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Abstract

Several computer algorithms for discovering patterns
in groups of protein sequences are in use that are
based on fitting the parameters of a statistical model
to a group of related sequences. These include hid-
den Markov model (HMM) algorithms for multiple se-
quence alignment, and the MEME and Gibbs sampler
aagorithms for discovering motifs. These algorithms
axe sometimes prone to producing models that are in-
correct because two or more patterns have been tom-
bitted. The statistical model produced in this situ-
ation is a convex combination (weighted average) 
two or more different models. This paper presents a
solution to the problem of convex combinations in the
form of a heuristic based on using extremely low vari-
ance Dirichlet mixture priors as past of the statistical
model. This heuristic, which we call the megaprior
heuristic, increases the strength (i.e., decreases the
variance) of the prior in proportion to the size of the
sequence dataset. This causes each column in the fi-
nal model to strongly resemble the mean of a single
component of the prior, regardless of the size of the
dataset. We describe the cause of the convex combina-
tion problem, analyze it mathematically, motivate and
describe the implementation of the megaprior heuris-
tic, and show how it can effectively eliminate the prob-
lem of convex combinations in protein sequence pat-
tern discovery.

Keywords: sequence mod~ing; Dirichlet priors; ex-
pectation ma~-dmization; machine learning; protein mo-
tifs; hidden Markov models; unsupervised learning; se-
quence alignment, multiple

Introduction

A convex combination occurs when a model combines
two or more sequence patterns that should be dis-
tinct. This can occur when a sequence pattern dis-
covery algorithm tries to fit a model that is either too
short (multiple alignment algorithms) or has too few
components (motif discovery algorithms). This situa-
tion arises with HMM algorithms (Krogh e¢ al. 1994;
Baldi ctal. 1994; Eddy 1995) when the model contains
too few main-line states; with the Gibbs sampler motif
discovery algorithm (Lawrence el al. 1993) when the

user instructs the algorithm to assume sequences con-
tain motif occurrences that in actuality they do not;
and with the MEME motif discovery algorithm (Bailey
and Elkan 1995a; 1995b), when the motif model chosen
by the user does not assume that there is exactly one
copy of the motif in each sequence in the training set.
Since reducing the number of free parameters in the
model is generally desirable, many pattern discovery
algorithms use heuristics to minimize the length of the
sequence model. If the heuristic shortens the sequence
model too much, convex combinations can occur.

We use the term convex combination because, with
the type of sequence model common to profiles, mo-
tifs and HMMs, the parameters of a model that erro-
neously combines distinct patterns are a weighted aver-
age of the parameters of the correct models, where the
weights are positive and sum to onc in other words, a
convex combination. Consider protein motifs, where a
motif is an approximate, fixed-width, gapless pattern
that occurs in a family of sequences or repeatedly in
a single sequence. The commonly used protein mo-
tif model is a residue-frequency matrLx, each of whose
columns describes the observed frequencies of each of
the twenty amino acids at that position in the motif. A
convex combination model can be visualized by imag-
ining aligning all the occurrences of two distinct (but
equal width) protein sequence motifs and calculating
the residue frequencies in each column. The resulting
frequency matrix is a convex combination motif model.

An example convex combination motif model pro-
duced by a motif discovery algorithm is shown in Fig. 1.
The training set, shown at the top of the figure, con-
tains five protein sequences, each of which contains one
occurrence of two distinct, known motifs. The residue-
frequency matrix found by the algorithm is shown at
the bottom of the figure (all frequencies are multiplied
by ten and rounded to one digit; zeros are replaced
with ":"). The residue-frequency matrix (the model)
is a convex combination of models for the two known
motifs. This can be seen by examining the the po-
sitions predicted as motif occurrences by the model,
shown immediately above the residue-frequency ma-
trix. Each of these is labeled as belonging to known
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Training Set

ICYA_MANSE
ICYA_MANSE

ICYA_MANSE

ICYA_MANSE

LACB_BOVIN
LACB_BOVIN
LACB_BOVIN
LACB_BOVIN

BBP~IEBR

BBP~IEBR

BBP~IEBR
BBP~IEBR

RETB~OVIN
RETB~OVIN
RETB~OVIN
RETB~OVIN

MUPR_MOUSE
MUP2_MOUSE
MUP2_MOUSE
MUP2_MOUSE

1 gdifypgycpdvkpvn~FDLSAFAGAWHEIA ~lplenenqgkctiaeyky
51 dgkkasvynsfvsn~vkeymegdleiapdakytkqgkyvmtfkfgqrvvn

101 IvIPWVLATDYKNYAIN ~NCdyhpdkkahsiha~ilskskvlegntkevvd
151 nvlktfshlidask-fisndfseaacqysttysltgpdrh

i mkclllalaltcgaqali~qtmkGILDIQKVAGTWYSLA~aasdisllda
51 qsaplrvyveelkptpegdleillqkwengecaqkkiiaektkipavfki

i01 dalnenkvLVLDTDYKKYLLFCMEnsaepeqslacqclvrtpevddeale
151 kfdkalkalpmhirlsfnptqleeqchi

i nvyhdgacpevkpvd~FDWSNYHGKWWEVA~ypnsvekygkcgwaeytpe

51 gksvkvsnyhvihgkeyfiegtaypvgdskigkiyhkltyggvtken~

1011VLSTDNKNYIIG ~YCkydedkkghqdfvwvlsrskvltgeaktavenyli
151 gspvvdsqklvysdfseaackvn

1 erdcrvssfrvke~ FDKARFAGTWYAMA~kdpeglflqdnivaefsvden
51 ghmsatakgrvrllnnwdvcadmvgtftdtedpakfkmkywgvasflqkg

101 nddhWIIDTDYETFAVOYSCr~ inldgtcadsysfv ~ardpsgfspevqk
151 ivrqrqeelclarqyrliphngycdgksernil

1 mkmllllclgltlvcvhaeeasstgr~ FNVEKINGEWHTII ~asdkreki
51 echngnfrlfleqihvlekslvlkfhtvrdeecselsmvadktekageysv

101 tydgfntlfTIPKTDYDNFLMA ~LInekdgetfqlmglygrepdlssdike
151 rfaklceehgilreniidlsnanrclqare

Aligned Fragments

(I) ICYA_MANSE 18 ycpdvkpvnD FDLSAFAGAWHEIA Klplenenqg
(2) ICYA_MANSE 103 k~gqrvvnlv pWVLATDYKNYAIN YNCdyhpdkk
(i) LACB_BOVIN alivtqtmkG LDIQKVAGTWYSLA Maasdislld
(I) BBP_PIEBR 17 acpevkpvdN FDWSNYHGKWWEVA Kypnsvekyg
(2) BBP_PIEBR 99 tyggvtkenv fNVLSTDNKNYIIG YYCkydedkk
(1) RETB_BOVIN15 rvssfrvkeN FDKARFAGTWYAMAKkdpeglflq
(-) RETB_BOVIN 123 TFAVQYSCrl Inldgtcadsysfv fardpsgfsp
(1) MUP2_MUUSE aeeasstgrN FNVEKINGEWHTII Lasdkrekie
(2) MUP2_MOUSE 108 ysvtydgfnt fTIPKTDYDNFLMAHLInekdget

Convex Combination
Model

A :::12:311::2:6
C ::::::1:::::::
D :4:1::3:2:::::
E :::1::::1::2::
F 7::::2::::1:1:
G ::::i::6:::::I
H ::::::1:::2:::
I ::2::I:::::141
K ::I:3:::3:::::
L 2:22:::::::11:
M ::::::::::::2:
N :3::1:11:3:::1
P I::I::::::::::
O :::I::::::::::

::::i:::::::::
S :::21::::I:2::
T :I:::4::2::1::
V ::3::1::::::11
W :11::::::51:::
Y :::::1:2::6:::

Figure 1: Illustration of the convex combination problem. Training set sequences (lipocalins taken frolll
Lawrence et at. (1993)) are shown at the top of the figure with known (uppercase) and predicted (boxed) occurrences
of the two known motifs indicat, ed. Aligned sequence fragments containing the predicted occurrences and the
(abbreviatcd) residue-frequency matrix of the convex combination model are shown at the bottom of the figure.
Sequence fragments are labeled on the left with which known motif--(1), (2) or none (-)--they contain.
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motif (1) or (2) on the left of the figure. The model
identifies all the instances of one of the motifs as well
as three of five instances of the other. The predicted
starts of the occurrences of motif 1 are all shifted one
position to the right of the known starts. Similarly,
the three predicted motif 2 occurrences are shifted one
position to the left of the known occurrences. This is
typical of convex combination models since they tend
to align motif columns that have similar residue fre-
quencies in order to maximize the information content
of the model.1

Convex combinations are undesirable because they
distort nmltiple alignments and lead to motif descrip-
tions that make unrelated sequence regions appear to
be related. Eliminating them will greatly enhance the
utility of automated algorithms for sequence pattern
discovery. This paper presents a solution to the convex
combination problem in the form of a heuristic based
on the use of a mixture of Dirichlet distributions prior
(Brown el al. 1993). This type of prior contains in-
formation about the types of residue-frequency vectors
(i.e., residue-frequency matrix columns) that are bio-
logically reasonable in a protein sequence model. By
using priors with extremely low variance, the search
for patterns can be strongly biased toward biologically
reasonable patterns and away from convex combina-
tions, which tend to be biologically unreasonable.

The organization of this paper is as follows. First,
we discuss the problem of convex combinations when
searching for motifs and show mathematically why it
occurs. Next we give an overview of the use of Dirichlet
mixture priors in discovering protein sequence models.
We then describe the megaprior heuristic and discuss
its implementation. The results section demonstrates
the dramatic improvement in motif models found by
MEME using the heuristic as a result of the elimina-
tion of convex combination motif models. In the last
section, we discuss why the megaprior heuristic works
so well and opportunities for utilizing the heuristic in
other algorithms.

Convex combinations

The convex combination (CC) problem is most eas-
ily understood in the context of protein sequence mo-
tifs. A motif is a recurring sequence pattern that can
be modeled by a position dependent residue-frequency
matrix. Such a matrix is equivalent to a gapless pro-
file (Gribskov et al. 1990)--a profile with infinite gap
opening and extension costs. Each column in the fre-
quency matrix describes the distribution of residues
expected at that position in occurrences of the mo-
tif. If a large number of occurrences of the motif were
aligned, we would expect to observe residue-frequencies

1The model was produced by MEME without using the
megaprior heuristic. Using the megaprior heuristic, MEME
produces two distinct motif models each of which correctly
describes one of the known motifs in the dataset.

in each column of the alignment approximately equal
to the values in the corresponding column of the motif
residue-frequency matrix.

One objective of motif analysis is to discover mo--
tif models that identify and describe regions critical
to the function or folding of proteins. This is possi-
ble because certain regions (motif occurrences) of dis-
tantly related proteins tend to be conserved precisely
because they are essential to the functioning or fold-
ing of the protein. Motif discovery proceeds by looking
for a fixed-length sequence pattern that is present in
several sequences that otherwise share little homology.
This can be done manually, as was done in creating
the Prosite dictionary of sequence patterns (Bairoch
1995), or automatically, using a computer algorithm
such as MEME or the Gibbs sampler.

The CC problem occurs when automatic motif dis-
covery algorithms such as MEME are given an inaccu-
rate estimate (or no estimate) of the number of occur-
rences of the motif that are present in each sequence.
The algorithm must then bMance the conciseness of the
motif model (its information content) with the amount
of the data that it describes (its coverage). When the
megaprior heuristic, to be described in detail later, is
not used, the algorithm tends to select a model that is
a combination of two or more models of distinct mo-
tifs. This is because, without constraints on the num-
ber or distribution of occurrences of the motif within
the sequences, a convex combination can maximize the
motif discovery algorithm’s objective function by ex-
plaining more of the data using fewer free parameters
than would a model of a single motif.

We can show mathematically why MEME chooses
CC motif models. In its least constrained mode,
MEME fits a mixture model to the sequences in the
training set. To do this, it slices up the sequences into
all their overlapping subsequences of length W, where
W is the width of the motif. Suppose the sequences
contain two width-W motifs, one consisting of all "a"s,
and one of all "b"s. Suppose further that the rest of
the sequences were essentially uniform random noise.
A hidden Markov model with three-components like
that in Fig. 2 would be appropriate in this case. This
model generates "random" strings with probability ~1,
all "a"s with probability ~2, and all "b"s with proba-
bility )~3 = 1 - ~1 - ,~2.

Learning the parameters of a nmlti-component
model is difficult due to local optima in the likelihood
surface. To minimize this problem, MEME learns the
informative components of the motif model one-at-a-
time. Using the expectation maximization algorithm
(EM) (Dempster et al. 1977), MEME repeatedly fits
a two-component mixture model to the subsequences
generated from the data. We would like the algorithm
to converge to the model shown in Fig. 3 (or a similar
one modeling the all "b" component). The informa-
tive component of the model provides a description of
one of the motifs (the strings of "a"s) in the dataset
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Figure 2: Hidden Markov model representation of a
three-component mixture distribution which produces
a mixture of strings of all "a"s, strings of all "b"s and
uniformly random strings.

Figure 3: Desired two-component hidden Markov
model that models one of the peaked components of
the data in component two (lower path), and the rest
of the data is modeled by the first component which is
constrained to be uniformly random.

Figure. 4: Two-component hidden Markov model where
the second component is a convex combination of the
peaked components of the data and the first compo-
nent is constrained to be uniformly random. This
model will tend to have higher likelihood than if the
second component generated only strings of "a"s as in
Fig. 3.
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which the algorithm then effectively erases from the
data. The algorithm then fits a new two-component
model to the remaining data to discover the second
motif. Unfortunately, the CC model shown in Fig. 4
will sometimes have higher likelihood than the desired
model in Fig. 3. Since MEME searches for the model
with the highest likelihood, CC models can be chosen.

The tendency for the CC model (Fig. 4) to have
higher likelihood than the correct model (Fig. 3) in-
creases with the size of the alphabet, ~ ~l , the width of
the motif, W, and the size of the dataset (number of
width-W subsequences), n. The difference in the ex-
pected value of the log-likelihood on a set of sequences,
X, of the two models can be shown (Bailey 1996) 
approach infinity as either W, the width of the motif,
or m, the size of the alphabet does,

lira (E[logPr,~b(X)]- E[logPr~(X)]) ~: l

The expectation is over samples of size n and it. can
also be shown (Bailey 1996) that the difference in ex-
pectation approaches infinity with increasing sample
size whenever )L~ is closer to 0.5 than )~l is,

nli2~ (E[log P rab (X)] - E[log P’ra (IX)]l) 

if and only if 10.5 - ,~21 < 10-5 - ,kll. This means
that for large alphabets and/or large motif widths, the
convex con-tbination model will have higher likelihood
than the desired model. Additionally, for certain val-
ues of the ratio of number of motif occurrences to total
dataset size, the problem becomes worse as the size of
the dataset increases.

Dirichlet mixture priors
A basic understanding of Dirichlet mixture priors is
necessary in order to understand the megaprior heuris-
tic. Dirichlet mixture priors encode biological informa-
tion in the form of "likely" residue-frequency cohmns.
The mean of each component of a Dirichlet mixture
prior is a "typical" column of a MEME motif or a
match state in an HMM. It. is well known that the
twenty amino acids can be grouped according to sim-
ilarity along several dimensions such as the size, po-
larity and hydrophobicity of their side-chains. As a
result, it is not surprising that the columns of residue-
frequency matrices can be grouped into a fairly small
number of classes. Each of these classes can be de-
scribed by a Dirichlet distribut.ion and the overall dis-
tribution of columns in residue-frequency matrices can
be modeled by a mixture of these Dirichlet distribu-
tions, q’he experiments discussed in this paper use a
thirty-component Diridflet mixture prior (our "stan-
dard" prior) estimated by Brown e¢ al. (1993) from the
residue-frequency vectors observed in a large number
of trusted multiple alignments.

Dirichlet mixture priors are used by modifying the
learning algorithm (EM in the case of MEME) to max-
imize the posterior probability rather than the likeli-
hood of the training sequences given the model and



the prior distribution of the parameters of the model.
The effect of the prior is to increase the probability of
models whose residue-frequency columns are close to
the mean of some component of the prior. This effect
decreases as the size of the training set increases. The
effect increases as the variance of the components of
the prior decrease.

An R-component Dirichlet mixture density has the
form p = qlpl +...+qnPR, where qi > 0 is a mixing pa-
rameter, Pl is a Dirichlet probability density function
with paralneter/3(i) = (/3(~i) ~i).), and £ = a, 

, " " ’1 . - ¯ "1
is the sequence alphabet. For protein sequences, the
ith component, Pi, is described by a parameter vector
,3(i) of length twenty. The twenty positions in the pa-
rameter vector correspond to the twenty letters in the
protein alphabet.

All the components of a Dirichlet parameter vector
are positive (by the definition of a Dirichlet distribu-
tion), so we can normalize it to be a probability vector
(a vector whose components are non-negative and sum
to one). V, re do this by dividing the parameter vector,
~3~i), by its magnitude, bi = ~::~z./3(~i). The normal-

ized vector, 3(i)/bi, is the mean of component Pi of
the mixture and has the same form as a column in a
residue-frequency matrix. Later we shall show that the
parameter bi is inversely proportional to the variance
of component Pi.

The presence of component pi in the standard prior
we use indicates that many residue-frequency vectors
with values near the mean of Pi are observed in trusted
multiple alignments. If the variance of component Pi is
low, then its mean was the center of a dense cluster of
residue-frequency vectors in the data that was used to
learn the mixture prior. If its variance is high, it was
the center of a more diffuse cluster of observed residue-
frequency vectors in the training data. The size of the
mixing parameter for component pi, qi, is indicative of
the number of observed residue-frequency vectors near
the mean of Pi. Large mLxing parameters indicate that
there were (relatively) many residue-frequency vectors
near the mean of that component in the multiple align-
ments used to learn the standard prior.

The thirty components of the standard prior can
be summarized as follows. Twenty of the compo-
nents have means near residue-frequency vectors corre-
sponding to a single amino acid. This reflects the fact
that in many columns in multiple alignments a single
amino acid predominates. The ten other components
have means corresponding (roughly) to the residue-
frequency distributions observed in different protein
environments such as alpha helices, beta strands, inte-
rior beta strands and interior alpha helices.

Dirichlet mixture priors can be used as follows for
learning sequence models. Let c = [ca,...,c~] T be
the vector of observed counts of residues in a partic-
ular column of the motif or multiple alignment. The
probability of component Pi in the Dirichlet mixture

having generated the observed counts for this column
is calculated using Bayes’ rule,

qi Pr( e][3( O 
P~(#¢’)[~) 

E]=I qjPr(c[#¢J))"

If we define c = ~--~,ez c, and bi = ~-~,e£/3(0, then

pr(cl#¢/)) r( e + 1)r(b,) 1-[ r(c. +
r(c + b,)~ r(c~ + 1)r(b(~°)

where F(-) is the gamma function. We estimate 
vector of pseudo-counts as a function of the observed
counts as d(c) [da,db,...,dz] T where

R

d~ = ~ Pr(/_,¢’)lc)/:,:,¢~),
i=1

for each x E £. The mean posterior estimate of the
residue probabilities pk in column k of the sequence
model is then

pk _ Ck + d(ck)
I~k + d(ck)l 

for k = 1 to W. This gives the Bayes estimate of
the residue probabilities for column k of the sequence
model.

The megaprior heuristic
The megaprior heuristic is based on biological back-
ground knowledge about what constitutes a reason-
able column in a residue-frequency matrix. Since con-
vex combinations improperly align sequence positions,
their observed residue-frequency vectors will tend to be
biologically unreasonable. The megaprior heuristic ex-
tends the idea of using Dirichlet mixture distributions
for modeling the distribution of the columns of protein
sequence models (Brown et al. 1993) to prevent this
from occurring by severely penalizing models with bi-
ologically unreasonable columns. This is done by lin-
early scaling the variance of each component of the
Dirichlet mixture prior so that it is sufficiently small
to make the effect of the prior dominate even when the
training set is large. This turns out to be extremely
simple to implement as we show below. All that is
needed is to multiply the parameters of each compo-
nent of the prior by a factor proportional to the size of
the training set.

The megaprior heuristic is implemented by multiply-
ing each parameter of each component of the Dirichlet
mixture prior by a scale factor, s, which is dependent
on the sample size. 2 Consider component Pi of the mix-
ture prior. Recall that the magnitude, bi, of Dirichlet

2Sample size is the number of width-W subsequences
present in the training set. When W is small compared to
the length of the sequences, sample size is approximately
equal to the total number of characters in the sequences.
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distribution Pi with parameters /3(i) = ~,~t"~#(i~,..., /3!~))

is defined as bi -~ ~xE£ fl(xi)" The variance of Pi is in-
versely proportional to its magnitude, bi, since (Sant-
ner and Duffy 1989)

(:3(~ /bi)(I - (,3., /b~) 
Va.r(c) 

bi+ l

Thus, multiplying the parameter vector .’3 ¢.i) of compo-
nent pi of a Diriehlet mixture prior by scale factor s > 0
reduces the the variance of the component by a factor
of approximately 1/s. This scaling does not affect the
mean of the component because the mean of a Dirichlet
distribution with parameter s/3(i) is si3(1)/sbi : fl(i)/bi,
the mean of Pi.

The actual scale factor used by the megaprior heuris-
tic. is

kn

where b is the sum of the magnitudes of the compo-
nents of the prior, b = ~--~Y=l bi, and n is the sample
size. Thus, the heuristic multiplies parameter vector
¯ ’3~i~ of the ith Dirichlet component of the prior bv
kn/b, for 1 _< i _< R. When k is large, this causes
the posterior estimates of the parameters of colunms
of a model always to be extremely close to the mean
of one of the components of the mixture prior. Ex-
periments (results not shown) indicated that a good
value for k is k -- 10, although values between k = 1
and k = 20 do not change the results appreciably. The
results reported in the next section use k = 10.

Several sequence modeling algorithms-including
MEME and the HMM sequence alignment algorithms
mentioned in the introduction-use mixture of Dirich-
let priors because this has been shown to improve the
quality of the patterns they discover (Bailey and Elkan
1995b; Eddy 1995; Baldi el al. 1994). Since these
algorithms already use Dirichlet mixture priors, most
of the algorithmic machinery needed for implement-
ing the megaprior heuristic is already in place. In the
case of these algorithms, implementing the megaprior
heuristic requires no algorithmic modifications (beyond
scaling the components of the prior) and the mathe-
matics remain the same.

Results
We studied the effect of using the megaprior heuris-

t.ic with the MEME (Bailey and Elkan 1995a) motif
dis(:overy algorithm. MEME takes as input a group of
training sequences and outputs a series of ,notif mod-
els each of which describes a single motif present in the
sequences. The user can speciL: one of three different
types of motif models for MEME to use, each of which
reflects different background knowledge about the ar-
rangeinent of the motifs within the sequences. The
OOPS model (One Occurrence Per Sequence) forces
MEME to construct each motif model by choosing a sin-
glc motif occurrence from each sequence. The ZOOPS

quantity mean (sd)
sequences per dataset 34 (36)
dataset size 12945 (11922)
sequence length 386 (306)
shortest sequence 256 (180)
longest sequence 841 (585)
pattern width 12.45 (5.42)

Table 1: Overview of the 75 Prosite datasets.
Each dataset contains all protein sequences (taken
from SWISS-PROT version 31) annotated in the Prosite
database as true positives or false negatives for a sin-
gle Prosite family. Dataset size and sequence length
count the total number of anfino acids in the pro-
tein sequences. The Prosite families used in the ex-
periments are: PS00030, PS00037, PS00038, PS00043,
PS00060. PS00061, PS00070, PS00075, PS00077, PS00079,
PS00092PS00095,PS00099,
PS00141PS00144,PS00158,
PSO0190PS00194,PS00198,
PS00217PS00225,PS00281,
PS00338PS00339,PS00340,
PSO0401,PS00402,PS00422,
PS00548,PS00589,PS00599,
PS00637,PS00639,PS00640,
PS00675,PS00676,PS00678,
PS00716,PS00741,PS00760,
PS00867,PS00869,PSO0881,

PS00118,PS00120. PS00133,
PS00180,PS00185, PS00188,
PS00209,PS00211,PS00215,
PS00283,PS00287,PS00301,
PS00343,PS00372,PS00399,
PS00435,PS00436,PS00490,
PS00606,PS00624,PS00626,
PS00643,PS00656,PS00659,
PS00687,PS00697,PS00700,
PS00761,PS00831,PS00850,
PS00904and PS00933.

model (Zero or One Occurrence Per Sequence) per-
mits MEME to choose at most one position in each
sequence when constructing a motif model. This al-
lows for some motifs not being in all sequences in the
training set and provides robustness against noise (e.g.,
sequences that do not belong in the training set.) The
least constrained model is called the TCM model (Two
Component Mixture) which allows MEME to choose
as many (or few) motif occurrences in each sequence
as necessary to maximize the likelihood of the motif
model given the training sequences.

To study the improvement in the quality of motif
models found by MEME using the megaprior heuris-
tic. we use training sets containing groups of pro-
tein sequences with known motifs. We measure how
well the motif models found by MEME match the
known motif occurrences in the training set. by us-
ing each MEME-determined motif model as a classifier
on the training set and calculating the receiver oper-
ating characteristic (ROC) (Swets 1988), recall and
precision of the model with respect to the known mo-
tifs. To do this, we tally the number of the number
of true positive (tp), false positive (fp), true negative
(tn) and false negative (fn) classifications. We define
recall = tp/(tp + fn), which gives the fraction of the
known motif occurrences that. are found by the model.
Likewise, precision = tp/(tp+fp), gives the fraction of
the predicted motif occurrences that are correct.. Low
values of precision usually correspond to models that
are convex combinations; improved precision is an in-
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ROC recall prec:sion

M S M S M S
means 0.992 0.986 0.79 0.81 0.73 0.23

p = 0.05 + m +
p = 0.01 + m +

= 1
O

"O
ID

._c 0 :.

0t-

"o -1
o

difference in recall

Figure 5: Comparison of the megaprior (M) and
standard prior (S) in finding protein motifs.
Data is for the best models found by MEME using the
TCM model for 135 known motifs in 75 data.sets. The
table shows the average value and significance of the
differences in ROC, recall and precision for models
found using the two heuristics. Significance is evalu-
ated at the 0.05 and 0.01 levels using paired t-tests.
Each point in the scatter plot shows the difference (M-
S) in recall on the x-axis and precision on the y-axis
for models found using the two different priors.

dicator of a reduction in the CC problem.
We conducted tests using the 75 datasets (subse-

quently referred to as the "Prosite datasets") described
in Table 1. Each dataset consists of all the sequences
annotated as true positives or false negatives in a sin-
gle Prosite family. Many Prosite families overlap one
another, and the 75 datasets comprise a total of 135
different known motifs (where "comprise" is defined
as at least five occurrences of the motif present in the
dataset). MEME was run for five passes in order to find
five models and the results reported are for the model
with the highest ROC relative to a known motif in the
dataset. Predicted motif occurrences are allowed to be
shifted relative to the known occurrences as long as all
are shifted by the same amount.

Using the megaprior heuristic greatly improves the
quality of TCM models found by MEME. When the
megaprior heuristic is not used, the average precision
of learned TCM models is extremely low (0.23, Fig. 5).
Using the megaprior heuristic, the average precision
increases to 0.73. This improvement is significant at
the P = 0.01 level in a paired t-test. The average
recall decreases slightly from 0.81 to 0.79, but this
change is not significant at even the P = 0.05 level.

The overall performance of the model as measured
by the ROC statistic also improves significantly (P 
0.01). The scatter plot in Fig. 5 shows that most mod-

els found using the megaprior heuristic are uniformly
superior (better recall and better precision) to those
found with the standard prior, and virtually all have
better precision. Each point in the plot represents one
of the 135 known motifs. The highly populated up-
per right quadrant corresponds to the cases where the
megaprior model is uniformly superior. Uniformly su-
perior models were found using the standard prior for
only 12 of the known motifs. Almost all of the points
in the scatter plot lie in the upper two quadrants. This
shows that the models found using the heuristic are al-
most always more specific (have fewer false positives)
models of the known motif than when the heuristic is
not used.

The improvement in the TCM models found by
MEME using the megaprior heuristic is due to the elim-
ination of convex combination models. Of the 75 train-
ing sets we tested, 45 contain five or more sequences
from a second known family. More often than not,
when the megaprior heuristic is not used, the TCM
model found by MEME with these training sets is a con-
vex combination of the two known motifs. Specifically,
in 25 out of the 45 datasets with more than one known
motif, the best model found for the primary motif had
non-zero recall for the other known motif and therefore
is a convex combination of the two known motifs. In
these 25 cases, the average recall on the both known
motifs of the CC model is 0.88, showing that these
convex combination motif models indeed combine vir-
tually all of the occurrences of both motifs. In contrast,
when the megaprior heuristic is used, only one convex
combination TCM model of two known motifs is found
by MEME in the Prosite data,sets. This shows that the
megaprior heuristic essentially eliminates the convex
combination problem with TCM models.

The one training set in which MEME finds a convex
combination model of two known motifs even using the
megaprior heuristic is instructive. The two known mo-
tifs have Prosite signatures which can be overlaid in
such a way that the shorter motif essentially fits in-
side the longer. (Refer to the first two lines of Fig. 6.)
The consensus sequence (most frequent letter in each
column) for the model found by MEME in the dataset
containing these two motifs is shown in the third line
of Fig. 6. Where one motif is specific about a choice
of amino acids, the other permits it. MEME is fooled
into creating a convex combination model which de-
scribes both known motifs well because the CC model
has no biologically unreasonable columns. Such situ-
ations where the megaprior heuristic is inadequate to
prevent MEME from finding convex combination mod-
els appear to be rare as shown by the fact that 24 of 25
convex combinations are avoided and by the dramatic
improvement in the precision of the TCM models using
the heuristic (Fig. 5).

We have also studied a modification to the megaprior
heuristic intended to make the final motif model more
closely resemble the observed residue frequencies. This
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Prosite signature or bfEME consensus sequence
PS00079 G-x- [FYW] -x- [LIVHFYW] -x- [CST] -x-x-x-x-x-x-x-x- G - [LM]-x-x-x- [LIVMFYW]
PS00080 H- C -H-x-x-x-H-x-x-x- FAG]- [LM]
MEME model P-G-x- W -L- L -H- C -H-I-A-x-H-L-x-A- G - N

Figure 6: A convex combination model not eliminated by the megaprior heuristic.

model ROC recall precision relative width.
ZOOPS_DMIX 0.994 (10.025) 0.838 (0.325) 0.780 (10.301) 1.221 (0.673)’
ZOOPS_MEGA 0.992 (0.032) 0.778 (10.354) 0.785 (10.338) 1.061 (0.602)
ZOOPS_MEGA’ 0.992 (0.030) 0.781 (,0.356) 0.785 (0.338) 1,061 (0.605)
TCM_DMIX 0.986 (0.027.) 0.811 (0.301) 0.228 (0.233) 0.826 (0.418)
TCM~IEGA 0.992 (0.028) 0.789 (.0.353) 0.733 (0.358) 0.912 (0.505)
TCM_MEGA’ 0.992 (0.0271) 0.801 (0.344) 0.714 (0.351) 0.912 (0.505)

Table 2: Average (standard deviation) performance of best motif models found by MEME in the 
Prosite datasets. All 135 known motifs found in the datasets are considered. Data is for TCM (two-component
mixture) and ZOOPS (zero-or-one-occurrence-pcr-sequence) models using the standard prior (DMIX), the megaprior
heuristic (MEGA). or the modified megaprior heuristic (MEGA’).

is done by replacing the megaprior with the standard
prior for the last iteration of EM. Because the standard
prior is quite weak, this causes the colunms of the fi-
nal residue-frequency matrix to approach the observed
residue frequencies of the motif in the training set.

Table 2 summarizes the results of using the stan-
dard prior (DMIX), megaprior heuristic (MEGA) 
modified megaprior heuristic (MEGA’) with TCM and
ZOOPS models on the 75 Prosite datasets. The mod-
ified megaprior heuristic improves the recall of TCM
models found at the cost of degrading their precision.
The recall improvement is significant at the P = 0.05
level and the degradation in precision at the P = 0.01
level. There is no significant change in the ROC.
Whether to use the modified megaprior heuristic or
the unmodified heuristic with TCM models thus de-
pends on the relative importance placed on recall ver-
sus precision. Since precision is generally more im-
portant, MEME now uses the unmodified heuristic as
the default wi’oh TCM models.

Both the modified and unmodified megaprior heuris-
tics lower the ROC and recall of ZOOPS models on the
75 Prosite training sets while raising their precision
slightly (Table 2). This should not be interpreted 
proof that heuristics are of no use with ZOOPS models.
The dataset.s heavily favor the standard prior because
most of the known lnotifs present in each dataset are
present in every sequence. In such situations. MEME is
not likely to lind a ZOOPS model that is a convex com-
bination. A ZOOPS model constrains the algorithm to
pick at most one occurrence of the motif per sequence.
When every sequence contains a valid occurrence of the
known motif: choosing the valid occurrence will tend
to maximize the likelihood of the model. Only when a
sizable fraction of the sequences do not contain a motif
occurrence would we expect a ZOOPS convex combina-
tion model to have higher likelihood than the correct

datasets
ZOOPS I ZOOPS II ZOOPS II

PS00188 15 PS00606 17 PS00659 40
PS00867 20 PS00012 40 PS00448 11
PS00866 20

totals 27 48 45

Table 3: Datasets for testing the useflflness of
the ulegaprior heuristics with ZOOPS models.
Each dataset consists of all the sequences of two or
three Prosite families where many of the sequences con-
tain both (or all three) motifs. Each column shows the
names and numbers of sequences in the Prositc families
in a data.set. The total number of (unique) sequences
in each data.set is shown at the bottom of its column.

ZOOPS inodel.
We expect situations where many of the sequences

in the training set do not contain occurrences of all
motifs to be common. This will happen, for example,
when some of the sequences are descended from a com-
mon ancestor that experienced a deletion event that
removed the occurrences of some motifs. Sequences
unrelated to the majority of the t.raiuing set sequences
nfight also be unintentionally included in the training
set and should be ignored by the motif discovery algo-
rithm.

’To determine if either the megaprior or modified
megaprior heuristic improves ZOOPS models found
by MEME in such situations, we created three new
datasets (subsequently referred to as the "ZOOPS
data.sets") of naturally overlapping Prosite families.
Each data.set (see Table 3) consists of all the sequences
in two or three Prosite families where several of" the se-
quences contain the known motif for both (or all three)
families. A ZOOPS model is appropriate for finding
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model ROC recall precision
ZOOPS_DMIX 1.000(0.00) 0.93 (0.08) 0.77

0.95
(0.06)

ZOOPS_MEGA 1.000 0.90 (0.06) (0.03)
1.000

(0.00)
ZOOPS_MEGA’ (0.00) 0.93 (0.07) 0.97 (o.o2)

Table 4: Average (standard deviation) performance of best motif models found by MEME in the three
ZOOPS datasets. Results are for the two or three known motifs in each dataset. Data is for ZOOPS (zero-or-one-
occurrence-per-sequence) model using the standard prior (DMIX), the megaprior heuristic (MEGA), or the modified
megaprior heuristic (MEGA’).

motifs in such datasets because each sequence contains
zero or one occurrence of each motif. Since no motif
is present in all of the sequences, convex combinations
should be possible.

The performance of the ZOOPS motif models found
by MEME in the three ZOOPS data,sets is shown in
Table 4. The low precision (0.77) using the standard
prior indicates that convex combination models are be-
ing found. Using the megaprior heuristic dramatically
increases the precision (to 0.95) at the cost of a slight
decrease in recall. As hoped, the modified megaprior
heuristic improves the motifs further, increasing the
precision to 0.97. The precision of ZOOPS models
using the modified megaprior heuristic is thus higher
than with the standard prior or unmodified heuristic.
The recall is the same as with the standard prior and
higher than using the unmodified heuristic. The large
improvement in ZOOPS models seen here (Table 4) us-
ing the modified megaprior heuristic coupled with the
very moderate reduction in recall relative to the stan-
dard prior seen in the previous test (Table 2) leads
us to conclude that the modified megaprior heuristic is
clearly advantageous with ZOOPS models. MEME now
uses the modified megaprior heuristic by default with
ZOOPS models.

Discussion
The megaprior heuristic-using a Dirichlet mixture
prior with variance inversely proportional to the size of
the training set-greatly improves the quality of protein
motifs found by the MEME algorithm in its most pow-
erful mode in which no assumptions are made about
the number or arrangement of motif occurrences in
the training set. The modified heuristic-relaxing the
heuristic for the last iteration of EM-improves the
quality of MEME motifs when each sequence in the
training set is assumed to have exactly zero or one oc-
currence of each motif and some of the sequences do
lack motif occurrences. This later case is probably the
most commonly occurring situation in practice since
most protein families contain a number of motifs but
not all members contain all motifs. Furthermore, train-
ing sets are bound to occasionally contain erroneous
(non-family member) sequences that do not contain
any motif occurrences in common with the other se-
quences in the training set.

The megaprior heuristic works by rcmoving most

models that are convex combinations of motifs from
the search space of the learning algorithm. It effec-
tively reduces the search space to models where each
colunm of a model is the mean of one of the com-
ponents of the Dirichlet mixture prior. To see this,
consider searching for motif models of width W. Such
models have 20W real-vMued parameters (W length-
20 residue-frequency vectors), so the search space is
uncountable. Using a Dirichlet mixture prior with low
variance reduces the size of the search space by making
model columns that are not close to one of components
of the prior have low likelihood. In the limit, if the vari-
ance of each component of the prior were zero, the only
models with non-zero likelihood would be those where
each column is exactly equal to the mean of one of the
components of the prior. Thus, the search space would
be reduced to a countable number of possible models.
Scaling the strength of the prior with the size of the
dataset insures that this search space reduction occurs
even for large datasets.

The search space of motif models using the
megaprior heuristic, though countable, is still ex-
tremely large-30W in the case of a 30-component prior.
It is therefore still advantageous to use a continuous al-
gorithm such as MEME to search it rather than a dis-
crete algorithm. Incorporating the megaprior heuristic
into MEME was extremely straightforward and allows
a single algorithm to be used for searching for protein
and DNA motifs in a wide variety of situations. In
particular, using the new heuristics, protein motif dis-
covery by MEME is now extremely robust in the three
situations most likely to occur:

¯ each sequence in the training set is known to contain
a motif instance;

¯ most sequences contain a motif instance;

¯ nothing is known about the motif instance arrange-
ments.

The megaprior heuristic is currently only applicable
to protein datasets. It would be possible to develop a
Diriehlet mixture prior for DNA as well, but experience
and the analysis in the section on convex combinations
shows that this is probably not necessary. The severity
of the CC problem is much greater for protein datasets
than for DNA, because the CC problem increases with
the size of the alphabet. For this reason, convex com-
binations are less of a problem with DNA sequence
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models.
The success of the megaprior heuristic in this ap-

plication (sequence model discovery) depends on the
fact that most of the columns of correct, protein se-
quence inodels are close to the mean of some compo-
nent of the thirty-component Dirichlet mixture prior
we use. Were this not the case, it, would be impossi-
ble to discover good models for motifs that contain
many columns of observed frequencies far from any
component of the prior. Using the modified heuristic,
unusual nlotif columns that do not match any of the
components of the prior are recovered when the stan-
dard prior is applied in the last step of EM. We have
studied only one Dirichlet mixture prior. It is possi-
ble that. better priors exist for use with the megaprior
heuristic-this is a topic for further research.

The megaprior heuristic should improve the se-
quence patterns discovered by other algorithms prone
to convex combinations. Applying the megaprior
heuristic to HMM nmltiple sequence alignment algo-
rithms is trivial for algorithms that already use Dirieh-
let mixture priors (e.g., that of Eddy (1995)), since
it is only necessary to multiply each component by
kn/b. Using the heuristic with other types of HMM
algorithms will first involve modifying them to utilize
a Dirichlet mixture prior. There is every reason to
believe that, based on the results with MEME. this
will improve the quality of alignments. Utilizing the
heuristic with the Gibbs sampler may be problematic
since the input to the algorithna includes the number
of motifs and the number of occurrences of each too-
tiff Avoiding the convex combination problem with the
sampler requires initially getting these numbers cor-
rect.

A website for MEME exists at URL

http ://www. sdsc. edu/MEME

through which groups of sequences can be submitted
and results are returned by email. The source code for
MEME is also available through the website.
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