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Abstract
We discuss some central issues that arise in the
computer representation of the metabolism and its
subsystems. We provide a framework for the
representation of metabolites and bioreactions at
multiple levels of detail. The framework is based on
defining an explicit linear mapping of metabolites and
reactions from one level of detail to another. A simple
reaction mechanism serves as an illustration and
shows the emergence of the concept of a catalyst from
metabolic abstraction levels.

Introduction

Many efforts have recently been undertaken to construct
models, databases, and computer representations of the
metabolism (Reddy et al., 1993, Ochs and Conrow, 1991,
Karp and Mavrovouniotis, 1994, Hunter, 1993, and
references therein). The computational analysis of
complex biochemical systems affects applications ranging
from the development and improvement of industrial
bioprocesses to the support of experimental studies of cell
physiology (Karp and Mavrovouniotis, 1994).

Emerging new representations of biochemical pathways
and biochemical knowledge-bases allow the storage and
retrieval of commonly available types of knowledge and
data (for biochemical compounds, reactions, pathways, and
enzymes); the representations are intended to be flexible
enough to accommodate many types of automated
reasoning. Through these efforts, a transition is under way
from narrow and specialized approaches towards
comprehensive general-purpose computer models of the
metabolism. Flexible multi-purpose representations are
obviously important in avoiding duplication of effort (since
there is often significant overlap in the information needed
by many different applications or problems). The
flexibility is important even in a single target problem,
because one is often forced to start solving parts of the
problem before finalizing the overall problem formulation
and solution strategy, i.e., one develops programs initially
in small chunks, which are extended and connected later.
Within this context, the underlying computational
representations must be created, from the outset, general

This work was supported in part by the National Library of
Medicine (grant R29 LM05278).

enough to support the needs of all the data, algorithms, and
display capabilities; these might not be clear at the outset,
because one usually begins from narrow formulations and
simple examples.

Many obstacles and questions stand in the way of general
and flexible computational representations of the
metabolism. The issue that will be discussed in this paper
is the representation of biochemical systems at multiple
levels of abstraction, which are always present (often
informally or implicitly) in any description of 
biochemical system. As is often the case, computer
representation efforts (and in particular the assignment of
semantics to computational models or knowledge-bases)
bring tbrth terminological ambiguities that were there to
start with. Thus, the impact of formalization extends to the
framework of the domain itself, beyond the development of
algorithms and software.

We focus on ambiguities that are a direct consequence of
multiple levels of detail in biochemical representations.
The enzymes that catalyze bioreactions and the compounds
which participate in the reactions may have variants in their
structure, because of the effects of water, the formation of
complexes, and regulatory modifications. The variants may
be important in one level of detail but should be ignored in
another. How do we build the connection between a
lumped and a detailed view? Bioreactions are often
organized into pathways or decomposed into steps; what
are the implicit criteria used in this decomposition? How
can this decomposition be made explicit in the computer
representation of this hierarchical system? This paper aims
to discuss and clarify these key issues that arise in the
formalized or computational representation of the
metabolism at multiple levels of detail.

The remainder of the introduction expands on the
biological motivation of the work and introduces the basic
terminology and assumptions we will use. Subsequent
sections present the concept of a metabolic view (which
defines a specific level of detail) and the abstraction of one
metabolic view to a less detailed metabolic view.

Ambiguity and Abstraction in the Metabolism

The biochemical transformations that comprise the
metabolism have a hierarchical structure. What we
normally think of as one bioreaction is actually composed
from several elementary steps, which are often called,
collectively, the mechanism of the reaction. The
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mechanism includes association steps that form complexes
of the enzyme and the substrates, steps that actually alter
the chemical structure of the substrates, and dissociation
steps that release products from the enzyme complex.

What is an enzymatic reaction, and where does it begin
and end? If we have two enzymes which are attached to
each other, shuttling an intermediate directly between
them, should that count as one reaction or as two? If the
product of an enzyme-mediated reaction remains bound to
the enzyme, should the reaction be considered complete?
The difficulty in answering such questions belies the
informal way in which we have abstracted a multitude of
intra- and intermolecular phenomena into higher level
concepts such as "enzymatic reaction" or "pathway".

How much significance do we attribute to assemblages
such as pathways, and their a priori designation? The
computerized metabolic map of Ochs and Conrow (1990)
attempts to hardwire the organization of bioreactions into
pathways. Mavrovouniotis et al. (1990) attribute little
significance to a priori designation of pathways; they
construct pathways as bioreaction combinations which
achieve a target transformation, regardless of whether they
are designated as such in a biochemistry textbook. In
either case, pathways are abstractions, and their
relationship to the underlying detailed biochemical network
should be made explicit.

The definition of bioreactions and pathways from the
soup of interacting molecular structures represents a
hierarchical abstraction created by choice, rather than
compelling physical separation. The isolation of one
subset of an enzyme’s interactions as a biochemical
reaction, and another subset as a regulatory effect, are not
dictated by physical laws. There are good reasons for
conforming to this hierarchy, but the fact that it is not
compelling means that it is not completely predefined. For
non-computational representations some ambiguity (and
even the occasional mild conceptual inconsistency) can be
useful, but in computational knowledge representation the
hierarchy must be defined explicitly and consistently.

The thrust of this paper is the modeling of multi-level
abstraction in the metabolism. Abstraction is invoked
whenever we describe an entire set of species (such as acid
or base forms, or different enzyme-metabolite complexes)
as a single entity. Abstraction is also involved when many
physicochemical events (such as formation, reaction, and
dissociation of enzyme-substrate complexes) are lumped
into a single process ("enzymatic reaction"). Even the
meaning of a term like "catalyst" is a result of abstraction,
as we will discuss in the last section of this paper. We
propose a framework that makes these abstractions explicit,
allowing formal systems or computer implementations to
model, carry out, and reason about such abstractions.

Preliminaries of Abstraction Scheme
We begin with some essential background definitions,
assumptions, and conventions which will facilitate the
presentation of the multi-layer abstraction scheme. For
simplicity, we will assume that we are modeling a closed

system (a system in which there is no influx or outflow of
material); this means that all changes in amounts of
metabolites are due to reactions. The extension to open
systems is conceptually easy. This simplification is
intended to avoid detractions from the core issues.

We will be referring often to amounts of metabolites.
Their measurement units will always be moles; the number
of moles is proportional to the number of molecules (with
Avogadro’s number 6.02x 1023 as the proportionality
constant). For a constant-volume system we can substitute
concentrations (in mol/l=kmol/m3=M) for amounts. 
are primarily interested in changes in amounts, rather than
absolute values.

The amounts of chemical elements present in a system
will be treated like the amounts of metabolites, above.
What is important about chemical elements is that they are
conserved by reactions (while metabolite amounts
obviously are not). Thus, we can use as elements any kind
of conserved substructures or moieties; if aromatic rings
are unaffected by the reactions in our system, then we can
treat an aromatic ring like an element. The terms element
and moiety will be used interchangeably for conserved
substructures.

To describe the quantitative progress of a bioreaction, we
use the reaction extent. It is expressed in moles (or
concentration units). We can think of a change in reaction
extent as a measurement of how many times the reaction
has occurred at the molecular level, translated to
macroscopic units (from molecules to moles) through
division by Avogadro’s number. For a closed system, the
time-derivative of the reaction extent is the reaction rate.

We will assume that biotransformations are reversible, so
that the reaction extents can be positive or negative. As we
have already begun to do, we will use the terms
biotransformation, bioreaction, or reaction interchangeably.

The following basic linear algebra concepts will be used:

¯ The contents of matrices will be enclosed in brackets.
The entry at the intersection of row i and column j of a
matrix W will be indicated as W(i,j). The transpose of 
matrix W will be indicated as Wx. A row vector will have
the form [vI v2 v3 ...]; a column vector can be written as
the transpose of a row vector [vI v 2 v 3 ...]x.

¯ Identity matrices will be indicated by I and zero matrices
(or vectors) by 0; they will be assumed to have appropriate
dimensions for the equation in which they occur.

¯ The columnspace of a matrix W is the space of all vectors
that are linear combinations of the columns of W, i.e., all
vectors that are equal to Wv for some v. The rowspace of
W is the columnspace of WT. The nullspace of W is the set
of vectors v such that Wv=0. The left nullspace is the
nullspace of WT.

¯ The pseudoinverse (Strang, 1986) or Moore-Penrose
inverse of W will be denoted as W÷.

We have opted for a matrix view because it makes the
notation compact. In actual implementation, sparse
matrices often take the form of symbolic representations.
In an object-oriented scheme, the matrices would in all
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likelihood be implicit in attributes of objects, and matrix
operations would translate to iterations over attributes and
objects. The matrix notation used here does not require
(and does not propose) the use of arrays to represent
relations in the metabolism.

Metabolic Views

In the introduction, we discussed the question of what
constitutes a distinct biochemical compound and what
simply an alternative form of the same compound. In the
same spirit, we discussed the distinctions between
bioreactions and their steps and between pathways and
bioreactions. We propose here a multi-layer scheme for
making these distinctions consistently at several levels of
abstraction. We will illustrate our proposal with a simple
example as we go along.

A metabolic view describes a chosen level of detail; it
consists of three types of entities (metabolites, elements,
and bioreactions), whose amounts provide the quantitative
description of changes in the system’s state. Linear
mappings define quantitative relations among these entities’
amounts. Constraints among the linear mappings ensure
the internal consistency of the metabolic view.

Entities

There are three types of basic building blocks for a
metabolic view.

¯ A set of nb metabolites, B1, B2 ..... whose ordering (and
indices) will be used to condense, into matrices, other
information about them. Metabolite amounts, or changes
in their amounts, will be represented by a vector b (nb×l).
The signs of the components of b are not restricted.

¯ A set of ny conserved elements or moieties, Y 1, Y2 .....
that will be used to describe the molecular formula or
structure of the metabolites; the ordering and indices of the
moieties will be used to condense information into
matrices. Element amounts, or changes in their amounts,
will be represented by a vector y (nyxl).
¯ A set of np biotransformations or bioreactions, PI, P 2 .....
that take place among the metabolites; the indices will
likewise be used for encoding information into matrices.
Changes in reaction extents will be represented by a vector
p (npxl). The vector p may have negative entries, since
reactions are reversible (and we are not restricting p to
represent changes in a specific time sequence).

F.,xample 1
We consider the mechanism of a single-substrate, single-product
enzymatic reaction. The metabolites B l and B2 are the substrate
and product, B3 is the free enzyme, and B4 and B5 are enzyme-
substrate and enzyme-product complexes. If a system’s
composition changes by 1 mol of B5, -I mol of Bi and -1 tool of
B3 (i.e., there is an increase in 5, but adecrease inB1 andB3) the
corresponding vector b would be written as:

b=[-1 0-1 0 1]T
There are three reactions:
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PI: B1 +B3 --’~ B4
P2:B4 ---> B5
P3 : B5 ---> B2 + B3
If reaction PI advances by 1 mol and reaction P3 by -1 mol

(i.e., I mol in the reverse direction), the corresponding vector 
would be written as p=[ 1 0 - 1 ] T.

To describe the elemental composition, we could refer to the
molecular formulas of the species, and use the elements that occur
in it. For example, if B1 is dihydroxyacetone phosphate, B2 is
glyceraldehyde phosphate, and B3 is the enzyme glyceraldehyde
phosphate dehydrogenase (from a specific source), we could use
as elements C, H, O, N, and S (the last two needed only for B 3,
B4, and B5). However, any set of conserved moieties is
acceptable, and we can avoid unnecessary detail by using a small
set of large moieties. In this case, we can manage with just two
conse~,ed moieties, i.e., the moiety YI for the substrate and
product (BI and B2), and the free-enzyme moiety Y2; only the
complexes B 4 and B5 contain both moieties.

We have, in summary, nb=5, ny=2, and np=3. We will
intersperse this example with the exposition of the abstraction
framework.

Linear Mappings

The vectors b, y, and p that describe a change in a
metabolic system are related to each other. A change in p
(bioreaction extents) should clearly map to a change in 
(metabolites), and a change in b should map to a change 
y. We will restrict these mappings to be linear, because the
two properties defining a linear transformation are essential
in the use of these quantities. Specifically, if p maps to b,
then Kp should map to Kb, enforcing an essential notion of
proportionality. If furthermore p’ maps to b’ then p+p’
should map to b+b’; this allows two successive changes in a
system to be either modeled individually or consistently
lumped into one. The same arguments can be made for the
other mappings we use here. Thus, they are linear
mappings that can be represented by matrices.

Three linear mappings define quantitative the necessary
relations among building blocks.

¯ A linear transformation from metabolites to elements
translates amounts (or changes in amounts) of metabolites
into amounts (or changes in amounts) of elements. This
transformation is represented by a matrix Eb (nyxnb)
describing the composition of each metabolite (column) 
terms of elements. The Eb(i,j) entry in the matrix is the
number of occurrences of element Yi in metabolite Bj. A
change of b in metabolite amounts translates into a change
of y in element amounts:
y=Ebb

In the ordinary case, moieties Yi represent actual chemical
elements and metabolites Bj represent actual chemical
compounds; the entries of Eb would be non-negative in this
case (with the possible exception of a Yi representing
electrical charge). However, in our study of multi-layer
abstraction, moieties may take other forms, and it may be
necessary to model a metabolite as the difference of
moieties. Thus, Eb is permitted to have negative entries.



¯ A linear transformation from reactions to metabolites
translates changes in biotransformation extents into
changes in amounts of metabolites. This transformation is
represented by a matrix Rbp (nbXnp) describing the
stoichiometry of each biotransformation (column) in terms
of metabolites. The Rbp(i,j) entry in the matrix is the
stoichiometric coefficient of metabolite Bi in bioreaction
Pj; it is positive if Bi is a product and negative if Bi is a
reactant of Pj. A change of p in bioreaction extents
translates into a change of b in metabolite amounts:

b=RbpP
¯ A linear transformation from metabolites to reactions
translates changes in amounts of metabolites into changes
in biotransformation extents. This linear transformation,
which is represented by a matrix S bp (n p×nb), is intended
to provide the system-identification aspects of
biotransformations. Clearly the occurrence of a
biotransformation is the cause, the internal mechanism that
gives rise to the changes in metabolite amounts. The
transformation Sbp maps observed effects (measurements
of changes in metabolite-amounts) to changes in internal
causes (reaction extents). A change of b in metabolite
amounts translates into a change of p in bioreaction
extents:

p = Sbp b
The general need, throughout this framework, to define
forward and reverse transformations explicitly is a direct
consequence of the fairly unrestricted shape and content of
the matrices. The matrix Rbp is not restricted to be square;
it may be either fat (nb<np) or tall (nb>np), and it 
have dependent rows and/or dependent columns. As a
consequence, no simple definition of an inverse Sbp from
Rbp will suffice for all cases.
Example 1, continued
The composition of the chemical species in terms of moieties
reflects our choice of moieties. The metabolites B1 and B2
contain only Y 1, B3 contains only Y2, while B4 and B5 contain
bothY1 and Y 2:

Eb=[lo I 0 I ll]o 1 1
If a system’s composition changes by b=[-! 0 -1 0 1]T, then the

moieties would change by y=Ebb, or:

I I 0 1 I 01 0
Y’= 0 0 1 1 I =0

If the change in the composition is instead b=[l 0 0 0 O]T. then
y=[1 O]T.

At this level of abstraction, the matrix of stoichiometries of the
three reactions is:0 o]

°IRbp= - 0
-1 _0
1 I

A change of p=[l 0 -1]T in bioreaction extents translates into a
change of b in metabolite amounts b-RbpP=[-1 -1 -2 1 1]T. For

mapping metabolite changes to reactions, we will use

Sbp= ~ 4 0 --4 4
- 5 2 -1 -1

A change of b in metabolite amounts b=[-I -I -2 ! 1]T

translates back to bioreaction extents p=Sbpb=[1 0-1]T. A
change of b=[1 0 0 0 0]T can clearly not be derived from any
choice of bioreaction extents, i.e., there is no p such that b=Rbpp.
But the mapping Sbp nevertheless produces a corresponding
p=S bpb=[-5/8 - 1/2 -3/8] T.

Constraints

The intended physical meaning of the mappings introduces
constraints for the matrices.

¯ A change p in bioreaction extents translates into b=Rbpp
and y=Ebb=EbRbpp. Elements Yi are intended to be
conserved by the biotransformations. Thus, for any p, we
must have EbRbpp=0. Therefore:

Eb Rbp = 0
¯ The relation between Sbp and Rbp is less clear. The
matrices are conceptual, but not mathematical, inverses.
There are two extreme cases. The first case occurs when
the columnspace of the matrix Rbp spans the nullspace of
Eb; then, any change in metabolites that conserves moieties
can be brought about through reactions present in the
system. For this case an invertibility constraint between
Sbp and Rbp takes the following form: For all b in the
nullspace of Eb, we must have RbpSbpb=b (i.e., an
element-conserving b should map reversibly to reactions).

The second case is when Rbp is full column rank, i.e., the
reaction stoichiometries are hnearly independent; then, the
reaction extents are identifiable, and the suitable constraint
is SbpRbp=I. These two cases are neither mutually
exclusive nor exhaustive.

Example 1, continued

We can easily verify that the constraint EbRbp--0 holds, i.e., the
reactions are consistent with the conservation of moieties.

This example falls into one of the two special cases, with
respect to the relation between Rbp and Sbp: The matrix Rbp is
full column rank. We can verify that SbpRbp=I. Therefore, given
any reaction extents p, if we transform it to the corresponding
metabolite amounts b=Rbpp. then the transformation back to
reaction extents Sbpb will yield the original p. On the other hand:

[i 3 1 il1 -3 5
2 -1 -

RbpSbp=~ . 2 4 -2
-1 -2 5
-t -z -3 5 .I

which exhibits large diagonal elements but is not equal to 1.
However, the columnspace of Rbp does span the nullspace of Eb.
Therefore, starting with metabolite amounts b=[-1 1 0 0 0]T for

which Ebb=0, if we map to reactions p=Sbpb=[ 1 1 1 ]T and then
back to metabolites Rbpp we recover the original b.

Strict Abstraction of Metabolic Views
Let metabolic view B be characterized by n b metabolites
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B 1, B 2 ..... with amount changes described by b (nbx 1); n 
conserved elements, Y 1, Y2 ..... with changes described by
y (nyxl); and np bioreactions, PI, P2 ..... with changes 
reaction extents described by p (np×l). The mappings are
denoted by the matrix Eb (nyxnb) for the composition 
metabolites in terms of elements; the matrix Rbp (nbXnp)
for the stoichiometries of bioreactions; and the matrix S bp

(npxnb) for mapping changes in metabolite-amounts 
changes in reaction extents. We assume that the constraints
on the matrices are satisfied.

For the same underlying metabolic system, we may have
another metabolic view, A. We will accept that the ny
conserved elements, Y1, Y2 ..... are the same, as a first
precondition for a relation between A and B. The
remaining building blocks may differ. Let A involve na
metabolites A I, A2 ..... with amount changes described by
a (na×l); and nq bioreactions, Q1, Q2 ..... with changes 
reaction extents described by q (nqxl). The mapping
matrices are denoted by Ea (nyxna), Raq (naXnq), and 
(nqXna), and they are assumed to satisfy the necessary
constraints.

We will use the symbol ~ to identify choices made from
view A or view B. Thus, aeA denotes a vector (with
dimensions naxl) of metabolite amounts from view A,
while qe A denotes a vector of bioreaction extents from
view A.

A strict abstraction of B to A is intended to model the
notion that B is a detailed view of the metabolic system and
A is a coarse view of the same system. We use the term
strict to show that in all areas of the system the view B is at
least as detailed as the view A (i.e., there is no part of the
system in which A is more detailed than B).

The abstraction must include a way to interpret amounts
(more importantly, changes in amounts) of metabolites
from one view to another. The mapping of amounts across
views must be linear, because we want proportionality and
superimposable changes, as a system goes through a
sequence of states: If a maps to b, then Ka should map to
Kb, enforcing an essential notion of proportionality; if
furthermore a’ maps to b’ then a+a’ should map to b+b’. A
strict abstraction of B to A is described by linear
transformations, in matrix form, and a set of constraints.

Figure 1 shows the mappings of views A and B, along
with the mappings that define the abstraction and will bc
presented below.
Example 1, continued
We postulate view A to eliminate the enzyme-substrate and
enzyme-product complexes (in one of the many possible ways).
We will have only three metabolites: AI+ intended to replace the
substrate B i; A2, intended to replace the product B2; and A3,
intended to replace the enzyme B3. The elemental matrix Ea
takes the form:

i.e., A I and A2 contain only moiety Y 1. while A3 contains only
Y2. The one reaction will take the form:

QI: AI --->A2, with Raq=[-1 ! 0]1-, Saq=[-l/2 1/201
If we prespecify this reaction as the desired outcome, we must

design the transformations (discussed below) so that the
abstraction will accomplish this. Alternatively, we can select an
intuitively appropriate set of transformations, and derive the
reactions in A from the constraints presented later. We
summarize the dimensions in view A as na=3, nq=l, and ny=2.

elements

E Y
b < Vab a metabolites

11+ "l j+Rbp bp Raq aq

Tabp < q transformations

m Uab .<

._~ .~

Figure 1. The transformations of the vectors describing
two metabolic views.

Transformations of Metabolites

¯ A linear transformation of changes in metabolites from
view B (vector b) to view A (vector a) is represented 
matrix Wab (na×nb), permitted to have negative entries. 
change be B translates into a change a~A:

a=Wabb

¯ A corresponding transformation of changes from view A
to view B is represented by a matrix Vab (nb×na). 
change a~ A translates into a change be B:

b=Vaba
Example 1, continued
We adopt the following transformations for the abstraction of B to
A:

-il
5 I

I: :1 -
l 0 0 1 0

1 I
5

Wab= 1 0 0 , =--~ -2
0 1 1 -1

3

The mapping of Bi amounts to Ai amounts is represented in
matrix Wab. Viewed by rows, Wab defines metabolite A1 as
occurring in both BI and B4; A2 occurring in both B2 and B5;
and enzyme A3 occurring in B3. B4, and B5. All of these
occurrences are in 1:1 molar proportions. Viewing Wab by
columns shows that B 1 is treated as merely A I; B2 is treated as
A2; the species B4 is treated by Wab as an enzyme-substrate
(A3+A 1 ) complex; and the species 5 i s t reated as an enzyme-
product (A3+A2) complex. The matrix Wab effectivety contains
a common view of the species.

But what of matrix Vab? It translates Ai amounts to Bi
amounts in a way that may seem peculiar, but there is no neat way
for this transformation. We are transforming a low-dimensional
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(or low information-content) vector into a higher dimensional
one. If there is a change by 1 mol for A3 (i.e., a=[001]T), how
should we interpret or allocate this change in terms of B 3, B4, and
B5 ? With the chosen Vab, we obtain b=[-l/4 -1/4 !/21/4 l/4]T;
the change is allocated 1/2 to B3, and 1/4 each to B4, and B5.
There is even a change in B1 and B 2, which has the beneficial
effect of balancing moiety Y2, since:

Ea[00 I]T= [0 I]T= Eb[-l/4 -1/4 1/2 1/4 1/4]T.

Constraints on Metabolites and Elements

The constraints that must be satisfied by Wab and V ab (in
conjunction with Ea and Eb) derive from our notion of
strict abstraction and conservation of elements. In this
exposition, we will not attempt to separate the constraints
into a core definition and a set of derived properties.
Rather, we will focus on clarifying the abstraction process
and include all the constraints that offer insight to this
process.

¯ We first note that nb_>na if B is at least as detailed as A.
In the case of equality, we have square matrices Wab and
Vab, which must be non-singular and true inverses
(WabVab=I=VabWab). This is clearly a trivial abstraction,
since A and B, although not identical views, represent the
same level of detail. We are primarily interested in the
case nb>na, which makes Wab fat and Vab tall.

¯ Since B is the more detailed level, there are likely to be
many different states in B that correspond to the same state
in A, i.e., for any given vector ae A, there are in general
several vectors be B with a=Wabb. The only constraint we
can rationally introduce, however, is that there should be at
least one such vector be B; this ensures that all values in
the more abstract view A have precise counterparts in the
more detailed view B. This constraint can be stated in
many equivalent forms, including that the matrix Wab has
a columnspace of dimension na (i.e., its columns span the
space), that the matrix Wab has an empty left nullspace, or
that the rows of Wab are linearly independent. We will opt
for the equivalent statement:

rank(W ab)=n 
¯ We expect that for any vector be B there is at most one
vector ae A with b=Vaba. A suitable vector ae A will not
exist for all be B, but different values of ae A should never
produce the same value for be B. This constraint, like the
previous one, can be stated in many equivalent forms: The
matrix Vab has a columnspace of dimension na (i.e., it has
linearly independent columns); the matrix Vab has an
empty nullspace; or the rows of Vab span the space. We
opt for the statement:

rank(Vab)=n 
¯ Suppose we select ae A, we compute b=Vaba, and then
compute Wabb=WabVaba. This means that we identified a
detailed be B that we match with the initial choice of ae A,
and then we went back to the abstract level. We should get
back the originally chosen aeA. In effect, among the many
solutions (for a given ae A) to a=Wabb, the intent is for the

matrix Vab to select one (Vaba), but not to produce 
solution that relates to an altogether different aeA.
Consequently:

Wab Vab = I
¯ The above relation, a result of the view B being a
refinement of view A, states that going from a e A to b e B
and then back to ae A is an identity mapping. We cannot
make this argument for the mapping going from be B to
aeA and then back to be B; the product VabWab is
generally not equal to the identity matrix. However, if
be B is in the column space of Vab, then VabWabb=b.
This can be easily seen from the fact that if b is in the
columnspace of Vab then 3 a such that b=Vaba, hence
VabWabb=V abWab(V aba)=V ab(W abVab)a=V aba=b. 
lies in the left nullspace of Vab, then V abWabb will also lie
in the left nullspace of Vab; if b lies in the nullspace of
Wab then VabWabb=0. If we chose to go one step further
and require the last two subspaces to coincide, then Wab
and Vab would be Moore-Penrose inverses (or
pseudoinverses) of each other; we will refrain from this
restriction.

¯ What about the conservation of elements? In b=Vaba we
are refining to a more detailed level, and we would
certainly expect Ebb=Eaa. Therefore EbVaba=Eaa for any
ae A, or:

Eb Vab = Ea
¯ The mapping a=Wabb cannot be guaranteed to conserve
elements; generally, EaWab,-~Eb. But if be B lies in the
columnspace of Vab, then Ebb=EbVaba=Eaa=EaWabb
EaWabb=E bb.
Example 1, continued
The chosen matrix Wab has the appropriate rank 3. Thus, any
metabolite combination a~ A can be produced by some be B, i.e.,
Wabb=a can always be solved for b. The chosen Vab also has
rank 3; the mapping of metabolite amounts from A to B will never
produce the same b from different a’s.

We already illustrated the constraint EbVab=Ea, by showing
that for a=[0 0 1]T, b=Vaba=[-l/4 -1/4 1/2 1/4 1/4]T, one
obtains Ea[001]T=[01]T=Eb[-I/4-1/4 1/2 1/4 1/4]T, i.e.,
EbVaba=E aa.

Matrix multiplication shows that EbVab=Ea and that
WabVab=l. We have VabWab,-~l, although there is a clear pattern
of large diagonal elements (because we in fact selected V ab and
Wab as pseudoinverses):

1 1 5 -2 -1.... 2 4 2VabWab= 8
- 1 2 5
3 2 1

The mapping a=Wabb is usually not guaranteed to conserve
elements. In this case, however, it happens to be conserving, i.e.,
Eb =E aWab.

As we verify the validity of the stated constraints, and point out
special properties of this example, one should bear in mind that
the validity of the properties is not coincidental; it is a result of
the careful choice of the view A and the mapping matrices.
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Transformation of Reactions

Forward and reverse transformations are used for reaction
extents, in a manner similar to metabolites.

¯ The matrix Tab (nqXnp) maps reaction extents from view
B to view A.

q=Tab p

¯ The matrix Uab (npXnq) maps reaction extents from view
A to view B.
p=Uab q

Example I, continued
We will set the matrices for the example as follows:

Tab = [0 1 0]
Uab = [0 1 0] w
The extent of reaction Q 1 ~ A is taken simply as equal to the

extent of reaction P2. Reactions P 1 and P3 do not feature at all in
the mapping, for a simple reason: They are actually null reactions
in view A! If we have p=[1 0 0]T, i.e., 1 mol of reaction P 1, we

obtain b=[-1 0 -1 1 0]T, which becomes a=Wabb=[0 0 0]T. This
is a direct consequence of our choice to consider B4 as a
combination of A1 +A 3.

There is actually very little freedom left, once the view A and
the metabolite matrices have been specified; through careful
choice of Tab and Uab, we have essentially anticipated the
constraints discussed below.

Constraints on Reactions and Metabolites

¯ In accordance with our view of abstraction, we expect
np>_nq. Equality np=nq would mean that there are
precisely as many reactions in the abstract view A as in the
detailed view B, making the abstraction trivial. In the non-
trivial case np>nq, the matrix Tab is fat and the matrix Uab
is tall.

¯ In a manner similar to the derivation of the relation
between Wab and V ab, we require that

TabUab=I
¯ We must accept that in general UabTab~:I, but for pcB
lying in selected subspaces we will have UabTabP=p. We
will not provide an analysis similar to that given for the
case VabWabb=b. Note that the existence and the
dimension of a subspace in which UabTabp=p can be
derived from the fact that if TabUab=I the matrix UabTab
must have 1 as an eigenvalue.

¯ A change in reaction extents pc B leads to changes in
amounts by RbpP which translate, in view A, to WabRbpp.
The same change pc B translates to a change qcA,
q=Tabp, which means a change in metabolite amounts by
RaqTabP. We require that the two results be identical,
WabRbpp=RaqTabp for any p. Thus:

WabRbp=RaqTab

:m WabRbpUab=RaqTabUab ~ W abRbpUab=Raq

¯ Following the above discussion, column i of WabRbp
represents the reaction stoichiometry of the corresponding
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Pic B translated into view A. In a strict abstraction, the
reaction space of A derives entirely from the reaction space
of B. The columns of the matrix Raq should thus be a
permutation of the columns of WabRbp, with duplicates
potentially eliminated and columns equalto zero removed.
In effect, each non-zero column of WabRbp should be
proportional to precisely one column of Raq.
Thus, if we require that the reactions in A be no more and
no less than the above translation of the reactions from B,
we can restrict the matrix Tab (from the first form of the
previous equation) to have at most one non-zero element
per column. Similarly, from the second form of the above
equation, the matrix Uab should have at most one non-zero
element per row. Furthermore, if Tab(i,j) is the non-zero
entry for column j of Tab, then Uab(j,i) is the only entry
permitted to be non-zero in row j of Uab. In fact, if we did
not mind having in A null reactions (zero stoichiometry)
and duplicate (except for a proportionality factor) reactions,
we could require WabRbp=Raq, setting np=nq and
Uab=T ab=I.
Example 1, continued

We can easily verify that TabUab=l. On the other hand,
UabTab-~l:

UabTab= 1
0

Thus, the special case UabTabp=p will hold if and only if p
does not involve reactions P1 and P3.

We can verify WabRbp=RaqTab (which is crucial in the
definition of Raq and Tab):

It was easy for Tab to have no more than one non-zero element
per column, since there is only one element in each column.
Similarly, in Uab, there is only one element per row. The last
restrictions in the above section are thus inconsequential if there is
only one reaction in view A.

Procedure for Deriving Strict Abstractions

We have imposed a number of constraints on the linear
transformations defining an abstraction from view B to
view A. We have not addressed the question of which of
these constraints arc independent and what matrices or
submatrices can be chosen freely. There are far too many
different cases to study if one attempts to identify all the
interactions and dependencies among the constraints; the
cases hinge on precisely which matrices, submatrices, or
matrix expressions are prespecified, and what their ranks
arc. Note that the abstraction-related constraints interact
with the constraints imposed on each individual view, to
give rise to other forms of the constraints; for example, it
can be shown that the properties of reactions in view A,
and the abstraction of metabolites and bioreactions from B
to A, lead to the requirement EbVabWabRb--0.

There is, nevertheless, a straightforward procedure for
constructing an abstraction level, such that all the
constraints arc satisfied. The procedure assumes that the



prior specifications are the matrices Eb, Rbp, and Wab; it

assumes that the constraints EbRbp=0 and rank(Wab)=na
are satisfied. Furthermore, the procedure assumes that the
nullspace of Wab is contained in the nullspace of Eb; under
this assumption, the view A is more detailed than element
balances, and the family of b’s that map to the same a~ A
(by a=Wabb) has a unique elemental composition, i.e., 
Wabb=Wabb’ then Ebb=E bb’.

The procedure provides one consistent solution for the
remaining matrices, without regard to other possible
solutions. The sequence of matrix transformations is given
here, without proof.

¯ Compute Sbp and Vab as pseudoinverses, Sbp=(Rbp)+
and V ab=(Wab)+; compute Ea=E bVab

¯ Compute the auxiliary matrix WabRbp; set up Tab with
nja columns (its number of rows, nq will be determined
shortly); set up Raqwith na rows (its number of columns,
nq, to be determined). For each column j of WabRbp:

0 If the column j is not proportional to any single column
in Raq, then add it as the next column in Raq; add a row
to Tab, with the entry of 1 at column j and entries 0
everywhere else.

0 If the column j is equal to a multiple (with 
proportionality factor K) of column i of Raq, then enter
that factor K as the (i,j) element of Tab. Do not increase
the size of Raq or Tab.

¯ Compute Uab=(Tab)+ and S aq=(Raq)+.
We reiterate that this pro6edure identifies just one

¯ possible choice of abstraction. The way this choice is
made gives rise to additional properties that may not hold
generally. For example, our extra assumption that the
nullspace of Wab is contained in the nullspace of Eb will
make the additional relation Eb=EaWab valid for the
resulting abstraction.

Example 1, concluded
We in fact chose the matrices throughout Example 1 following the
above procedure. In order to illustrate the constraints, the
matrices were presented in the order in which they were needed
rather than the order in which they were derived.

Example 2
The abstraction route chosen in Example 1 is by no means the
only way to do away with the complexes B4 and B5 in the above
example. We could have chosen a different view A, with the
same metabolites as before, but with the abstraction matrices:

Ii 0 0 0 !1 1

Wab= I 0 o , Vab= 0
0 I 0 0

0
These matrices simply throw away the complexes B4 and B5.

This abstraction satisfies all the necessary restrictions, with the
appropriate choice of R aq.

The reactions would become:

QI: AI+A3---~ 0

Q2: 0~A2+A 3
The transformation of substrate A1 to product A2 occurs when

both reactions take place; q=[1 1]T gives a=[-1 1 0]r. There is
nothing fundamentally wrong with this view.

Which of the two (or other possible) modes do we usually
employ? The choice would be guided in part by practical
considerations, such as measurements of metabolites: If the
metabolites in view A are measured such that metabolites bound
into complexes (B4 and B 5) are not included in the resulting
value, then the view that ignores the complexes (Example 2) 
more relevant. If, on the other hand, the measurement of the
substrate A 1 includes both free substrate B I and bound B 4 (and
A2 and A3 similarly include complexes) then the view we used in
Example 1 is clearly appropriate.

The central message of this paper is that in our informal
abstractions we do not bother to be specific, so the above
modes (and many others) are all wrapped into our informal
notion. If computers are to create, or reason across, levels
of abstraction, the mapping must be made explicit, and we
offered in this paper a framework for accomplishing this.
Already, in those practical cases where numerical
measurements or calculations are involved, we unavoidably
fall into one of the modes - often implicitly. Numerical
consistency, representational flexibility and semantic
clarity stand to benefit from this framework that makes the
views and abstractions explicit.

Non-Strict Abstractions

The two levels, A and B, in our analysis had a clear
dominance relation: The view B was more detailed than
view A (or at least as detailed as A) in every respect. This
strict inclusion is the justification for many of the
properties we postulated. However, we may have views
which do not form a strict hierarchy. For example, view A
from Example 1 and view A from Example 2 are at a
similar level of complexity: none of the two is a strict
refinement of the other.

Our framework allows such views to coexist and
establishes relations among them. This is accomplished by
relating both views to a more detailed one (in this case, the
view B of Example 1 is a suitable basis). There are fewer
constraints between views that are not in strict refinement
relationship to each other. For example, if A and B do not
form a strict abstraction, we can no longer require
WabVab=I; but for a~ A lying in a particular subspace we
can require WabVaba=a.

Multiple views of a system thus form a graph, in which
the behavior of the system in any one view can be
translated to any other view, regardless of whether the view
is strictly more abstract, strictly more detailed, or neither.
The relation between two views does affect the invertibility
of these mappings (as well as the presence of invariant
subspaces).

Discussion

This paper presented an approach for the hierarchical
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representation of the metabolism. The framework was
illustrated with two views of a rather simple system. We
consider this framework well suited for the representation
of complex metabolic systems at multiple levels of detail.
Multiple-level representatio.ls will be essential as we
require computer models to possess more flexibility and
generality. Within the proposed framework, an intelligent
system could construct the appropriate view for any given
problem, through iterative refinement, abstraction, or
combination of given views. For a particular task, it may
be necessary to lump large portions of the metabolism into
very abstract views and refine others in great detail. The
proposed framework defines the necessary entities and
transformations for accomplishing this.

One of the benefits of multiple levels of detail is that
several important informal notions can be encoded,
applied, and detected, rather than simply memorized. We
are referring to concepts such as catalyst or inhibitor. If, in
our Example 1, we adopted only the common view A, we
would need to store, as an externally given fact, the
information that A3 is the catalyst of the transformation
A1---->A2. But with both views A and B in place, the notion
of a catalyst becomes explicit. The role of A3 is apparent
in the mapping between views A and B, as follows. The
reaction stoichiometry A I--->A2 maps (through matrix Vab)

1 1 I I
to -v B 1+ ~ B4--> -v B’~+ -v B5, since:

Vab[-1 1 0IT=I-I/2 1/2 0 -1/2 I/2]T

Four compounds participate in this reaction from view B.
Of these, B 4 and B5 map back (through Wab) to view A 
follows:

B4: Wab[00010]T=[101] T, orAl+A3

B5: Wab[0000 1]T=[0 1 1] T, orA2+A3
Thus, in view B, we actually have A3 participating in the

reaction. This is the essential feature of a catalyst: While
it is not present in the reaction itself in view A, it is found
in the corresponding transformation of view B. The very
need for the concept of catalyst arises because abstraction
(from B to A) hides the reactions (and the role) 
particular compound (A3), even though it does not hide the
compound itself. By sneaking to the lower level and
returning (a transformation encoded by the matrix
WabVab) we recover the hidden role.

We should emphasize that we have restricted the scope
of this paper in two ways, to maintain clarity. First, we
were concerned only with the portion of the metabolism
that does not directly involve genetic material - DNA or
mRNA. Second, we ignored all issues arising from
membranes, spatial arrangements or gradients, and
compartmentalization. We focused on that portion of the
metabolism which involves the chemical interconversion of
chemical compounds (small compounds with molecular
weights of up to a few hundred, as well as proteins). This
portion of the metabolism of a cell is a complex network of
biochemical reactions which interconvert small or large
molecular-weight compounds. The bioreactions include
the core metabolism that accomplishes the production of

energy and the provision of the building blocks
(monomers) of biological macromolecules. Since we allow
the interconversion of proteins, we are including in the
scope of our discussion the activation or deactivation
processes operating on the enzymes themselves.

We explicitly excluded the direct study of enzyme
production through transcription and translation, and, as
mentioned earlier, all spatial structures. This exclusion is
motivated by the need to maintain a clear and
understandable exposition. The issues that prompted this
paper are present in other biological processes, and the
proposals set forth are relevant for the resolution of these
issues throughout the domain of biochemical processes.
However, the excluded processes need more careful
consideration and additional analysis.

We also restricted the discussion to closed systems, but
the extension to open systems is conceptually easy. The
matrices would merely involve extra rows or columns for
the incoming and outgoing streams. We note that a similar
extension is possible for the inclusion of thermodynamic
quantities, such as the Gibbs energy which can be
estimated from the structures of compounds
(Mavrovouniotis, 1991) and incorporated into the
abstraction process.
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