the torsional angles. The algo-
rithm involves symbolic preprocessing, numerical sub-
stitution and matrix computation. The symbolic pro-
processing is performed using MAPLE computer alge-
bra system, and the algorithm has been implemented
in C making use of Fortran implementations of ma-
trix computations from LAPACK (Manocha, Zhu, &:
Wright 1994).

The Denavit Hartenberg parameters attd end poses
of a molecular cha.in can be computed from the atom
coordinates if at least one set of these atom coordinates
is available. They can also be computed from stan-
dard geometry. Once these parameters are computed,
they are substituted into the inverse kinematics proce-
dure. For most general cases, the problem is reduced
to solving eigenvalues of a 24*24 matrix, which takes
no more than 20ms. For the examples of cyclohexane
and protein embedding, eigenvalues of 32*32 matrices
are computed because of the degeneracy of these struc-
tures. The whole inverse kinematics procedure takes
40-50 ms on an SGI/ONYX workstation.

Molecular Embedding and Inverse
Kinematics

Tile molecular embedding problem consists of finding
one or more sets of atomic coordinates such that a
given list of geometric constraints is satisfied. Such
problems arise, when we are given data derived from
NMR experiments, where we are given sorne e~:peri-
mental conMraints corresponding to the distance be-
tween some atotns. In these cases it is assumed that

the molecule is under no great strain, so that all bond
lengths and bond angles are known froin standard val-
ues taken from X-ray crystallographic studies on snlall
molecules (Crippen 1989). These constraints are re-
ferred to as holonomic constraints. The goal of the em-
bedding algorithms is to find all conformations which
satisfy these constraints. In this section, we show the
equivalence between the embedding problems and in-
verse kinematics. Furthermore, fast algorithms for in-
verse kinematics can be used for computing the era-
beddings.

There are many approaches to computing the molec-
ular embeddings and most general one is based on
EMBED (Crippen & Havel ; Crippen 1981). It is fre-
quently used for the determination of conformations of
srnall proteins in solution by NMIZ. Given the experi-
mental and holonomic constraints, the algorithm finds
upper and lower bounds for all distances (which sat-
isfy the constraints) and using some random values in
this range it computes the closest corresponding three-
dimensional metric matrix. Crippen has extended the
algorithm using linearized embedding and taking chi-
rality into account (Crippen 1989). The overall process
is iterative arid may take considerable running time on
some cases. Furthermore, even for small chains it is
not, guaranteed to compute all the configurations.

We show the equivalence between molecular embed-
ding and inverse kinematics for small chains. It can
be combined with inodel building techniques for appli-
cation to larger chains as shown in (Leach & Smellie
1992).

Application to Small Chains

In this section we will consider embeddings of molec-
ular chains consisting of up to six rotatable bonds. In
the basic version of tile problem we are given an initial
bond, specified by fixed atom positions, P1 and P2, and
a final bond specified by fixed atom positions P~ and
PT. Wc are interested in finding all tile positions of
all of the intermediate atoms P~, P4 and P~ such that
the bond lengths are all as required (d~, d3, d4 and ds)
and the angles between tile bonds are all as required
(o,2,a’3, a.l,a" 5 and a~). The problem formulation is
shown ill Fig. 3. We carl reduce this problem to in-
verse kinematics in the following manner:
Assign a frame using tile DH formulation at each atom
(shown as Pi in Fig. 3), such that tile z-axis is along
the bonds. We know the position of P7 in the base
coordinate system assigned at Pl. Let the orientation
of the frame at P7 be such that the z-a~xis is along the
bond P6 - P7 and the x and y axes are chosen to com-
plete a right hand coordinate system. A~: is therefore
computed appropriately. The Denavit.-Ilartenberg pa-
rameters are computed using the di’s and ai’s. The in-
verse kinematics probleIn corresponds to computing all
the torsional angles, given the pose of the end-effector
A~. Given the torsional angles, the positions of the
intermediate atoms can be easily cornputed.
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Figure 3: Molecular embedding problem with unknown
atom positions

Figure 4: Inverse kinematics formulation of molecular
embedding

Theorem 0.1 Assuming fixed bond lengths and bond
angles, the conformation of a molecular chain with up
to 7 atom.s can be determined its first and last bond
positions.

Proof
We prove the theorem by showing that the molecular

chains in Fig. 3 and Fig. 4 have equivalent solution
space. Therefore, the conformation of the molecular
chain (in Fig. 3 represented in terms of unknown atom
positions) can be computed using the algorithm for
inverse kinematics highlighted in the previous sections.

We initially show that for each solution to the em-
bedding problem, there exists a corresponding solution
to the inverse kinematics problem. Given atom posi-
tions P3,P4, P5 that satisfy the boud length and bond
angles constraints, the x-axis of local frame at Pi can
be computed based on the atom positions. Given the
frames and their positions in the global coordinate sys-
tem, the Ois are easily computed and they correspond
to the solutions of the inverse kinematics problem.

Conversely, if 0is are the solutions for the inverse
kinematics problem, using forward kinematics the po-
sitions of points P2, P3 .... , P6 are computed. Given
the position and orientation of the frames, we know
that P1 and/97 correspond to the given positions, and
z0 is along !°1-t:’2 bond, and z7 is along P6-PT. Since
all rotations are along the bonds, the position of P2
and/°6 are invariant, and they match the specified po-
sitions. The rotations along the bonds do not violate
any bond length or bond angle constraints.

Q.E.D.
Although we have considered molecular chains with

rotation along all backbone joints, the relationship be-
tween embedding problems and kinematics problems

extends to all other geometries (like peptide chains) 
well.

Applications and Performance

In this section, we describe the applications of inverse
kinematics algorithm to larger chains, illustrate the
algorithm on loop conformations of cyclooctanes and
molecular embedding of protein chains.

Extension to All Molecular Chains

An algorithm for kinematic manipulation of molecu-
lar chains with six or fewer dihedral angles is presened
in (Manocha, Zhu, ,~z Wright 1994). In this section,
we highlight techniques for manipulation of molecular
chains with more than six rotatable angles. Given a
molecular chain with n torsional angles, the problem
of kinematic manipulation reduces to 6 equations in n
unknowns. Chains with more than six torsional angles
are commonly used in molecular modeling. Examples
include cyclo-heptanes, cyclo-nonanes, sugar molecules
besides the polypeptide units. Given a chain with
n > 6 torsional angles, it has n - 6 dimensional so-
lution space in the neighborhood of any real solution.
A simple strategy to solve for the solutions involves the
use of n - 6 torsional angles as independent variables
and the rest of the six are functions of the independent
variables computed using the inverse kinematics algo-
rithm. A simple exhaustive procedure assigns some
discrete values to the n - 6 independent variables and
solves for the rest of the torsional angles based on the
algorithm highlighted in the previous section. Values
of the independent variables are chosen using exhaus-
tive search methods or randomized techniques. In case
there are no real solutions, all the eigenvalues of the
matrices formulated in the previous section have imag-
inary parts. We can use the magnitude of the imagi-
nary part of the eigenvalues in choosing the indepen-
dent variables and perturbing them to guide to a real
solution.

The resulting algorithm combines the analytic ap-
proach with exhaustive search or randomized search
methods. As compared to purely exhaustive methods,
the complexity of the search space goes down by six
dimensions, due to the inverse kinematics procedure.
For example, to compute all the chain closure configu-
rations of cyclo-nonanes, we only use discrete values of
three independent variables as opposed to all the nine
independent variables. For torsional angle increments
of 60°, we generate 216 configurations of the three in-
dependent variables and apply the inverse kinematics
procedure. A purely exhaustive method would gener-
ate 2163 configurations. Similarly it can be combined
with Monte Carlo mcthods, we only need to introduce
random changes to n - 6 torsional angles as opposed
to all the n angles.
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Table 1: Number of solutions for given values of 07
and 08. The rows are for different 08 values, and the
colmnns are for different 07 values.

Cyclooctane Conformations
We have applied inverse kinematics analysis to study
the conformations of ring structures of cyclooctanes.
The Denavit-Hartenberg parameters of a cyclooctane
structure are shown in Fig. 5 (d = 1.55A° and a =
115°. The pose of end effector in this case is an identity
matrix because of the ring closure.

In the case of cyclooctane in Fig..5. there are eight
rotatable bonds. The conformation can not be deter-
mined solely based on ring closure property which gives
no more than six constraints. In other words, the so-
lution space is a two-dilnensional space. In our study,
we combined inverse kinematics algorithm along with
systematic search. Namely, we assign discrete values
to the last two torsional angles and use inverse kine-
matics to compute the rest of the six torsional angles.
We have used different increments of the angles. At
30 degree increments for 07 and 0~, the mmaber of so-
lutions are shown in Table l. For example, if we fix
07 = 60° and 0s = 30°, there are 6solutions. Due to
the inherent symmetry in the problem, the resulting
two-dimensional table should be symnaetric. In gen-
eral, the algorithm can compute the solutions to a good
accuracy, tlowever, near higher multiplicity roots (say
double roots), the problem can be ill-conditioned and
special processing is needed to compute these high nml-
tiplicity solutions, aus highlighted in (Manocha 1992).

The performance of the inverse kinematics algorithm
for conformation search of a cyclooctane has been high-
lighted in Table 2. In particular, the running time
is shown for different grid size increments. It takes

Grid size increments 30 20 i0 5 , ]
Time (sec) 7.81 18.12 73.4 295.2

Table 2: Running time of cyclooctane conformation
search at various grid sizes

Figure 5: Cyclooctane Conformation : systematic
search on 07 and 08

about 40 - 50 milliseconds for a single execution of
the inverse kinematics procedure and about 7 - 8 sec-
onds to search the two dimensional space of 08 and 07
at 30° increments to generate the results in Table 1.
Our current implementation is not fidly optimized and
we believe that the performance and accuracy can be
further improved. Our current implementation high-
lights that 20° to 30° degree grid increments generate
a good approxinaat.ion of the configuration space. Fur-
thermore, the performance of the overall algorithm is
directly proportional to the grid size. It is straightfor-
ward to predict that it will take less than 20 minutes to
search the conformation of cyclodecane at 30° degree
increment of the last four dihedral angles.

Our analysis has been based on pure geometry, we
are yet to study energy aspects of our results. We be-
lieve that these results can be used a.s starting points
for energy minimization procedures. That involves
variations in the torsional angles, along with small vari-
ations in the bond length and bond angles.

Molecular Embedding of Protein Chains

We applied the inverse kinematics procedure for com-
puting the molecular embeddings of sinall protein
chains. In this section, we demonstrate how to com-
pute backbone atom positions of a protein chain from
two end bonds positions based on geometric con-
straints.

A peptide unit is showed in Fig. 6(a). Due to the the
partial double bond character of C-N bond, no rota-
tion along C-N bond is possible and all the atoms of a
peptide unit lie in a plane. The only degree of freedom
is the rotation along Ca-C and N-Ca bonds. Cc~-C
and N-Ca intersect at a point P in the same peptide
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(a) (b)

(C) (d)

Figure 7. Four sets of possible atom positions of residues Asn and Phe.
The Ca-C bond of Glu and N-Ca bond of Gin are fixed.
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I x I v I z II
Glu Ca 0.128 -2.805 -1.279
Glu C 0.769 -2.365 0.039
Gin N -1.171 0.389 4.312
Gln Ca -2.247 -0.494 5.359

Table 3: Atom positions of two end bonds

and N-Ca intersect at a point P in the same peptide
plane as showed in Fig. 6(b). (Tile angle between Ca.-
C and N-Ca is not exact,). Obviously, rotation along
Cc~-C and N-Ca are the same as rotation along Ca-P
and P-Ca, respectively. Therefore, a peptide unit is
geometrically equivalent to two consecutive rotatable
bonds as showed in Fig. 6(c). Based on standard bond
geometry in Fig. 1, all the distances and angles in Fig
6(c) are computed. Following this formulation, Theo-
rem 0.1 is applied to the protein segments, while the
planar peptide unit configuration is maintained.

One example of molecular embedding is showed in
Fig. 7. In this protein segment, there are four residues
Gin, Ash, Phe and Gin. The Ca-C bond of Glu is
fixed, and the N-Ca bond of Gln is fixed. The four
atom positions of these two bonds are listed in Table
3. Four possible conformations of Ash and Phe can
be derived based on the bond lengths and bond angles
constraints.

We have shown examples of computing backbone
atom positions of protein segments. The same tech-
nique applies to side chain and other molecular struc-
tures. This is based on the fact that we made no as-
smnption about the molecule geometry in the proof
of Theorem 0.1 or in the procedure of solving inverse
kinematics. This technique is also applicable for infer-
ring backbone atom positions from the side chains. In
the electron density mapping data, the Ca-C~ bonds
of side chains are much easier to identi~" than the back-
bone atom.

Conclusions
In this paper we have presented efficient techniques
for kinematic manipulation of molecular chains. They
are used for conformational search or computing the
configuration of a molecular chain subject to rigid con-
straints. We have shown equivalence between the kine-
rnatic formulation and molecular embedding problems
for short, chains. We apply our techniques to compute
the conformations of molecular chains with Inore than
six dihedral angles (e.g. cyclooctanes) and compute
the embeddings of a peptide units. The main features
of our approach lie in its generality to all molecular
geometries, efficiency and accuracy.
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