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Abstract
A method of quantitative comparison of two classifica-
tions rules applied to protein folding problem is pre-
sented. Classification of proteins based on sequence
homology and based on amino acid composition were
compared and analyzed according to this approach.
The coefficient of correlation between these classifica-
tion methods and the procedure of estimation of ro-
bustness of the coefficient are discussed.

1 Introduction

One of the most powerful methods of protein structure
prediction is the model building by homology (Hilbert
et al. 1993). Chothia and Lesk (Chothia & Lesk 1986)
suggested that if two sequences can be aligned with
50% or greater residue identity they have a similar fold.
This threshold of 50% is usually used as a "safe defini-
tion of sequence homology" (Pascarella & Argos 1992)
and in conventional opinion grants a reasonable confi-
dence that a protein sequence has chain conformation
of the template excluding less conserved regions. Note
that in biology, homology implies an evolutionary re-
lationship which is not measurable, but in this paper,
according to Pascarella & Argos 1992, we use this term
to denote some measure of sequence similarity.

But it was shown that structure information can
be transferred to homologous proteins only when se-
quence similarity is high and aligned fragments are long
(Sander & Schneider 1991). It is known that homolo-
gous proteins can have completely different 3D struc-
tures. For example, ras p21 protein and elongation
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factor are identical in the topology of the chain fold
and similar in overall structure, yet the two proteins
are dissimilar in sequence with less than 20% identical
residues (Sander & Schneider 1991). Opposite example
(Kabsch & Sander 1984): octapeptides from subtilisin
(2SBT) and imInunoglobulin (3FAB) are dissimilar 
structure yet 75% identical in sequences. The main ob-
stacle to development of strict criteria for calculation
of homology threshold is the limited size of empirical
database.

Our study is based on the classification scheme
3D_ALI of Pascarella and Argos (Pascarella & Argos
1992) that merges protein structures and sequence in-
formation. It classifies the majority of the known X-ray
three-dimensional (3D) structures (254 proteins 
protein domains) into 83 folding classes, 38 of them
having two or more representatives, and the other 45
containing only a single protein example. This group-
ing is based on a structural superposition among pro-
tein structures with a similar main-chain fold, either
performed by the authors or collected from the litera-
ture.

Sequences from protein primary structure data bank
(SWISSPROT) are associated with all 254 3D struc-
tures providing that they have not less than 50% se-
quence homology and at least 50% of 3D structure
residues were alignable (Sander & Schneider 1991).
Each of them is labeled by the number of one of 83
classes that includes a protein with maximum homol-
ogy. This labeling can be considered as a classification
procedure based on sequence homology.

Another simple measure of protein similarity often
used is the distance function in the 20-dimensional vec-
tor space of amino acid composition. Several groups
(Nakashima e~ al. 1986; Chou 1989; Dubchak et al.
1993) have shown that the amino acid composition
of a protein provides significant correlation with its
structural class, and a number of studies were devoted
to a quantitative description of this relationship. In
all these studies, a protein is characterized as a vec-
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tor of 20-dimensional space where each of its compo-
nent is defined by the composition of one of 20 amino
acids. Recognition schemes based on percent composi-
tion are fairly effective for simple classifications where
proteins are described in terms of the following struc-
tural classes: all a, allfl, c~+~, a/fl, and irregular. It is
obvious that the difficulty of recognition grows rapidly
with the number of classes. Even in the distinction
between a +/3 and a/fl classes, serious problems exist
because parameter vectors of these types of structure
are located too close in the parameter space. That is
why amino acid composition is considered a crude rep-
resentation of a protein sequence and not a tool for
protein structure prediction in a context where more
than four structural classes are to be distinguished.

In this study, we investigate the correlation between
two classifications of protein sequences with unknown
structure, which are obtained by the same simplest
nearest neighbor association procedure (Duda & Hart
1973). These two classifications differ only in the mea-
sure of similarity of proteins: one is based on homology,
while the other uses a distance in the space of amino
acid composition. We define and calculate correlation
coefficient between them and propose a technique to
estimate the robustness of this coefficient of correla-
tion. High correlation between these two classifications
would show a hidden power of amino acid composition
for folding class prediction and at the same time would
cast some doubt on the application of homology to this
prediction without a careful examination.

The remaining part of this paper is divided into
3 sections. Section 2 describes the methods and data
used in this study. The results of our analysis are re-
ported in section 3. The last section contains a brief
discussion.

2 Material and methods

This section describes a method for the evaluation of
correlations between two measures of protein sequence
similarity as well as a technique to measure their ro-
bustness, by experiments based on two sets of data.

2.1 Material

As it was mentioned in the introduction, our first
dataset, from now on referred to as ~raining se~,
consists of 254 protein sequences with known 3D-
structure. For each of the protein sequences in the
training set we have:

* complete sequence of amino acids;

¯ a label in {1,...,83} that denotes the class repre-
senting its 3D structure.

The second dataset, used as ~es~ing set~ contains 2338
protein sequences. This set, disjoint from the training
set, is the subset of all the sequences of the SWIS-
SPROT database, whose homology with at least one
of the 254 sequences of the training set is greater than
or equal to 50%. For each of these 2338 sequences, the
following items are available:

. complete sequence of amino acids;

¯ a pointer to the sequence in the training set which
has the largest homology with this sequence;

¯ the value of the homology with this most similar
sequence in the training set.

Homology, denoted dh in this work, is a real num-
ber between 0 and 1 showing a proportion of homol-
ogous residues in a sequence. Besides homology, we
will study simpler measures of similarity between se-
quences, based only on the rate of each ~mlno acid
in the sequence, and independent of the relative posi-
tion of these amino acids. The composition of a protein
sequence is defined as a 20-dimensional vector of coeffi-
cients in [0, 1] indicating the rate (number of instances
of the acid divided by the total length of the sequence)
of each amino acid in the sequence. Very natural dis-
tance measures on the composition space [0, i] 2° are
provided by the norms Lp and will be denoted alp:
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In this study, we will retain only dl and d½, since the
former is easy to interpret, and the latter provides the
highest correlation with dh, as we observed empirically.

2.2 Scheme of analysis

In a first stage, 20-dimensional vectors of composition
are constructed for each sequence of training and test-
ing sets. For any distance measure d, the closest neigh-
bor (according to d) in tr~inlng set is identified for all
sequences in the testing set. This operation induces
a new classification of the testing set, where each se-
quence is associated with the class of its closest neigh-
bor. Note that this procedure, executed here for dl

and d½, is identical to that performed by Pascarella
and Argos (PascareUa & Argos 1992) for dh.

Next step is the comparison of two different classi-

fications based on dh, dl and d~. These comparisons
are carried out by the computation of the coe~Ncien~ of
agreemen~ between two classifications, i.e. the number
of times when two classifications agree. More detailed
comparisons containing a table indicating the number
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of times two classifications agree, versus the intensity
of each of distance measures, was also performed.

The coefficients of agreement between different clas-
sifications obtained this way are random variables de-
pending on the testing set. In order to make any valid
conclusion, it is essential to estimate the robustness of
these coefficients. To do so, we suggest to reduce the
amount of information available in training and test-
ing sets from whole space of amino acid composition to
more and more simple spaces of this space. To be valid,
each of these simplifications of the composition space
must maintain the cons/s~enev of the training set, i.e.
any two sequences of the training set belonging to two
different classes must’be different in the simpler space.

At every step of this simplification process, new dis-
tances are defined in the simpler space, the process
of classifying by a new distance measure is executed,
and the coefficient of agreement between new classifi-
cation and the one induced by dh is calculated. The
ratio between each of these new coefficients of agree-
ment and the original one (agreement between dh and
dx or dx) is interpreted as a measure of the robust-
hess of t~e original coefficient of agreement. Indeed, if
a strong simplification of the composition data deteri-
orates only partially the agreement between the clas-
sification induced by homology and the one based on
composition, we can conclude that our evaluation of
the original agreement (with the complete information
on composition) is robust.

It should be mentioned that the simpler spaces used
in our approach are binary, and the distance used is
the Hamming distance. Thus, it happens very often
that the nearest neighbor is not unique, and even that
several of them belong to different classes. If this is
a case, the classification follows a simple voting rule
associating the class with the largest number of nearest
neighbors, and in case of ties, the new sequence is put
into a dummy class and it will always be considered as
a mistake of the classification.

The method used to reduce the information in com-
position space, maintaining a consistency of training
set, is described in next section.

2.3 Consistent reduction of information

The binarization technique described in this section
has been designed by E. Boros, V. Gurvich, P.L. Ham-
mer, T. Ibaraki and A. Kogan in August 1993, for
the extraction of minimal consistent information of a
dataset, and it is part of a newly developed method-
ology called Logical Analysis in the field of Machine
Learning (Crams, Hammer & Ibaraki 1988). The pur-
pose of Logical Analysis is to treat data from any ma-
chine learning problem, using logical tools, and among
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other uses, it aims at the extraction of simple logical
patterns able to explain the repartition of the samples
of a training set between their various classes. Since
the method essentially deals with logical variables, the
first stage of the whole analysis is a binarization of
given data.

In many practical problems, a large set of attributes
is available for each dataset, some of them play a cru-
ciai role in the studied classification, while others are
completely irrelevant. Therefore, the binarization de-
scribed here tends to extract the minimal amount of
information, while keeping consistency of the training
set.

For easy interpretation of the encoding, each binary
attribute corresponds to one particular threshold and
this attribute is true for a particular data when the
corresponding original attribute has a value equal or
greater than this threshold. The binarization problem
consists in finding a small number of such thresholds,
so that the resulting encoding maintains the consis-
tence of the training set.

More formally, let say that there are n original at-
tributes consisting all of continuous values, and the
training set S E ~n is partitioned into c classes
S = S1offTo...uSc. An encodinge of this space
~" will be consistent with S if and only if it fulfills
the following property:

Vk, le {1,...,c},k#l VaeS~ Vbe~ e(a)#e(b).
(1)

If the binary encoding e :/Rn --* {0, 1}m is obtained by
m threshold values placed on some of the n continuous
variables, then e(a) e(b) if andonlyif th ereis one
threshold t E ~ along one variable i E {1,..., n} such
that

either ai>_tandbi<t or ai<t andbi>*. (2)

Therefore, if {vx,...,vk,} is the set of values that
a continuous attribute i E {1,...,n} takes over the
training set S, the only interesting thresholds along at-
tribute i are in ~he ranges vj and vj+x (let say = vj+l
w.l.o.g.), such that there are two data from two differ-
ent classes of the training set, one for which attribute i
takes the value vj, and the other for which it takes the
value vj+l. This simple rule, applied independently for
each of the n original attributes, provides a finite list
T C //~ x {1,...,n} of thresholds, candidates for the
binarization.

The problem of extracting from this usually large
list T, a small subset such that the resulting encoding
fulfill condition (1), can be stated as an integer linear
program in which a variable zu E {0, i} is associated



to each threshold (~, i) E 

8.t¯
~(t,i)6T 8tiabzti >_ 1 VG ¯ Sk, b ¯ SI, ~ # I

.̄ ¯ {o, 1} v(t, i) ¯ 
(3)

where s~b = 1 if t, i, a and b satisfy relation (2), and
s~b = 0 otherwise. A subset of candidate thresholds
corresponds to each binary vector m ̄  {0, 1}[TI, and
clearly, such a subset fulfill relation (1) if and only if all
the constraints of the linear program (3) are satisfied.

A simple interpretation of this information reduc-
tion procedure by binarization is the following. Some
hyperplanes (thresholds) are placed in the original con-
tinuous space (here ~20). Each of these hyperplanes 
normal to a vector of the basis of the continuous space.
These hyperplanes are chosen in such a way that each
of the hyperboxes they delimit contains only sequences
belonging to the same class. The smallest number of
hyperplanes fulfilling this property is desired.

The integer linear program (3), known as the 8el
cover{rig problem, has been widely studied. It is well
known to be hard to solve exactly (NP-Complete).
However, a large number of heuristics are available
in the literature, and provide solutions close to min-
imal for most of the real life problems (see for example
Beasley 1990 for a good algorithm and for a survey)¯
Moreover, in our application it is not essential to get
the minimal subset of thresholds fulfilling (1), and 
reasonably small subset is sufficient. It turned out that
the simplest greedy heuristic described in figure 1 is
giving some satisfactory results.

~ = (0,..., 0), is thematrix of constraints in ( 3)
main loop: wh£1e (A contains at least one row) loop

j: index of the column of A with the more ls
Zj~I
suppress from A every row i with alj = 1

end loop
po st op’c iL4.za¢ion (op¢ioned.):

find the smallest vector ~_ m still solution of (3)

Figure 1: Simplest greedy algorithm for the set cover-
ing problem.

In our application IS[ : 254 and the number of
classes is c = 83. By applying the simple rule de-
scribed above, the number of candidate thresholds is
ITI = 1608 and the set covering problem has originally
31~058 constraints. However, the size of the solution
produced by the greedy algorithm was 12. This means
in particular that the matrix of constraints has a high
density making the set covering problem easy, and that
the size of 12 is probably very close to the optimal.

Since a reduction from the continuous space ~20 to
the discrete space {0, 1}12 is substantial, we are go-
ing to explore intermediate reductions, obtained by in-
creasing the right-hand-side of the constraints in (3),
from i to 2, 3, up to 10. Note that in a solution of (3)
with that right-hand-side set to k, every pairs of se-
quences a and b from different classes can be distin-
guished by at least k different thresholds of the solu-
tion. The increase observed on the size of the solution
was almost linear: around five additional thresholds
were necessary for each next value of k.

3 Results

It is known that in SWISSPROT database, i.e. among
35t000 proteins, nearly 90% have a homology less

than 50% with any of proteins with known structure,
and no conventional technique is known to predict their
3D-structure from their sequence.

In this paper we analyze only ~ 7% (2338 exactly)
of all known protein sequences having relatively high
homology to classified 3D-structures.

Table 1(a) (resp. (b)) shows the distribution of 
2338 sequences according to their distances to their
nearest neighbor with respect to homology dh along
the rows and with respect to dl along the col-runs in

(a) (resp. d½ in (b)). The whole field of correlations
between these two distributions is displayed in each of
these two 10 by 10 tables, and high correlations can be
observed at least in cases of high similarity in protein
sequences.
On the right-hand-side of each of these tables, a 2 by 2
table reports this same field of correlations where the
bipartitions are based on threshold values (0.85 for dh,
22 for dl, and 17 x 100 for d~,) chosen to highlight the

¯ 9
fact that most of the data hes on the diagonal of these
2 by 2 tables.

The main result, presented in table 2, shows the per-
centage of identical classifications between the proce-
dure based on homology (using dh) and the one based

on composition (using dl or d½). These percentages are
detailed for each of 69 non empty classes among 83 (a
classification based on homology associates none of the
2338 with some 14 classes). The total percentages are
then reported, and finally, the percentages of identical
classification are computed for three groups of classes:
in each class of the first group, at least 31 sequences
are associated according to the homology classification;
each class of the second group contains between 6 and
30 sequences; and classes of the third group contain not
more than 5 sequences, always according to the clas-
sification based on homology. Throughout the whole
table, each of the values are given once counting any
sequences, once counting only the sequences with ho-
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(°) d~_>55>50 _>45 _>40 _>35 >3O _>~5 _>20 _>15 <15 ~1 >22 <22
lOOdh E

50-54 29 18 33 34 36 45 34 21 11 10 271
55-59 19 12 25 44 54 54 50 20 13 3 294
60-64 21 14 21 22 42 35 70 12 8 3 248
65-69 16 15 12 26 35 63 60 27 19 8 281 1462 236
70-74 12 16 22 31 36 27 30 18 10 6 2O8
75-79 10 12 18 15 23 23 28 26 9 2 166
8O-84 7 28 19 34 22 15 41 46 9 9 23O
85-89 4 5 14 22 10 15 24 57 33 54 238
90-94 1 9 13 20 7 14 24 62 45 37 232 213 427
95-99 1 0 2 2 0 0 5 22 33 105 170

all 120 129 179 250 265 291 366 311 190 237 2338

(b) ~1/~ _~45 ~40 ~35 ~30 >-25 >-20 >15 >-10 >5 <5 all >17 <17
lOOd~ E

50-54 98 37 54 29 17 9 12 5 6 4 271
55-59 70 40 70 45 32 17 14 3 1 2 294
60--64 53 23 43 47 39 24 11 5 2 1 248
65-69 46 26 41 57 58 34 13 6 0 0 281 1542 156
70-74 47 11 25 41 33 26 14 8 1 2 2O8
75-79 24 8 10 17 32 38 23 10 1 3 166
80--84 28 6

i
9 16 23 40 49 37 19 3 230

85-89 15 2 7 10 20 59 58 52 14 238
90-94 23 3 1 4 7 9 23 53 85 24 232 150 490
95-99 3 O 1 0 2 1 5 5 38 115 170

all 407 155 256 263 253 218 223 190 205 168 2338

Table h Distribution of the distances to the closest neighbors according to dl and d~. versus the distances to the
closest neighbors according to dh.

2

mology to their nearest neighbor between 0.5 and 0.7,
and once counting only the sequences with homology
to their nearest neighbor greater than 0.7.

The results are almost similar between the classifi-
cation based on dl and the one based on dx. The first

3
one coincides 86% of the time with the classification
based on homology, while the second one coincides for
87% of the sequences. We carried out similar experi-
ments for many other distances dp. For the Euclidian
norm d2, the global percentage of identical classifica-
tion is 83%, and it drops down to 71% for the distance
d~. Among 6 different values of p < 1, p = 0.51 gave
the highest correlation (87.37%) with homology. The
fact that distances dp, p < 1 give a better result has
an easy explanation. With a distance dl, the gaps
between any of the coefficients of two vectors are con-
sidered with the same strength, while in dp, p < 1,
more importance is accorded to the small gaps than to
the big ones. The higher similarity with homology ob-
tained for p < 1 reflects the fact that in the homology
procedure, a higher attention is accorded to the amino
acids whose cardinalities are about the same in the two
sequences.

The coefficient of similarity of classification rules ob-
served in table 2 is a statistical measure depending on
the dataset, and thus, its stability depends on the num-
ber of samples. We found interesting to observe these
coefficients along a partition of the classes according to
their cardinalities. As expected, it turned out that the

coefficient of similarity is much smaller for the small
classes (77% for the classes with at most 5 elements, for
d½), than for the bigger classes (at least 87%). More-
over, for the 20 largest classes (more than 30 elements),
some singularities should be observed: the coefficient
of similarity is incredibly low for one class (13% for
class 35); intermediate for three classes (from 69% 
79% for classes 13, 29 and 38); above 90% for the 16
other big classes; and even 100% for few of them of
cardinality 40 and more (classes 31, 58, 59 and 72).

Obviously, this coefficient of similarity depends
strongly on the homology, as it is illustrated in ta-
ble 2. It should be mentioned that we also carried out
some experiments to evaluate this coefficient of simi-
larity against the length of the protein sequences and
our results, not reported in this short paper, agreed
with Sander and Schneider’s work (Sander & Schneider
1991) that higher similarities between these two clas-
sification procedures are found for longer sequences.

To conclude this section, let us consider the results
obtained after reduction of the information contained
in the composition space, according to our procedure
described in section 2.3. Without giving details on
which thresholds occur in the solution of the inte-
ger linear program (3) for each right-hand-side /~, 
is worth mentioning that the amino acids F, I, T and
W were used most often (if the number of thresholds
placed along each of these amino acids is summed up
for 8 different solutions of (3), we got a total higher

244 ISMB-95



% dh = dl

89 67 93

%da =d~
total dh =< 0.7 > 0.1’ total da _< 0.7 > 0.7

89 86 100

100 100

0 0

1aa 1aa
90

100 100 100

85 100 90

100 100 100

85 100
93

100 100 100

86 100

50 50

93 86

100 100

100
100

100 100

100 100 100

73 70 100

100 100

0 0

100 100

100 100

100 100

33 33

100 100
90

100 100 100

83 100 94

100 100 100

90 100
87

100 100 100

63 97 94

78 75 100

83 98
94

91 89 100

92 100 93 91 100
100 100

97 95 100

100 100 100 100
86 67

100 100

100 86 67 100
50 0 100

100 100 100

50 0 100
67 50 100

100 100

67 50 100
62 29 94 70

50 0 100

44 94
85 82 100 98 97

100 100 100

100
90 70 100 92

87 83 91

75 100
95 93 100 96 95

77 62 100

100
83 67 100 78 67 83
90

91 85 98

27 98 95 60 99
87

87 84 90

71 96 97 93 100
92 94 88 91 92 88
40 40 40 40
99 98 100 90 88 100
0 0 0 0

89 79 100 100 100 100
90 86 100 90 86 100

100 100 100 100
100 100 100 100 100 100
72 65 93 69 60 100
97 96 100 93 91 100

100 100 100 100 100 100
100 100 100 100
100 100 100 100 100 100

89 O 100 89 0 100
10 7 10 13 7 14

100 100 100 100 100 100
94 67 100 94 67 100

72 50 100 79 62 100
100 100 100 100
100 100 100 100 100 100
100 100 100 100
100 100 100 100

50 0 100 50 0 I00
50 50 0 0

100 100 100 100 100 100
100 100 67 67

83 67 87
89 86 100

0 0
50 0 100

100 100 100
100 100 100

0 0
100 100
100 100

91 90 100
0 0

100 100
33 33

100 100 100
50 O 100

100 100 100
78 75 100
82 78 100

30 21 9

class

97 95 100
1 1 0

# of proteins

100 100
4 1 3

label

100 100 100
7 0 7

total da < 0.7 > 0.7

100 100
2 1 1

1

50 0 100
3 2 1

1

67 50 100
2338 1151 1187

0

86 80 91
74 45 29

1

74 58 100
242 128 114

2 3O

92 86 98
2022 978 1044 85 81 90

2O 10
3 14 7 7
4 4 1 3
5 14 9 5
6 70 42 28
7 84 24 60
8 98 74 24
9 2 1 1
10 7 3 4

11 2 1 1
12 3 2 1
13 69 34 35
14 41 34 7

15 534 182 352
16 280 221 59
17 12 6 6

18 141 15 126
19 39 14 25
20 76 50 26
21 5 5 0
22 71 60 11
23 1 1 0

24 36 19 17
25 10 7 3
27 2 0 2
28 7 2 5
29 67 52 15
30 60 46 14
31 41 20 12
32 8 0 8
33 2 1 1
34 9 1 8
35 122 14 108
36 4 3 1
37 18 3 15
38 47 26 21
40 1 1 0
43 6 3 3
44 1 0 1
45 2 2 0
46 2 1 1
48 2 2 0
49 12 9 3
50 3 3 0
52 18 3 15
54 9 7 2
56 1 1 0
57 2 1 1
58 41 9 32
59 65 27 38
60 2 2 0
62 3 0 3
63 4 0 4
64 11 10 1
65 2 2 0
67 3 3 0
68 3 3 0
70 5 3 2

71 2 1 1
72 40 6 34
73 9 8 1
74 11 9
76
77

78
80
81
82

all classes
card< 5

5 < card ~ 30
30 < card

2

Table 2: Percentage of similar classification between the rule resulting from dh and the ones obtained by dl and
d½.
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% d~ = dl

89 67 93

%dh =d½
total dh ~_ 0.7 > 0.7 total dh _< 0.7 > 0.7

89 86 100

i00 100

0 0

100 100
90

100 100 100

85 i00 90

100 100 100

85 100
93

100 100 100

86 I00

50 50

93 86

I00 I00

100
I00

100 100

I0¢ I00 100

73 70 I00

100 100

0 0

I0~ I00

100 100

i00 100

33 33

100 100
90

100 100 100

83 I00 94

100 100 100

90 100
87

i0¢ 100 i0~

63 97 94

78 75 100

83. 98
94

91 89 100

92 100 93 91 100
100 100

97 95 100

100 100 100 100
86 67

100 IO0

100 86 67 100
50 0 100

100 100 100

50 0 100
67 50 I00

100 100

67 50 100
62 29 94 70

50 0 100

44 94
85 82 100 98 97

100 I00 I00

100
90 70 100

87 83 91

92 75 100
95 93 100 96

77 82 100

95 100
83 67 100 75 67 83

91 85 98

90 27 98 95 60 99

87 84 90

87 71 96 97 93 100
92 94 88 91 92 88
40 40 40 40
99 98 100 90 88 100
0 0 0 0

89 79 i00 100 i00 lOO
90 86 100 90 86 I00

100 100 100 100
100 100 100 100 100 100

72 65 93 69 60 100
97 96 100 93 91 100

100 100 100 100 100 100
100 100 100 100
100 100 100 100 100 100

89 0 100 89 0 100
10 7 10 13 7 14

100 100 100 100 100 100
9,1 67 100 94 67 100
72 50 100 79 62 100

100 100 100 100
100 lOG 100 100 100 100
IO0 100 100 100
100 100 100 100

50 0 i00 50 0 100
50 50 0 0

100 100 100 100 100 100
100 100 67 67

83 67 87
89 86 100
0 0

50 0 100
100 100 100
100 100 100

0 0
100 100
100 100
91 90 100

0 0
100 100
33 33

100 100 100
50 0 100

100 100 100
78 75 100
82 78 100

30 21 9

class

97 95 100
1 1 0

# of proteins

100 100
4 1 3

label

100 100 100
7 0 7

total d~ < 0.7 > 0.7

100 100
2 1 1

1

50 0 100
3 2 1

1

67 50 100
2338 1151 1187

0

86 8O 91
74 45 29

1

74 58 100
242 128 114

2 30

92 86 98
2022 978 1044 85 81 90

20 10
3 14 7 7
4 4 1 3
5 14 9 5
6 70 42 28
7 84 24 60
8 98 74 24
9 2 1 1
10 7 3 4
11 2 1 1
12 3 2 1
13 69 34 35
14 41 34 7
15 534 182 352
16 280 221 59
17 12 6 6
18 141 15 126
19 39 14 25
20 76 50 26
21 5 5 0
22 71 60 11
23 1 1 0
24 36 19 17
25 10 7 3
27 2 0 2
28 7 2 5
29 67 52 15
30 60 46 14
31 41 29 12
32 8 0 8
33 2 1 1
34 9 1 8
35 122 14 108
36 4 3 1
37 18 3 15
38 47 26 21
40 1 1 0
43 6 3 3
44 1 0 1
45 2 2 0
46 2 1 1
48 2 2 0
49 12 9 3
50 3 3 0
52 18 3 15
54 9 7 2
56 1 1 0
57 2 1 1
58 41 9 32
59 65 27 38
6O 2 2 0
62 3 0 3
63 4 0 4
64 11 10 1
65 2 2 0
67 3 3 0
68 3 3 0
70 5 3 2
71 2 1 1
72 40 6 34
73 9 8 1
74 11 9
76
77
78
8O
81
82

all classes
card< 5

5 < card < 30
30 < card

2

Table 2: Percentage of similar classification between the rule resulting from dh and the ones obtained by dl and
d~.

3
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than 12 for eac~h of these four amino acids), while 
and Y were almost never used (only once each among
10 different solutions). This information should be con-
sidered with a lot of care, since each of these vectors
solution of (3) are obtained by a greedy procedure, and
it is concivable that a different procedure would make
some different uses to various amino acids. However, a
more robust evaluation of the frequency of each amino
acids could yield some very usefull information for the
design of new distance measures in the composition
space. For example, one could weight each amino acid
by its frequency.

As it was already mentioned, the coefficient of sim-
ilarity between the classification based on homology,
and the one based on composition is 87% (reap. 86%)

with d~ (reap. dl) as distance measure on ~20, the
composition space. With the classification based on
Hamming distance and vo~ing rule described in sec-
tion 2.2, this coefficient of similarity becomes 73%,
61% and 45% for solutions of (3) with right-hand-side
/c = 10, 3 and 1 respectively (the respective size of bi-
nary spaces are 59, 22 and 12). In other words, when
we extract 59 binary variables from 20 continuous ones
of the composition space, 86% of the similarity between
the classification based on homology and the one based
on composition is preserved; 70% is preserved when
we express the composition space with nearly only one
binary variable for each amino acid; and the maxi-
mai compression of information, which reduces ~20 to
{0, 1}i2, still maintains 52% of this similarity. In con-
clusion, we claim that our estimation of this coefficient
of similarity is robust.

4 Discussion

Molecular biology is noted for vast amount of empirical
data with "hidden" correct classification. A good ex-
ample of this is Structure Analysis of Proteins and Pep-
tides. There is a huge amount of data on their amino
acid sequences that need to be classified versus small
set of sequences with known three-dimensional (3D)
structures. There are several classifications of proteins
with known 3D structure, and the problem is to find a
good extension for sequences with unknown structure.
A realistic 3D classification divides sequences into a
large number of classes and it provides an additional
difficulties for building an extension.

Another example. It is well-known that folding pat-
terns of T-cell receptors are very similar to that of
antibodies. In this case a classification includes only
two classes, where one of these classes is complemen-
taxy to another. This complementary class usually has
a very complicated description for its recognition and
the problem is to find a characteristic property that

can recognize if a given sequence is a T-cell receptor or
not.

As third example, one of the interesting problem in
molecular biology is analysis of interactions between
different proteins and peptides and one of the applica-
tion problems is to classify sequence database on the
ability of proteins to interact with some given proteins.

We expect that many more classification of this kind
will appear in near future and it is necessary to develop
an approach that allows to compare various methods
of classification and to show their relationship. This
approach should compare methods, enhance their im-
provement and create a classification of higher level.

In this paper we present a simple version of this ap-
proach. We focus on the problem of a comparison of
two methods of protein folding classification with real
istic number of folding classes. We define a coefficient
of similarity among two given methods, and describe
a procedure to estimate a robustness of the coefficient
for two sets of data. We applied these coefficient and
procedure to the study of the relation between different
measures of similarity for protein sequences. We show
that folding class prediction by sequence homology and
amino acid composition are very close.

On the one hand, this result emphasized restrictions
for folding class prediction by sequence homology. On
the other hand, it shows a new opportunity for us-
ing amino acid composition in models of folding class
prediction, since we found that this prediction can be
improved using different weights for different amino
acids.
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