From: ISMB-95 Proceedings. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

Protein Modeling with Hybrid Hidden Markov Model/Neural
Network Architectures

Pierre Baldi

Division of Biology and JPL
California Institute of Technology
Pasadena, CA 91125
pfbaldi@juliet.caltech.edu
(818) 354-9038
(818) 393-5013 FAX

Abstract

Hidden Markov Models (HMMs) are useful in a
number of tasks in computational molecular bi-
ology, and in particular to model and align pro-
tein families. We argue that HMMs are some-
what optimal within a certain modeling hierar-
chy. Single first order HMMs, however, have
two potential limitations: a large number of
unstructured parameters, and a built-in inabil-
ity to deal with long-range dependencies. Hy-
brid HMM /Neural Network (NN) architectures
attempt to overcome these limitations. In hybrid
HMM/NN, the HMM parameters are computed
by a NN. This provides a reparametrization that
allows for flexible control of model complexity,
and incorporation of constraints. The approach
is tested on the immunoglobulin family. A hy-
brid model is trained, and a multiple alignment
derived, with less than a fourth of the number of
parameters used with previous single HMMs. To
capture dependencies, however, one must resort
to a larger hybrid model class, where the data is
modeled by multiple HMMs. The parameters of
the HMMs, and their modulation as a function
of input or context, is again calculated by a NN.

Introduction

Many problems in computational molecular biology
can be casted in terms of statistical pattern recognition
and formal languages ((Searls 1992)). While sequence
data is increasingly abundant, the underlying biologi-
cal phenomena are still often poorly understood. This
creates a favorable situation for machine learning ap-
proaches, where grammars are learnt from the data.
In particular, Hidden Markov Models (HMMs), which
are equivalent to stochastic regular grammars, and the
associated learning algorithms, have been extensively
used to model protein families and DNA coding re-
gions ({Baldi et al. 1994), (Krogh et al. 1994), (Baldi
& Chauvin 1994a), (Baldi et al. 1995), (Krogh, Mian,
& Haussler 1994)). Likewise, Stochastic Context Free
Grammars (SCFGs) have been used to model RNA
((Sakakibara et al. 1994)).

Although very powerful, HMMs in molecular biology
have at least two severe limitations: (1) a large num-

Yves Chauvin
Net-ID, Inc.
601 Minnesota San Francisco, CA 94107
yves@netid.com
(415) 647-9402
(415) 647-2758 FAX

ber of unstructured parameters; (2) a built-in inability
to handle certain dependencies. In the case of protein
families for instance, a typical HMM has several thou-
sand free parameters. In the early stages of genome
projects, the number of sequences available for train-
ing in a given family is very variable and can range
from 0, or just a few, for the least known families, to
a thousand, or so. Proteins also fold into complex 3D
shapes, essential to their function. Subtle long range
dependencies in their polypeptide chains exist that are
not immediately apparent in the primary sequences
alone. These cannot be captured by a simple first order
Markov process.

Here, we develop a new class of models and learn-
ing algorithms to circumvent these problems, in a con-
text of protein modeling. We call these models hy-
brid HMM /Neural Network (HMM/NN) architectures
!, The same ideas can of course be applied to other do-
mains and are introduced, in a more general setting in
((Baldi & Chauvin 1995)). There are two basic ideas
behind HMM/NN architectures. The first is to cal-
culate the parameters of a HMM , via one or several
NNs, in order to control the structure and complexity
of the model. The second is to model the data with
several HMMs, rather than a single model, and to use
the previous NNs to shift among models, as as function
of input or context, in order to capture dependencies.
The main focus of this paper is on demonstrating the
first idea. The second idea is briefly discussed at the
end, and related simulations are currently in progress.

In the next section, we review HMMs and how they
have been applied to protein families. In section 3, we
discuss some of the limitations and optimality of such
models. In section 4, we introduce a simple class of
HMMM /NN hybrid architectures with the correspond-
ing learning algorithms. In section 5, we present simu-
lation results using the immunoglobulin family. More
general HMM/NN architectures are discussed at the
end together with other extensions and related work.

'HMM/NN architectures were first described at a NIPS
workshop (Vail, CO) and at the International Symposium
on Fifth Generation Computer Systems (Tokyo, Japan),
both in December 1994.

Baldi 39

40

Figure 1: Example of HMM architecture used in pro-
tein modeling. S is the start state, E the end state.
d;. m; and i; denote delete, main and insert states re-
spectively.

HMMs of Protein Families

A first order discrete HMM can be viewed as a stochas-
tic production system defined by a set of states S,
an alphabet A of mn symbols, a probability transi-
tion matrix T = (2;;), and a probability emission ma-
trix E = (e;x). The system randomly evolves from
state to state, while randomly emitting symbols from
the alphabet. When the system is in a given state
i, it has a probability ¢;; of moving to state j, and
a probability e;x of emitting symbol X. As in the
application of HMMs to speech recognition, a fam-
ily of proteins can be seen as a set of different ut-
terances of the same word, generated by a common
underlying HMM with a left-right architecture (Fig.
1). The alphabet has m = 20 symbols, one for each
amino acid (m = 4 for DNA or RNA models, one
symbol per nucleotide). In addition to the start and
end state, there are three classes of states: the main
states, the delete states and the insert states with
S = {start,my,....,my, 11, ..., iN$+1,d1, ..., dN 31, end}.
N is the length of the model, typically equal to the
average length of the sequences in the family. The
delete states are mute. The linear sequence of state
transitions start — m; — mo.... — my — end is the
backbone of the model. The self-loop on the insert
states allows for multiple insertions.

Given a sample of K ‘training sequences Oy, ..., O
from a protein family, the parameters of a HMM can
be iteratively modified to optimize the data fit, ac-
cording to some measure, usually based on the like-
lihood of the data according to the model. Since
the sequences can be considered as independent, the
overall likelihood is equal to the product of the in-
dividual likelihoods. Two target functions commonly
used for training are the negative log-likelihood: @ =

ISMB-95

_Zk = —Ek 1 In P(O%),
log- lll\ehhood based on the optimal paths: ¢ =
~ K Qr = =5, In P(n(Ok)) where m(O) is the
most likely HMM production path for sequence O.
7(0) can be computed efficiently by dynamic program-
ming (Viterbi algorithm). Depending on the situation,
the Viterbi path approach can be considered as an ap-
proximation to the full maximum likelihood, or as an
algorithm in its own right. This is the case in protein
modeling where, as described below, the optimal paths
play a particularly important role. When priors on the
parameters are included, one can also add regulariser
terins to the objective functions for MAP (Maximum A
Posteriori) estimation. Different algorithms are avail-
able for HMM training, including the classical Baum-
Welch or EM (Expectation-Maximization) algorithm,
and different forms of gradient descent and other GEM
(Generalized EM)((Dempster, Laird, & Rubin 1977),
(Rabiner 1989), (Baldi & Chauvin 1994b)) algorithms.

Regardless of the training method, once a HMM has
been successfully trained on a family of primary se-
quences, it constitutes a model of the entire family and
can be used in a number of different tasks. First, for
any given sequence, we can compute its likelihood ac-
cording to the model, and also its most likely path. A
multiple alignment results immediately from aligning
all the optimal paths of the sequences in the family.
The model can also be used for discrimination tests
and data base searches ((Krogh et al. 1994), (Baldi &
Chauvin 1994a)), by comparing the likelihood of any
sequence to the likelihoods of the sequences in the fam-
ily. So far, HMMs have been successfully applied to
several protein families including globins, immunoglob-
ulins, kinases, G-protein-coupled receptors (GPCRs),
EF hand, aspartic acid proteases and HIV membrane
proteins. In all these cases, the HMMs models have
been able to perform well on all previous tasks yield-
ing, for instance, multiple alignments that are compa-
rable to those derived by human experts and published
in the literature.

and the negative

Limitations and Optimality of HMMs

In spite of their success, HMMs for biological sequences
have two weaknesses. First, they have a large num-
ber of unstructured parameters. In the case of pro-
tein models, the architecture of Fig. 1 has a total of
approximately 49N parameters (40N emission param-
eters and 9N transition parameters). For a typical
protein family, N is of the order of a few hundreds, re-
sulting immediately in models with over 10,000 param-
eters. This can be a problem, especially in situations
where only a few sequences are available for training.
It should be noted, however, that a single sequence
should not be counted as a single training example.
Each letter, and each succession of letters, in the se-
quence should be considered as a *“training example”
for the HMM parameters. Thus a typical sequence pro-
vides of the order of 2N constraints, and 25 sequences

or so provide a number of examples in the same range
as the number of HMM parameters.

In our experience, we have derived good multiple
alignments with sometimes as little as 35 sequences in a
family. We also conjecture, although this has not been
tested, that a HMM as in Fig. 1, trained with only two
sequences and the proper regularisation, should be able
to yield optimal pairwise alignments. More generally,
it has been noticed several times in the connection-
ist literature that certain models are "well adapted”
to certain tasks, precisely in the sense that little over-
fitting is observed, even with an unfavorable ratio of
number of parameters to number of training examples.
We believe that HMMs are well adapted for protein
modeling, and in some sense, to be discussed below,
they are optimal. But the problem remains that some
improvement should be possible in situations where lit-
tle training data is available. Furthermore, the HMM
parameters have no structure, and no explicit relations
among them. The hybrid HMM/NN described in the
next section provide a solution to these problems.

A second limitation of first order HMMs, is their
inability to deal with long range dependencies. Be-
cause proteins have complex 3 dimensional shapes and
long range interactions between their residues, it may
seem surprising that good models can be derived us-
ing simple first order Markov processes. One partial
explanation for this is that HMMs can capture those
effects of long range interactions that manifest them-
selves in a more or less constant fashion, across a family
of sequences. For instance, suppose that, as a result
of a particular folding structure, two distant regions of
a protein have a predominantly hydrophobic composi-
tion. Then this pattern is present in all the members
of the family, and will be learnable by a HMM. On the
other hand, a variable long range interaction such as:
“a residue X at position i implies a residue f(X) at po-
sition 7~ cannot be captured by a first order HMM, as
soon as f is sufficiently complex. [Note that a HMM
is still capable of capturing certain variable long range
interactions. For instance, assume that the sequences
in the family have either a fixed residue X at position
i, and a corresponding Y at position j, or a fixed X’ a
position 7 with a corresponding Y’ at position j. Then
these 2 sub-classes of sequences in the family could be
associated with 2 types of paths in the HMM where,
for instance, X — Y are emitted from main states and
X' — Y’ are emitted from insert states.]. Although
these dependencies are important, their effects do not
seem to have hampered the HMM approach. Indeed,
consider for instance the standard case of a data base
search with a HMM trained on a protein family. To
fool the model, sequences would have to exist having
all the same first order properties associated with all
the emission vectors (i.e. the right statistical compo-
sition at each position) similar to the sequences in the
family, but with a X’ —Y or X — Y’ association, rather
than a X —Y or X’ —Y’. This is highly unlikely, and

current experimental evidence shows that HMM per-
formance in sequence data base mining is excellent.

A slighly different point of view is to consider, for
a given protein family, a hierarchy of models. All the
models have the same structure, and are entirely de-
fined by a fixed emission distribution vector at each
position. These model can also be seen as factorial
distributions over the space of sequences. The first
statistical model one can derive, 18 when the emis-
sion vector is constant at each position, and uniform.
This yields a generative model for uniform sequences
of amino acids, and is therefore a very poor model for
any specific family. A slightly better model is when the
emission vector is constant at all positions, but equal
to the average amino acid composition of the family.
This is the standard model that is used for compari-
son in many statistical discrimination tests. Any good
model must fair well agains this one. Finally, the best
model within this class, is the one where the emis-
sion vectors at each position are fixed, but different
from one position to the other, and equal to the opti-
mal column composition of a good multiple alignment.
This latter model is essentially equivalent to a good
multiple alignment, since one can be derived from the
other. Likewise, it is also essentially equivalent to a
well trained HMM, since a good alignment can be de-
rived from the HMM, and vice versa, the parameters
of the HMM can be estimated from a good alignment.
Therefore, in this sense, HMMs are optimal within this
limited hierarchy of models that assign a fixed distribu-
tion vector at each position. It is impossible to capture
dependencies of the form X —Y and X’'—Y' within this
hierarchy, since this would require, in its more general
form, variable emission vectors at the corresponding
positions, together with a mechanism to link them in
the proper way.

We now turn to the HMM/NN hybrid architectures
and how they can address, in their most simple form,
the problems of parameter complexity and structure.
We will come back to the problems of long range de-
pendencies at the end.

HMM/NN Architectures

In ((Baldi & Chauvin 1994b), it was noticed that a use-

ful reparametrization of the HMM parameters consists
of
eWij vix

tij = =—— and e;x = -Z-E-?,T (4.1)
ye

2 e
with w;; and vijx as the new set of variables. This
reparametrization has two advantages: (1) modifica-
tion of the w’s and v’s automatically preserves the
normalisation constraints on the original emission and
transition probability distributions; (2) transition and
emission probabilities can never reach the absorbing
value 0. In the reparametrisation of (4.1), we can con-
sider that each one of the HMM parameters is cal-
culated by a small NN, with one on/off input, no hid-
den layers, and 20 softmax (or normalized exponential)

Baldi 41

42

(resp. 3) output units (Fig. 2a) for the emissions (resp.
transitions). The connections between the input and
the outputs are the v;x. This can be generalized im-
mediately by having arbitrarily complex NNs, for the
computation of the HMM parameters. The NNs as-
sociated with different states can also be linked with
one or several common hidden layers. In general, we
can consider that there is one global NN connecting
all the HMM states to their parameters. The architec-
ture of the network should be dictated by the problem
at hand. In the case of a discrete alphabet however,
such as for proteins, the emission of each state is a
multinomial distribution, and therefore the output of
the corresponding network should consist of M soft-
max units. For simplicity, in the rest of this article
we discuss emission parameters only, but the approach
extends immediately to transition parameters as well.
As a concrete example, consider the hybrid HMM/NN
architecture of Fig. 2b consisting of:

1. Input layer: one unit for each state i. At each
time, all units are off, except one which is on. If unit
i is set to 1, the network computes e;x, the emission
distribution of state .

2. Hidden layer: H hidden units indexed by h, each
with transfer function fj (logistic by default) with hias
b (H < M).

3. Output layer: M softmax units or weighted expo-
nentials, indexed by X, with bias by .

4. Connections: a = (ani) connects input position i
to hidden unit A. 3 = (Bx4) connects hidden unit h
to output unit X.

For input i, the activity in the hidden layer is given
by:

Su{ani +bn) (4.2)
The corresponding activity in the output layer is
e—[zr. Bxnfa(oni+bn)+dx] .
€ixX = (4.3)

EY e‘[z,, Byafu(ani+bda)+by]

A number of points are worth noticing:

e The HMM states can be partitioned into different
groups, with different networks for different groups.
In the limit of one network per state, with no hidden
layers (or with H = M hidden units), one obtains
the architecture used in (Baldi et al. 1994), where
the HMM parameters are reparametrised as nor-
malised exponentials (Fig. 2a). One can use differ-
ent NNs for insert states and for main states, or for
different group of states along the protein sequence
corresponding for instance to different regions (hy-
drophobic, hydrophilic, alpha-helical, etc...) if these
are known.

e HMM parameter reduction can easily be achieved
using small hidden layers with H hidden units, and
H small compared to N or M. In the example of
Fig. 2b, with H hidden units and considering only

ISMB-95

Output emlisslon distributions

| | _1 [

I Il

Input: HMM states

Fig. 2a

Output emission distribution

L I

Hidden layer

Input: HMIM states

Fig. 2b

Figure 2: (a) Schematic representation of simple
HMM/NN hybrid architecture used in 4.1. Each HMM
state has its own independent NN. Here, the NNs are
extremely simple, with no hidden layer, and an output
layer of softmax units that compute the HMM emis-
sion and transition parameters. Only output emissions
are represented for simplicity. (b) Schematic repre-
sentation of a HMM/NN architecture where the NNs
associated with different states (or different group of
states) are connected via one or several hidden layers.

main states, the number of parameters is H(N + M)
in the HMM/NN architecture, versus NM in the
corresponding simple HMM. For protein models, this
yields roughly HN parameters for the HMM/NN
architecture, versus 20N for the simple HMM.

e The number of parameters can be adaptively ad-
justed to variable training set sizes, merely by chang-
ing the number of hidden units. This is useful in en-
vironments with large variations in data base sizes,
as in current molecular biology applications. The
total number of protein families is believed to be on
the order of a thousand. One can envision building a
library of HMMs, one model per family, and update
the library as the data bases grow.

e Because the number of parameters can be signif-
icantly reduced, training of hybrid architectures,
along the lines described below, is also faster in gen-

eral.

e The entire bag of well-known connectionist tricks
can be brought to bear on these architectures in-
cluding: higher order networks, radial basis func-
tions and other transfer functions, multiple hidden
layers, sparse connectivity, weight sharing, weight
decay, gaussian and other priors, hyperparameters
and regularization, to name only the most commonly
used. Many sensible initialization and structures can
be implemented in a fiexible way. For instance, by
allocating different number of hidden units to differ-
ent subsets of emissions or transitions, it is easy to
favor certain classes of paths in the models, when
needed. For instance, in the HMM of Fig. 1, one
must in general introduce a bias favoring main states
over insert states, prior to any learning. It is easy
also to tie different regions of a protein that may
have similar properties by weight sharing, and other
types of long range correlations, if these are known
in advance.

e By setting the output bias to the proper values, the
model can be initialized to the average composition
of the training sequences, or any other useful distri-
bution.

e Classical prior information in the form of substitu-
tion matrices is also easily incorporated. Substitu-
tion matrices (for instance (Altschul 1991)) can be
computed from data bases, and essentially produce
a background probability matrix P = (pxy), where
pxy is the probability that X be changed into Y
over a certain evolutionary time. P can be imple-

mented as a linear transformation in the emission
NN.

e Finally, by looking at the structure of the weights
and the activity of the hidden units, it may be pos-
sible to detect certain patterns in the data.

With hybrid HMM /NN architectures, in general the

M step of the EM algorithm cannot be carried ana-
lyticially. We have derived two simple GEM train-

ing algorithms for HMM/NN architectures, both essen-
tially gradient descent on the target functions (2.1) and
(2.2), along the lines discussed in ((Baldi & Chauvin
1994b)). They can easily be modified to accomodate
different target functions, such as MAP optimisation
with inclusion of priors. In these learning algorithms,
the HMM dynamic programming and the NN network
back-propagation are intimately interleaved, and learn-
ing can be on-line or off-line. Here we give the on-line
equations (batch equations can be derived similarly)
for one of the algorithms (detailed derivations can be
found in (Baldi & Chauvin 1995)). For each sequence
O, and for each state ¢ on the Viterbi path = = #(0),
the Viterbi on-line learning equations are given by

APy = N(Tiy — eiv)fu(ani +bp)
Aby = n(Tiyy — eiy)
Aapj = binfi(an + b))y Bya(Tiv — eiy)
Abp = nfyleni + 05)[Bxa(l = eix) = Yy 1x Praeiv]
(44)
for (i, X) € wm(0), with T;x = 1, and Tiy = 0 for
Y#X.

Simulation Results

Here we demonstrate a simple application of the prin-
ciples behind HMM/NN hybrid architectures on the
immunoglobulin protein family. Immunoglobulins, or
antibodies, are proteins produced by B cells that bind
with specificity to foreign antigens in order to neutral-
ize them, or target their destruction by other effector
cells. The various classes of immunoglobulins are de-
fined by pairs of light and heavy chains that are held
together principally by disulphide bonds. Each light
and heavy chain molecule contains one variable (V)
region, and one (light) or several (heavy) constant (C)
regions. The V regions differ among immunoglobulins
and provide the specificity of the antigen recognition.
About one third of the amino acids of the V regions
form the hypervariable sites, responsible for the great
diversity characteristic of the vertebrate immune re-
sponse. Our data base is the same as the one used in
((Baldi et al. 1994)) and consists of human and mouse
heavy chain immunoglobulins V region sequences from
the Protein Identification Resources (PIR) data base.
It corresponds to 224 sequences, with minimum length
90, average length 117, and maximum length 254.

For the immunoglobulins V regions, our original re-
sults ((Baldi et al. 1994)) were obtained by training
a simple HMM, similar to the one in Fig. 1, that
contained a total of 52N + 23 = 6107 adjustable pa-
rameters. Here we train a hybrid HMM/NN archi-
tecture with the following characteristics. The basic
model is a HMM with the architecture of Fig. 1. All
the main states emissions are calculated by a com-
mon NN, with 2 hidden units. Likewise, all the in-
sert state emissions are calculated by a common NN,
with one hidden unit only. Each state transition dis-
tribution is calculated by a different softmax network

Baldi 43

F37262
B27563
C30560
G1HUDW
509711
B36006
F36005
A36194
A31485
D33548
AVMSJ5
D30560
§11239
G1MSAA
127888
PLO118
PLO122
A33989
A30502
PHOO097

Hd<HH<CHSHAGI<HARAHAAK

F37262
B27563
C30560
G1HUDW
S09711
B36006
F36005
A36194
A31485
D33548
AVMSJ5
D30560
$11239
G1IMSAA
127888
PLO118
PLO122
A33989
A30502
PHO097

F37262
B27563
C30560
G1HUDW
509711
B36006
F36005
A36194
A31485
D33548
AVMSJS5
D30560
$11239
G1MSAA
127888
PLO118
PLO122
A33989
A30502
PHO097

1 2 3 4

AE-LMKP-GA—-S——VKISCK-A-TG-Y-KfS——S—Y-WI-——eWVKQ-R-PGHGL~-
L—QQp-G-AE~LVKP—GA—S——~VKLSCK-A-SG—Y-TfT——N-Y-WI--hWVKQ-R-PGRGL—
QVHL-QQ—SG—-AE~LVKP—GA—S——~VKISCK-A—-SG-Y-TfT——S§~Y—WMNW--VKQ-R-PGQGL—
QVTL-RE-SG-PA-LVRPt —Q-T—-LTLTC--T£SGf~-S1SgeTm—c—VAW--IRQ——pPGEAL—
mkhlwfflllvraprwclsQVQL-QE-SG-PG-LVKPs~E-T—-LSVICT-V-SGg-—SvS——Ss—g-LYWSWIRQ-~pPPGKG—p
KISCKg——SG-Y-SfT—S—Y-WI——gWVRQ-—mPGKGL~
QVQL-VE-SG-GG-VVQP-GR~-S——LRLSCA-A~SGf—-T£S—-S-Ya-M——hWVRQ-A~PGKGL~
ngws£1if1£11svtagvhsEVQL-QQ—-SG-AE-LVRA-G-8S~-VKMSCK—A—-SG-Y—T£T—-N-Yg-INW-~VKQ-R-PGQGL~
EVKLA-E~TG-GG—LVQP—G——-IrpMKLSC-VA-SGf—~-TfS——D~Y—WMNW—--VRQ—SPEKGL—
OVOL-VQ—SG~AE-VKKP-GA~S—-VKVSC—eA—SG-Y—TfTg——~H~YM-—hWVRQ-A-PGQGL~
EVKL~LE-SG-GG-LVQP-GG—-S——LKLSCA~A-SGE—~d~fS——K-Y—WMSW--VRQ-A~PGKGL~
QVQL-KQ-SG-P~5LVQP8~Q-S——LSITCT-V—SDf~—S1T—-Nf-g-V-—hWVRQ-—~SPGKGL—
melglswifllailkgvqcEVQL-VE-SG—GG-LVQP~GR~S—-LRLSCA-A-SGEf——TfN--D-Ya-M——hWVRQ-A-PGKGL-
EVQL-QQ-SG—-AE-LVKA—G-8S——VKMSCK-A-TG-Y~-T£S~—$—Ye-LYW~-VRQ-A-PGQGL~
EVQL-VE-SG-GG-LVKP—GG—S—-LRLSCA-A—SGf——TfS——S—Ya-MSW——VRQ-—~SPEKRL—
QL-QE-SGS——gLVKPS—Q-T——LSLTCA~V-SGg-—8iS——8g—gY—SWsWIRQ——pPGKGL—
EVQL~VE—SG-GG-LVQP—GG—S——LKLSCA-A-SGf—-T£Sg-Sa———M——hWVRQa—s—GKGL—
DVQLA-Q-SEs——VVIKP-GG-S——LKLSCT-A-SGE—-T£5~—S~Y-WMSW——VRQ~-A~PGKGL—
EVQL—QQ—SG—-PE-LVKP—GA—S——VKMSCK-A~5G-D-T£T-~88—v-M—hWVKQ-K-PGQGL~
DVKL~VE—SG-GG-LVKP~GG~S——LKLSCA-A—-SGf——T£S——S~Yi-MSW-—VRQ-T-PEKRL—

5 6 7 8
EWI-G-—enlp GsD S~T——KYN-EKf--K-GKaT—ftA-DT-S8—NT-A-—-Y-M—Q-LS-SLT-S-E-D—-S—
EWI-G-Ri DpNSG— (o} T--KYN-EKf--Kn-KaTlT———i—-—nKps—-NT-A-—Y-M-Q-LS-SLT-S-D~-D-S—
EWI-G—el——-DpSN-——~=8~——Y-T——NNN-QK{f--Kn-KaTlT-—-—vDK-Ss——NT-A—Y-M—Q-LS-SLT-S-E-D-S-
EWL-A—wdil——--N-dD——K———Y————— Y-gASl-e—t~-R1AvS—K-DT-S——KNQ-V~—vLs—MN-TV-g—-pG~D-T—
EWI-G——yi—-Y-Y¥SG———————— §—T——NYNp—S—L-Rs~RvT1S-——vDT-S—KNQ——f——8L-K-L-gSVT-A—-A-D-T—
EWM-G——ii———- YPgD~~§~——D-T—-—RYSp—Sf-—Q-GQvTiS——A-DK-Si—ST-A——Y-L-QwWw—-S—SLK-A—sD-T—
EWV-A--vi———-8YDG————8———N-K——YYA-DS-—V~K~-GRfTiS—-R-DN-S——KNT-L~-Y~-L~-Q-MN-SLR-A—-E-D-T—~
EWI-G YQSTG 8 f-Y-S——TYN-EK-V-K-GKtT1T---vDK-S8——ST-A-—-Y-M—Q-LRg-LT-S-E-D-S—
EWV-A-Qi————-R-NKP—~Y——N—-—-YeT——YYS-DS-V-K—-GRfTiS~—-R-DD-S——-KS—8V——Y—-L-Q-MN-NLR——VE-Dm—g
EWM~G——wi———NpNSG————— g————T--NYA-EKf--Q-GRvTiT--R-DT-Si--NT-A--Y-M-E-LS- —~S—-D~-D-T-
EWI-G——eihpd——8G——————mu—! Ti-NYTp—~S—-L-Kd-KfIiS~-R-DN-A--KN-SL~—-Y-L—Q-MS— ~S-E-~D-T-
EWL-G——viwp———-RG~-—-—~g—-N-T——-DYN-AAf-m-s-R18iT~~K~-DN-§~-KSQ-Vf f———~-K-MN-SLQ~-A-D~D-T-
EWVvsG—i-———~—-—8-wD——8—~—-5~-8ig—-YA-DS-V-K-GRfTiS——R-DN-A--KN-SL——Y-L—-Q-MN-SLR-A-E-D-M-
EDL-G YiSs §—~——~S—-AypNYA—-QKf--Q—-GRvTiT~-A-D-eS—-TNT-A--Y-M-E-LS-SLR-S-E-D-T-
EWV-A DiSSG g8 f——T——YY—pDT-V-T-GRETiS—~R~DD-A~—QNT—L~~Y~L-E-MN~-SLR~S—E-D-T~
EWI-G-—-yi—Yh-SG——————— S—T--YYNp-S—-L—-Ks—-RvTiS——-vDR-S—KNQ—-f——sL~-K-LS-SVT-A-A-D-T-
EWV—G~Ri———~R-SKA-—ngY-—-~A-T—-—-AYA-AS-V-K~GRfTiS—--R-DD-S—--KNT-A--Y-1—Q-MN-SLK-T-E~D-T-
QWV——sRigg———— K—-aD—-—-gg—S—T—-—YYA-DS—V—-K-GRfTiS——R-DN-Nn—NK-L——-Y-L—Q-MN-NLQ—T~E-D~-T-
EWI-G—yi NpYN—-D g T-—KYN-EKf——K-GKaTl1lT-—-8DK~-S§—ST-A——Y-M-E-LS—-SLT-S~-E-D-S-
EWV-A——————-— TiSSG——g-R-—-Y-T—-YYS~-DS~-V-K-GRfTiS—R-DN-A-—KNT-L—Y-L-Q—MS—-SLR—-S—-E-D-T—
9 * 0 1
AVYYCA-R-n—-———Y——-Y-—-gsgsnlfa-—-—-Y
AVYYCA-R-gy———D——-Y¥sY Yam: D—Y WGQGT——SVTVSS——
AVYYCA-RW gtgss Wg: wfaY—-——WGQGT-——LVTVSA——
ATYYCA—R sSCcgsq: Yf D——Y————WGQGI —LVTVSS—-—
AVYYCA-R vlvsrtsisqY¥s———————- Y—-Ym-D—-VWGKGT—TVIVSS——
AMYYCA-R-r————R——Y-—mg Yg D—QafD-IWGQGT--MVTVSS———
AVYYCA-RD———-— R——K——as Da f-D-IWNGQGT--MVIVSS———
AVYFCA-R-sn———Y——-Y-—ggs Yof D--Y WGQGT—-TLTVSS——
—IYYCT gsy Ygm D—--Y WGQGT--SVTVSS———
AVYYCA-R-asycgY—-—-DcY: Yff D—-Y: WGQGT—-LVIVSS———
ALYYCA-R-1lh——-Y-—YgYna Y WGQGT——-LVIVSAE——
AIYYCT-K-eg———YfgnY-D Yam D—Y WGQGT——-SVTVSS———
ALYYCV-K—gr———D——-Y-Ydsqgg Yftva £-D-IWGQGT--MVTVSS——-—
AVYFCAVR-vig—R——=Y f-D-GWGQGTlv——————— —_—
AIYYCT-RD ee DpttlvapfamD——Y-———-WGQGT-—SVIVS———-
AVYYCA-R
AVYYCT-R
AVYYCT—RE a Wgg: W——Yf-Eh-WGQGT—MVTVTS—~—
AVYYCA-R: ggfa Y WGQGT——LVTV—————
AMYYST--A sq: Dsf D—-Y WGQGT—TLTVSSAk—

44 ISMB-95

(normalized exponential reparametrization) as in our
previous work. So the total number of parameters of
this HMM /NN architecture, neglecting edge efffects, is
1507 (roughly 117 x 3 x 3 = 1053 for the transitions,
(117 x 34 3+ 3 x 20 + 40) = 454 for the emissions,
including biases). This architecture is not at all opti-
mised: for instance, we suspect we could have signif-
icantly reduced the number of transition parameters.
Our goal at this time is not to find the best possible
HMM/NN architecture, but to demonstrate the gen-
eral principles, and test the learning algorithm. We
have also trained a number of similar hybrid architec-
tures with a larger number of hidden units, up to four,
both for the main and insert states. Here we report
only the results derived with the smallest architecture.

The hybrid architecture is then trained on line us-
ing (4.4), and the same training set as in our original
experiments. There the emission and transition pa-
rameters were initialized uniformly. Here we initialize
all the weights fron the input to the hidden layer with
independent gaussians, with mean 0 and standard de-
viation 1. All the weights from the hidden to the out-
put layer are initialized to 1. This yields a uniform
emission probability distribution on all the emitting
states 2. Notice also that if all the weights are initial-
ized to 1, including those from input to hidden layer,
then the hidden units cannot differentiate from each
other. The transition probability parameters out of
insert or delete states are initialized uniformly to 1/3.
We introduce, however, a small bias along the back-
bone, in the form of a Dirichlet prior (see (Krogh et al.
1994), (Baldi et al. 1995)) that favors main to main
transitions. This prior is equivalent to introducing a
regularisation term in the objective function, equal to
the logarithm of the backbone path. The regularisa-
tion constant is set to 0.01, and the learning rate to
0.1. In Fig. 3, we display the multiple alignment of
20 immunoglobulin sequences, selected randomly from
both the training (T) and validation (V) sets, after
10 epochs. The multiple alignment is very stable be-
tween between 5 and 10 epochs. Lower case letters
correspond to emissions from insert states. This align-
ment is far from perfect, but roughly comparable to
the multiple alignment previously derived with a sim-
ple HMM, having more than four times as many pa-
rameters. The algorithm has been able to detect all
the main regions of highly conserved residues. Most
importantly, the cysteine residues (C) towards the be-
ginning and the end of the region which are responsible
for the disulphide bonds that hold the chains are per-
fectly aligned. The only exception is the last sequence
(PHO0097) which has a serine (S) residue in its terminal
portion. This is a rare but recognized exception to the
conservation of this position. Some of the sequences

2With Viterbi learning, this is probably better than a
non-uniform initialization, such as the average composition.
A non-uniform initialization may introduce distortions in
the Viterbi paths

in the family have a “header” (transport signal pep-
tide) whereas the others do not. We did not remove
the headers prior to training. The model is capable of
detecting and accomodating these headers by treating
them as initial inserts, as can be seen from the align-
ment of three of the sequences. This multiple align-
ment, however, contains a number of problems related
to the overuse of gaps and insert sates, especially in
the hypervariable regions, for instance at positions 30-
35 and 50-55. These problems should be eliminated
with a more careful selection of hybrid architecture.
In ((Baldi & Chauvin 1995)), we display the activ-
ity of the two hidden units associated with each main
state. For most states, at least one of the activities is
saturated. The activities associated with the cysteine
residues responsible for the disulphide bridges (main
states 22 and 94) are all saturated, and in the same
corner (-1,4+1).

Discussion

The concept of hybrid HMM/NN architecture has been
demonstrated, by providing a simple model of the im-
munoglobulin family. Furthermore, integrated learning
algorithms have been described where the HMM dy-
namic programming and the NN backpropagation are
intimately interwoven. The specific architecture used
in the simulations is by no means optimised for the
task of protein modeling. Our intention here is only
to demonstrate the principles, and test the soundness
of the learning algorithms. The architecture we have
described, and its many possible variations, solve the
problem of having a large number of unstructured pa-
rameter. The NN component of the hybrid architec-
ture calculates the HMM parameters. This component
can be taylored to accomodate all kinds of constraints
and priors, in a very flexible way.

A HMM defines a probability distribution over the
space of all possible sequences. Only a very small frac-
tion of distributions can be realized by reasonable size
HMMs 3. HMMs, or the equivalent multiple alignment,
essentially generate the manifold of factorial distribu-
tions. In this sense, a HMM already provides a com-
pact representation of a distribution over the space of
all possible sequences. A given family of proteins de-
fines also a distribution D over the space of all possi-
ble amino acid chains. Thus our problem can also be
viewed as an attempt to approximate D with a fac-
torial distribution F. A properly trained HMM de-
fines a close to optimal factorial approximation F. We
have seen that for many practical purposes, and in
particular for data base mining, we can expect facto-
rial approximations to perform very well. HMM/NN

3 Any distribution can be represented by a single expo-
nential size HMM, with a start state connected to different
sequences of deterministic states, one for each possible al-
phabet sequence, with a transition probability equal to the
probability of the sequence itself.

Baldi 45

architectures provide a powerful mean for further re-
finements and compression of the HMM parametri-
sation and the flexible incorporation of constraints.
Since part of the problem is compressing and extract-
ing information, one could also view or complement
the present approach in terms of the MDI, (Minimum
Description Length) principle. In particular, costs for
the NN hidden units could also be introduced in the
objective function. But no matter how complex the
NN reparametrization and the objective function, the
basic probabilistic model for the data remains so far a
single HMM.

There may exist situations, however, in molecu-
lar biology or other domains, where one must deal
with subtle dependencies in the data, such as the
“X —Y/X’ = Y’ situation. Such correlations can-
not be captured by a single HMM *. Therefore to cap-
ture variable dependencies one must resort to a larger
class of models. An obvious candidate is higher or-
der markov models, but unfortunately these become
rapidly untractable. If one is to stay close to the first
order HMM formalism, then to handle the present sim-
ple example one needs four emission vectors, instead of
two as in a single HMM. A vector with a high prob-
ability of emitting X (resp. Y) and a vector with a
high probability of emitting X’ (resp. Y’), at position
i (resp. position j). In addition one needs a mecha-
nism to link these emission vectors in the proper way
as a function of context, or input. Thus the data must
be modeled by multiple HMMs, or by a single HMM
that can be modulated as a function of context. Again
the parameters of the multiple HMMs, or of the mod-
ulated HMM, can be calculated by a NN, giving rise
to a more general class of hybrid HMM architectures.

In these more general hybrid architectures, one in-
put stream into the NN component originates from the
HMM states, as in the previous sections. There is how-
ever also a second stream representing the input or con-
text. The choice of input or context can assume many
different forms and is problem dependent. In some
cases, it can be equal to the entire current observation
sequences O. The NN component must then gate the
HMM parameters and decide whether they should be
in the X —Y class or the X’ — Y class. Local connec-
tivity in the NN can also ensure that only local context
be taken into consideration. Other inputs are however
possible, over different alphabets. An obvious candi-
date in protein modeling tasks would be the secondary
structure of the protein (alpha helices, beta sheets and
coils). Continuous input (and/or output) alphabets
are also possible, as in ((MacKay 1994)) where a small
vector of real numbers is used to reparametrize the
manifold of distributions over all possible sequences.
Mixture of experts ideas, as in ((Jacobs et al. 1991)),
can also be used to design such architectures in dif-

*They are also related to the problems of classification

and self-organisation since in this example there are clearly
two distinct sub-families of sequences.

46 ISMB-95

ferent ways. Different HMM experts can be assigned
to different portions of the data. For instance, in a
protein family modeling task, a different expert can
be assigned to each sub-class within the family. An-
other possibility is when the emission vector of any
state results from a convex linear combination of ba-
sic emission expert vectors, gated by the NN. Again
in the protein modeling task, there could be an expert
for hydrophobic regions, one for hydrophilic regions
and so on. The proper mixture or gating among ex-
perts would again be calculated by the NN component
of the architecture. In many cases, the learning algo-
rithms described here can be applied directly to these
more general HMM/NN hybrid architectures. After
all, one can still calculate the likelihood of a given se-
quence and then differentiate with respect to the NN
parameters. In some cases, one may have to add some
form of competitive learning among experts. A more
detailed analysis of the most general HMM /NN hybrid
architectures is given in ((Baldi & Chauvin 1995)).

The ideas presented here are of course not limited
to HMMs, or to protein or DNA modeling. They can
be viewed in a more general framework of hierarchi-
cal modeling, where first a parametrised probabilistic
model is constructed for the data, and then the param-
eters of the model are calculated, and possibly mod-
ulated, as a function of input or context, by one or
several other NNs (or any other flexible reparametri-
sation). It is well known, for instance, that HMMs
are equivalent to stochastic regular grammars. The
next level in the language hierachy is stochasti context
free grammars (SCFG). Once can then immediately in-
troduce hybrid SCFG/NN. It would be interesting to
extend the results in ((Sakakibara et al. 1994)), us-
ing hybrid SCFG/NN. Finding optimal architectures
for molecular biology applications and other domains,
and developing a better understanding of how proba-
bilistic models should be NN-modulated, as a function
of input or context, are some of the current challenges
for hybrid approaches.

Acknowledgement

The work of PB is supported by grants from the ONR,
the AFOSR, and a Lew Allen award at JPL. The work
of YC is supported by grant number R43 LM05780,
from the National Library of Medicine. The contents
of this publication are solely the responsibility of the
authors and do uot necessarily represent the official
views of the National Library of Medicine.

References

Altschul, S. 1991. Amino acid substitution matrices
from an information theoretic perspective. Journal of
Molecular Biology 219:1-11.

Baldi, P., and Chauvin, Y. 1994a. Hidden markov
models of the G-protein-coupled receptor family.
Journal of Computational Biology 1(4):311-335.
Baldi, P., and Chauvin, Y. 1994b. Smooth on-line
learning algorithms for hidden markov models. Neural
Computation 6(2):305-316.

Baldi, P., and Chauvin, Y. 1995. Hierarchical hy-
brid modeling, HMM /NN architectures, and protein
applications. Submitted.

Baldi, P.; Chauvin, Y.; Hunkapillar, T.; and McClure,
M. 1994. Hidden markov models of biological primary
sequence information. PNAS USA 91(3):1059-1063.
Baldi, P.; Brunak, S.; Chauvin, Y.; Engelbrecht, J.;
and Krogh, A. 1995. Hidden markov models for hu-
man genes. Caltech Technical Report.

Dempster, A. P.; Laird, N. M.; and Rubin, D. B.
1977. Maximum likelihood from incomplete data via
the em algorithm. Journal Royal Statistical Society
B39:1-22.

Jacobs, R.; Jordan, M.; Nowlan, S.; and Hinton, G.
1991. Adaptive mixtures of local experts. Neural
Computation 3:79-87.

Krogh, A.; Brown, M.; Mian, I. S.; Sjolander, K.; and -

Haussler, D. 1994. Hidden Markov models in com-
putational biology: applications to protein modeling.
Journal of Molecular Biology 235:1501-1531.

Krogh, A.; Mian, I. S.; and Haussler, D. 1994. A
hidden Markov model that finds genes in e. coli DNA.
Nucleic Acid Research 22:4768-4778.

MacKay, D. 1994. Bayesian neural networks and den-
sity networks. Proceedings of Workshop on Neutron
Scattering Data Analysis and Proceedings of 1994
MaxEnt Conference, Cambridge (UK).

Rabiner, L. R. 1989. A tutorial on hidden markov
models and selected applications in speech recogni-
tion. Proceedings of the IEEE 77(2):257-286.

Sakakibara, Y.; Brown, M.; Hughey, R.; Mian, 1. S;
Sjolander, K.; Underwood, R. C.; and Haussler, D.
1994. The application of stochastic context-free gram-
mars to folding, aligning and modeling homologous

RNA sequences. In UCSC Technical Report UCSC-
CRL-94-14.

Searls, D. B. 1992. The linguistics of DNA. American
Scientist 80:579-591.

Baldi

47

