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Abstract

One of the current ]imitations of using sequence align-
ments to identify proteins with similar structures is
that some proteins with similar structures do not have
significa~ut sequence similarity by identity. One way to
address this "hidden-homology" problem is to match
amino acids based on their chemical and physical
properties. However, the amino acid properties over-
lap, creating orthogonal dimensions of similarity, the
relative strengths of which are ambiguous. It has been
observed that the role an amino acid plays (and hence
the property that is important) at a site in a protein
depends on its secondary and tertiary environment.
To approximate and take advantage of this depen-
dence on context for improving the sensitivity of align-
ments of proteins whose structures are unknown, we
propose a surrogate definition of context based on the
pattern of hydropathy in a small window of contiguous
neighbors surrounding each amino a~d. We present
the results of an experiment in which a search-based
program iteratively tests and selects various properties
in independent contexts, and incrementally increases
the ability of sequence alignments to detect relation-
ships among distantly-related proteins. The method
is shown to perform better than using the MDM78
substitution table for partial match scores.

Introduction

The structure of a protein is determined not only by its
amino acid sequence, but also by the nature of those
amino acids. Each of the 20 amino acids has a unique
combination of physical and chemical properties based
on its side-chain. Examples of physical properties in-
clude volume, length, backbone constraint (¢/¢ angles),
side-chain flexibility (X angles), and branching struc-
ture. Examples of chemical properties are hydrophobic-
ity, polarity, charge, reactivity, solubility, aromaticity,
and the ability to participate in hydrogen bonds. Prop-
erties such as these determine what role each amino
acid plays in stabilizing a protein structure, and what
other amino acids can substitute for it.

*Copyright (~)1997, American Association for Artificial
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Some of the earliest evidence for the importance of
amino acid properties came from observations of non-
uniform substitution patterns. Dayhoff et al. (1972)
collected statistics on the rate of replacement between
each pair of amino acids in multiple alignments of var-
ious protein families. They found that some substi-
tutions occurred more frequently than expected, and
others occurred less frequently than expected, rela-
tive to the individual frequencies of occurrence. It
was observed that the amino acids tended to fall into
exchange groups such that, within a group, amino
acids exchange with increased frequency, but between
groups, exchanges were suppressed. Dayhoff inter-
preted these exchange groups by identifying proper-
ties that were common among all the members of each
group: hydrophobic (met ile leu val), positive (his arg
lys), aromatic (phe trp tyr), small (ala asp glu gly ann
pro gln set thr), and reactive (cys). The apparent con-
servation of these properties during evolution suggests
that they play an important role in protein structure.

Many other properties of the amino acids have been
proposed and studied (see the extensive listing in
Nakai, Kidera, & Kanehisa 1988). Reasonable group-
ings of amino acids that are slight variants of Day-
hoff’s exchange groups have been investigated (Sander
& Schulz 1979; Taylor 1986). Many alternative scales
have been explored for properties such as volume
(Zimmerman, Eliezer, & Simha 1968; Chothia 1975;
Levitt 1976) and hydrophobicity (Nozaki & Tanford
1971; Charton & Charton 1982; Rose et al. 1985;
Cornette et al. 1987). Empirical measures of prop-
erties such as refractivity, isoelectric point, heat ca-
pacity, and partial specific volume have been consid-
ered. And statistical properties have been derived from
protein-structure data, such as solvent accessibility
(Chothia 1976), secondary-structure preference (Chou
& Fasman 1978), and tertiary contact patterns (Pon-
nnswamy, Prabhakaran, & Manavalan 1980). Richard-
son and Richardson (1989) provide a good survey 
the major properties of each amino acid and the roles
they have been observed to play in protein structures.

Knowledge about the chemical and physical proper-
ties of amino acids has become crucial to many tasks
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in biology. Such knowledge is needed to facilitate the
identification and modeling of new proteins by en-
hancing alignments to known proteins. Typically, re-
lated proteins are identified by aligning a new protein
with the amino acid sequences of proteins in a protein
database. A match is indicated when the alignment
produces a score significantly higher than for random
alignments (Doolittle 1981), and the alignment can
then be used as a basis for constructing a model of the
new protein (Blundell et al. 1987). However, some-
times proteins with similar structures do not have sig-
nificantly high sequence identity (e.g. the wide variety
of distinct beta-barrels; Chothia 1988). Still, because
the structures are similar, we expect that there is some
pattern to the amino acid sequences, at least reflect-
ing structural constraints, independent of evolution-
ary relationships. Amino acid properties can be used
to help alleviate this "hidden-homology problem" by
enabling a more intelligent local matching function in
alignments. The decision about whether to match two
amino acids should be made to depend on their chemi-
cal and physical similarities, which determine whether
they can play the same role in the protein structure
(see the PIMA algorithm; Smith & Smith 1990).

Despite the plethora of information about the prop-
erties of the amino acids, our knowledge about the
roles amino acids play in proteins remains fundamen-
tally weak. Specifically, there is a great deal of un-
certainty about which properties are most important
for determining protein structure. Each of the amino
acid side-chains consists of multiple properties, pro-
ducing orthogonal dimensions of similarity, and there
are many cases where different properties disagree on
the similarity between two amino acids. For example,
threonine is like valine in shape, and it is like serine in
that it contains a hydroxyl; however, valine and serine
are not similar to each other in either of the respects.
Other questionable relationships include the potential
hydrophobicity of phenylalanine (overshadowed by its
aromaticity), the aromaticity of histidine (overshad-
owed by its positive charge), and the occasional cir-
cumstances in which cysteine plays a generic role as a
small residue, rather than a specific role in an active
site or disulfide-bridge. We cannot easily resolve these
conflicts because we do not know how to weight the rel-
evance of these overlapping properties (Sneath 1966).
Studies have used correlational techniques (Grantham
1974) and factor analyses (Kidera et al. 1985) to try to
extract an underlying basis set of similarities, typically
concluding that some variations of bulk and hydropho-
bicity are the predominant properties in general. How-
ever, these generalizations do not adequately explain
the wide diversity of amino acid substitution patterns
observed in multiple alignments of proteins, and do
not provide sufficient guidance in understanding what
substitutions are acceptable at individual sites.
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Context-Dependence

Our approach to dealing with the hidden-homology
problem is based on the observation that the rele-
vance of the amino acid properties depends on their
context. Each amino acid side-chain occurs in some
environment consisting of the local secondary and ter-
tiary structure. These contextual factors have a sig-
nificant influence on the rates of substitution between
the amino acids. The acceptability of various amino
acids at a site has been observed to correlate with the
polarity of contacting chemical groups, as well as con-
serving hydrogen-bonding patterns (Warme & Mor-
gan 1978). Ponnuswamy et al. (1980) found that
the average level of hydrophobicity among surrounding
residues (in 3D space) has a strong effect on the dis-
tribution of amino acids at a given site. Overington et
al. (1992) collected independent substitution tables for
observed amino acid replacements in a-helices versus
/~-sheets, and also for exposed versus buried sites, find-
ing significant deviations from the generalized patterns
of similarity. And Ouzounis et al. (1993) found spe-
cialized distributions of amino acid preferences based
on the types of secondary structures against which a
side-chain packs.

Of course, this secondary and tertiary context infor-
mation may not be available if the structures of nei-
ther protein in the alignment are known. Although
approaches such as 3D-1D profiling (Bowie, Luthy, 
Eisenberg 1991) can use known protein structures to
greatly enhance alignments, there are still many cases
in which alignments must be done without the aid of
structure information. Thus we need to refine our un-
derstanding of the amino acid properties to improve
the quality and sensitivity of alignments based on se-
quence information alone.

Sequential Context

There are several ways in which the local sequence
around each amino acid can be used to approximate
the context of the site in the environment of the pro-
tein. Goldman et al. (1996) use the internal states
of a hidden Markov model for recognizing secondary
structure classes as conditions for estimating indepen-
dent substitution rates. Our proposal is to use the
pattern of hydropalhy among neighboring amino acids
in a contiguous window surrounding a site as a sur-
rogate for context. Typically, some of these residues
will make contact with the side-chain of the residue at
the center of the site. For example, in/3-sheets, neigh-
bors i 4-2 contact the central residue, and in a-helices,
neighbors i-3 and i-4 in the previous loop and i+3,
and i + 4 in the subsequent loop often make contact
with the central amino acid at position i (Schulz 
Schirmer 1979). Residues that contact the side-chain
of the central residue at a site participate in its tertiary
environment, and because of their sequential locality,
they usually participate in the same secondary struc-
ture as well. Therefore, on average, these neighboring



residues should reflect the nature of the surrounding
environment, and we should look for patterns within
such a window to estimate the context for the central
amino acid. Ultimately, we want to use this sequen-
tial definition of context to distinguish the relevance of
amino acid properties in different situations.

Method
Overview of Experiment In this section, we de-
scribe an experiment that explores the utility of se-
quential context in restricting the use of amino acid
properties in alignments. We will present a specific
definition of context, and we will allow amino acids
to be matched together independently in each con-
text according to one or a combination of a pre-defined
(manually chosen) set of properties. The selection 
different properties in each context can be treated as
hypotheses. To evaluate these hypotheses we will ap-
ply them to re-represent example amino acid sequences
with symbols based on their hypothesized properties,
which will affect their alignments, and then measure
the increase or decrease in the sensitivity of recognizing
when two proteins are in the same fold-class based on
significance of alignment score. We will use a stochastic
hill-climbing algorithm to search for the best combina-
tion of properties in each context, as evaluated over a
training set of proteins, and we will show that after
i000 iterations, the sensitivity of alignments increases
on a separate testing set. For comparison, we will also
show that this approach even does better than using
Dayhoff’s (1978) MDM78 substitution table. Our goal
is to show that sequential context can allow the ex-
pression of finer relationships among the amino acids
by capturing independent dimensions of similarity in
different situations.

Data In these experiments, we used a set of 199 pro-
teins, representing a range of a, r, a + r, and a/~
structures (see (Ioerger 1996) for a list of the pro-
teins, including their chain identifiers and sequence
limits). The amino acid sequences were obtained from
the Brookhaven Protein Databank (PDB; Bernstein el
al. 1977). They ranged in length from 39 residues
(4gcr) to 478 residues (2tan). These proteins have 
assigned to 37 distinct fold classes by visual inspection
(Pascarella & Argos 1992), with at least two proteins
per fold. Many proteins in the same fold class had low
homology: over 50% of such pairs had less than 25%
sequence identity.

Alignment Algorithm The alignment algorithm
we used is a variant of the linear-space global-
alignment algorithm by Myers and Miller (1988). Gap
weights were chosen by a one-time optimization in
which a grid-based search was performed to identify
parameters that produced the maximal average Z-score
(see below) on our dataset. The selected weights were:

- Ala - Gly - Asp - LEO - Arg - Ils - Phe -

phob phil phil phil phob phob

0 1 1 1 0 0

Figure 1: Example computation of sequential context.
In this example, we will compute the context for the
central residue (leucine) in the peptide fragment above
(line 1). First, all six neighbors (three on either side)
are mapped to their hydrophobicity values (’phil’ for
hydrophilic, ’phob’ for hydrophobic; line 2). Then the
pattern is written as a bit-vector (1 for hydrophilic, 
for hydrophobic; line 3). The context number is gener-
ated by interpreting the bit-vector as a binary number
(LSB-first): 011100~ = 14.

gap-open-penalty= -1.5 and gap-extension-penalty=
-0.2, relative to a match value of 1.0 for identical
residues. The final alignment scores (sum of matches
minus gap penalties) were normalized by dividing by
the length of the shorter sequence to make the degree
of matching independent of length (like a percentage).
The algorithm was implemented in C using threads
on a shared-memory multi-processor SGI Power Chal-
lenge. The parallelism was at the level of individual
alignments, distributing each pair of proteins to be
aligned to an independent processor.

Definition of Context As discussed above, our goal
is to explore the utility of context defined in terms of
sequence information alone. In this experiment, we
chose a window size of seven to capture potential side-
chain contacts in c~-helices and r-sheets. Such a win-
dow contains six neighbors for each site: i - 3, i - 2,
i- 1, i+l, i+2, and i+3. Within this window,
we looked at the pattern of hydrophobicity, since the
local hydrophobicity of an environment is known to
have a significant effect on substitution patterns (Pon-
nuswamy, Prabhakaran, & Manavalan 1980). We di-
vided the 20 amino acids into two subsets:

hydrophobic= {A,F,I,L,M,P,V,W} and
hydrophilic={C,D,E,G,H,K,N,Q,R,S,T,Y}.

Each of the six neighbors in the window was assigned
a 0 if it was hydrophobic or a 1 if it was hydrophilic.1

This produced a six-bit pattern which, when inter-
preted as an integer, resulted in a number between 0
and 63. So this definition distinguishes 64 unique con-
texts (two states for each of six neighbors: 26 = 64).
An illustration of computing the context at a hypo-
thetical site is shown in Figure 1.

1The few amino acids with undefined neighbors near
the termini of sequences can be assigned special context
ident;_fiers to force them to match strictly by identity during
sequence alignments.
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Table 1: The 18 properties used in these experiments,
expressed as subsets of amino acids (in 3-1etter codes)
that have each property.

property amino acids
core-hydrophobic met ile leu val
smaU-hydrophobic met ile leu val ala pro
large-hydrophobic met ile leu val phy trp
all-hydrophobic met lie leu val ala pro phe trp
charged asp glu his arg lys
small-polar ser thr gin asn
small-strong-polar ser thr gin asn asp glu
strongly-polar gln asn asp glu his arg lys
all-polar ser thr gin asn asp glu his arg lys
amide gin asn
carbonyl asp glu gin asn
positive his arg lys
positive-no-his arg lys
aromatic phe trp tyr
left-handed gly asn
tiny ala cys gly ser
hydroxyl ser thr
carboxyl asp glu

Amino Acid Properties In each context, we want
to allow amino acids to match according to a unique
set of properties. We express properties in terms of dis-
crete subsets of amino acids that contain each property
(Taylor 1986), as opposed to using continuous scales.
We have selected a set of 18 properties that are ex-
pected to be relevant to protein structure (Table 1).
Many of these properties are variants of Dayhoff’s ex-
change groups, typically corresponding to greater or
lesser degrees of some core property (e.g. the series
of groups based on polarity: positive C charged C
strongly-polar C all-polar). Other properties are based
on constituent groups (e.g. hydroxyl, carboxyl), and
’left-handed’ refers to flexibility in backbone torsion
angles.

Hypothesis Representation A hypothesis consists
of a specification of which properties are relevant in
each context, which is effectively a theory about the
context-dependence of the amino acid properties. A
hypothesis is represented as a list of 64 partitions of
the 20 amino acids, one partition for each context.
Initially, all amino acids (in all contexts) are assigned
to singleton classes, treating them all as unique. But
groups of amino acids can be merged into classes in
the partition for any context, based on some property
that they have in common. A wide variety of parti-
tions of amino acids can be generated by a performing
a sequence of merging operations according to multiple
properties in various orders. Figure 2 illustrates this
process of merging amino acids in partitions.

A hypothesis about amino acid properties in this
form may be applied in the following way to influence
local matching during sequence alignment. When con-
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a. ((A)CC)(D)(E)(F)(G)(H)(I)CK)(L)
CM)(N)CP)CQ)(a)(S)CT)CV)CW)(Y))

b. ((ACGS)(D)(E)(F)(a)(I)(K)(L)(M)
(])(P)(q)(R)(T)(V)(W)(Y))

¢. ((APMILV)(CGS)(D)(E)(F)(H)(K)
(])(q)(a)(T)(W)(Y))

Figure 2: Example of merging amino acids by prop-
erties in partitions, a) The initial partition, in which
each amino acid is in a unique class, b) The same
partition as (a) after merging amino acids according
to the property ’tiny’. c) The same partition as (b)
after merging amino acids according to the property
’small-hydrophobic’. Note that alanine (A) has both
properties, but is extracted from the the first group
and placed in the second, due to the order in which
these merges were performed.

sidering whether to match the amino acids at position
i in sequence 1 and position j in sequence 2, first the
context in the window surrounding each amino acid
computed (as in Figure 1). If the contexts are not
equal, then the amino acids are matched solely on the
basis of identity. However, if the amino acids occur in
the same context, then the corresponding partition for
that context is looked up in the hypothesis table. If
the two amino acids both belong to the same class in
the partition, then they are counted as a match (scor-
ing 1). Otherwise, they are counted as a mis-match
(scoring 0). The initial hypothesis, with 64 singleton
partitions, results in generating identity alignments,
since all amino acids are in distinct classes and will
only be matched when they are identical, regardless of
context.

Evaluation: Average Z-scores We can evaluate
and compare various hypotheses by applying them
to alignments within a set of proteins and measuring
the effect on the sensilivity of detecting structurally-
related proteins. Proteins may be recognized as be-
longing to the same fold class when they have a sig-
nificantly high alignment score. Molecular biologists
often measure the significance of an alignment score
by comparing it to a background distribution of align-
ment scores between unrelated proteins (with different
folds) and computing the statistical Z-score (Doolit-
tie 1981). The mean p and the standard deviation tr
of scores in this distribution are determined, and the
Z-score for an alignment score sc is then computed
by: Z - (sc - p)/tr. Z-scores above a cutoff in the
range of 3.0 to 6.0 are generally assumed to indicate
a structurally-related pair of proteins, since the prob-
ability that they came from the background distribu-
tion of unrelated proteins is exceedingly small. The



sensitivity of an alignment procedure (using a particu-
lar hypothesis about amino acid properties) may thus
be quantified over a particular dataset via the aver-
age Z-score for all pairs of proteins in the same fold-
class. This computation requires a complete table of all
pairwise alignment scores within the set of proteins to
be computed, including non-same-fold pairs for back-
ground distributions, which consists of nearly 20,000
comparisons for our set of 199 proteins. Computing
this alignment-score table, which must be re-done for
every hypothesis that is tested, takes about 30 seconds
on an SGI Power Challenge using three processors.2

Search Procedure This experimental setup allows
us to explore how the relevance of amino acid proper-
ties depends on their context. While we have an idea
a priori about what properties might be useful, we do
not know the contexts in which they will be most ap-
propriate. Thus we will use a search procedure to in-
crementally generate and test new hypotheses. We will
start with the initial hypothesis that all amino acids
are unique, which is equivalent to constructing align-
ments by identity. Then a random property among
the 18 listed in Table 1 and a random context among
the 64 possibilities will be chosen. The current hy-
pothesis (list of 64 amino-acid partitions, one for each
context) will be updated by merging amino acids (as
in Figure 2) in the partition for the selected context
according to the selected property. The pairwise ta-
ble of alignment scores will be re-computed, and the
change in Z-score will be calculated. If the Z-score in-
creases, then the updated hypothesis will be kept for
the next iteration; otherwise the previous hypothesis
will be restored. Thus this search procedure is essen-
tially performing a stochastic form of hill-climbing.

Cross-Validation In our dataset of 199 proteins,
there are 950 pairs of proteins that belong to the same
fold class. These were divided into 10 balanced, dis-
joint subsets. For each division, 90% of the pairs were
used for training (to guide the selection properties in
contexts), and the remaining 10% of pairs were used
to evaluate the change in average Z-score. This cross-
validation approach was taken to avoid over-fitting by
ensuring that the pairs of proteins used to monitor the
improvement were different from the pairs of proteins
used to guide the search.

Results

l_mprovemertt by Search We ran the search pro-
cess described above for 1000 iterations. The resulting
average Z-scores for various methods, computed on in-
dependent test sets for each run of cross-validation,
are shown in Table 2. First, notice that the search was

2Computational resources were provided by the Na-
tional Center for Supercomputing Applications, University
of Illinois at Urbana-Champaign.

Table 2: Average Z-scores on independent test sets for
each run of cross-validation. ’identity’ means align-
ments were done by identity. ’search’ means align-
ments were doing using the best re-representation
found (based on the training data) during 1000 itera-
tions of search. ’mdm78’ means alignments were done
using Dayhoff’s substitution table. ’search-mdm78’
gives the relative improvement of the best representa-
tion found during search, compared to using the sub-
stitution table method.
run identity search mdm78 search-realm78
1 5.40963 5.94772 6.16741 -0.21969
2 6.59134 7.10707 6.7676 +0.33947
3 5.24691 5.74617 5.69068 +0.05549
4 4.19741 4.70337 4.50076 +0.20261
5 5.2671 5.77199 5.91217 -0.14018
6 4.87253 5.34408 5.24804 +0.09604
7 4.41745 4.87344 4.59071 +0.28273
8 5.105 5.68543 5.56681 +0.11862
9 5.08586 5.53036 5.25719 +0.27317
10 5.96101 6.62923 6.27041 +0.35882
avg 5.21542 5.73389 5.59718 +0.13671

consistently able to improve the sensitivity of sequence
alignments by tuning partitions of amino acids to each
context. For example, in the first run, the average
Z-score for identity alignments on the test set (10%
of the same-fold pairs of sequences) was 5.41. After
1000 iterations of search, which were guided by eval-
uating average Z-scores on the remaining 90% of the
data, the average Z-score was again evaluated on the
test set, and was found to have increased to 5.95. This
means that, on average, alignments based on context-
dependent properties had higher Z-scores, and thus be-
came easier to distinguish from the background distri-
bution of scores from alignments of unrelated proteins
(i.e. lowered the probability of making the mistake of
predicting that some other protein is more related).

Figure 3 shows the increase in average Z-score, av-
eraged over all 10 runs, as the search progressed. The
data points in the graph are the average Z-scores, aver-
aged over all 10 runs, for the best hypothesis discovered
up to that point in the search, measured every 100 iter-
ations on the independent test sets. Since the starting
hypothesis (at iteration 0) was equivalent to the ’null’
representation that treats amino acids in all contexts
as unique, the baseline for the curve (lower horizontal
line on the graph) corresponds to the average Z-score
for alignments using amino acid identities. This score
was computed to be 5.215, averaged over all 10 runs.
After 1000 iterations of search, the average Z-score,
averaged over all 10 runs of cross-validation, had risen
by +0.519 to 5.734. Again, this increase in average Z-
scores means that proteins with similar structures are
easier to recognize on the basis of sequence alignments.
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Figure 3: Improvement in average Z-score during
search. This curve represents the average Z-score, eval-
uated every I00 iterations on the independent test sets,
averaged over all 10 runs of cross-validation.

Comparison to MDM78 To assess the importance
of this improvement in sensitivity, we also computed
the average Z-score for alignments constructed using
the MDM78 substitution table, which is one of the
most widely used methods for improving sequence
alignment algorithms (Dayhoff, Schwartz, & Orcutt
1978). The average Z-scores on the test sets for each
run of cross-validation are also shown in Table 2.a The
MDM78 method produced an average Z-score of 5.597
over all 10 runs, an increase of +0.382 (shown by the
upper horizontal line in Figure 3). Our search proce-
dure produced a higher average Z-score than MDM78
on most, but not all, runs of cross-validation. Based on
a paired t-test, we can state that the improvement by
our search-based method was generally greater than
the improvement by Dayhoff’s MDM78 substitution
table method, at a confidence level of p < 0.06.

Resulting Hypotheses Table 3 presents the result-
ing partitions for eight out of the 64 contexts af-
ter 1000 iterations of search (for the tenth run of
cross-validation, which demonstrated the maximum
improvement over MDM78: +0.359). In particular,
the table lists partitions for all eight contexts in which
the three C-terminal neighbors of a site are all hy-
drophobic, and the three N-terminal neighbors have ar-
bitrary combinations of hydropathy states. These par-
titions illustrate that a great deal diversity exists in the
substitution constraints in different contexts. By run-
ning the search for many more iterations, and perhaps
introducing new operators for swapping amino acids
among classes, the partitions might converge upon

aTo allow a fair comparison, we re-optimized the gap-
weights for the substitution-table method: gap-open-
penalty=-120, gap-extension- pen alty =-8.
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Table 3: Eight of the 64 partitions after 1000 itera-
tions of search in the tenth run of cross-validation. The
contexts are listed as bit-patterns, which indicate the
hydropathy (0=hydrophobic, l=hydrophilic) of neigh-
bors, reading left to right as i - 3 to i + 3. These par-
titions illustrate the variety of relevant properties se-
lected in different contexts. The full hypothesis dis-
covered by search had partitions for all 64 contexts.

context:
partition
000000:
(AILMPV)(CS)(DEHKQR)(FW)(GN)(T)(Y)
100000:
(AILMPV)(C)(D)(E)(FW)(GN)(H)(K)(Q)(R)(S)(T)(Y)
010000:
(A)(C)(DE)(FWY)(G)(HKR)(I)(L)(M)(NQ)(P)(ST)(V)
110000:
(ACG)(DEHKNQRST)(FILMVW)(P)(Y)
001000:
ACGS)(DENQ)(F)(HKR)(I)(L)(.M)(P)(T)(V)(W)(Y)

101000:
(AILMPV)(C)(DE)(FW)(G)(HKR)(N)(Q)(S)(T)(Y)
011000:
(AILMPV)(C)(DENQ)(F)(G)(HKR)(S)(T)(W)(Y,)
III000:
tAP)(C)(DE)(FILMVW)(G)(H)(K)(N)(Q)(R)(S)(T)(Y)

unique groupings of amino acids that are most use-
ful for aligning distantly-related sequences. It is also
interesting to note some potential correlations among
the groupings of amino acids in different contexts. For
example, the first two partitions are fairly similar, and
they belong to contexts in which only the hydropa-
thy of neighbor i - 3 is different. This suggests that
higher level patterns may exist that could be explored
by representing contexts in a more flexible description
language that can be used to group similar contexts
together so that they can share the same partition.

Dependence on Homology An important ques-
tion is whether the new context-based representation
discovered by the search gives more improvement to
alignments that have high homology or low homology.
Specifically, it is important to improve the significance
of low-homology alignments (Z < 3.0), since these are
the ones that cause the most difficulty in homology
modeling. Figure 4a shows the dependence of the im-
provement in Z-score on the original Z-score based on
alignments by identity. While not all sequences receive
increased Z-scores, it appears that many alignments
improve in significance by a few standard deviations.
This trend appears fairly uniform with respect to the
original Z-score, so the method is able to improve low-
homology alignments as well as high-homology align-
ments. When the Z-score happens to be decreased by
this new representation, the loss of significance is not
very great. For comparison, Figure 4b shows the de-
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Figure 4: Dependence of improved Z-scores on original
Z-scores. a) Context-dependent representation discov-
ered after 1000 iterations of search, b) MDM78 sub-
stitution table.

pendence of the improvement in Z-score when using
the MDM78 substitution table, as a function of the
Z-score when doing alignments by amino acid identi-
ties. The variance is considerably larger; the Z-score
for some alignments is greatly increased, and for other
Mignments it is greatly decreased.

Effect on Alignments To get a feel for how this
new cohtext-dependent representation actually affects
sequence alignments, we can look at both the new
matches introduced into particular alignments, as well
as any shifts in the location of gaps. To illustrate,
we selected an alignment with one of the greatest in-
creases in Z-score: between the N-terminal half of the
heavy chain of the Fab fragment of human IgG (2fb4)
and the N-terminal half of the light chain of the Fab
fragment of mouse IgA (2fbj). These are immunoglob-
ulins with a beta-sandwich structure (two beta-sheets

packed face-to-face). Figure 5 presents the alignment
based on identities, the alignment based on our new
representation, and an alignment constructed manu-
ally based on structural correspondences.

In this case, the new representation adds only three
new matches. However, these new matches are enough
to cause shifts in the location of gaps, resulting in a
different alignment. The alignment score for identi-
ties is 0.153, which has a Z-score of 0.534. Using our
context-dependent representation, the alignment score
increases to 0.225, and the Z-score increases by over 3
standard deviations to 3.84. The alignment using our
context-dependent representation seems slightly better
than the identity alignment (closer to the structural
alignment) in the first third of the protein, slightly
worse in the middle, and just as bad in the last
third. Formal measurement of the effect of such re-
representations on sequence alignments remains for fu-
ture work. However, it is clear that alternative rep-
resentations will have to introduce many more new
matches to improve the quality of alignments in ad-
dition to their significance.

Discussion
The hypotheses generated by each of the searches in
this experiment consist of a listing of what groupings
of amino acids are most relevant for each of the 64 con-
texts we defined, which effectively represents a context-
dependent theory about the relevance of amino acid
properties. In the evaluation of these searches, we
showed how a representation such as this could be used
to improve a sequence alignment algorithm by allowing
new matches between similar but non-identical amino
acids, conditioned on their sequential neighbors.

Our syntactic approach to defining context purely in
terms of sequential neighbors of each site allows us to
refine our knowledge of amino acid substitution pat-
terns without having to know the structures of the
proteins involved. This is important for a variety of
applications, such as increasing the sensitivity of se-
quence database searches (usually accomplished with
substitution tables), constructing multiple alignments
of families of proteins whose structures are currently
unknown (the vast majority of cases), or analyzing the
phylogenetic relationships among such a family of pro-
teins, which relies heavily on an accurate assessment of
the similarities between molecular sequences. Clearly,
knowledge of at least one of the protein structures in-
volved would greatly facilitate making decisions about
the appropriateness of amino acid matches, as in meth-
ods like 3D-1D profiling (Bowie, Luthy, & Eisenberg
1991).

There are many ways to extend the experiment de-
scribed in this paper. First, our definition of context
was both limited and static. The size of the window
of neighbors could be extended, and other properties
besides the hydophobicity of these residues could be
considered. Furthermore, it might be possible to group
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a. identity alignment

EVQLVQSGGGVVQPGRSLRLSCSSSGFIFSSYANYWVP~APGKGL
I I II I il [
EIVLTqSPAITAASLGQKVTITCSASSSVSSLH~QQKSGTSPKP

EWVAI IWDD~SDQHYADSVKGRFTISR//DSKNTLFLQMDSLRPED
I i I II I I i II

WIYEISKL ....... ASGVPARFSG SG- - SGTSYSLTI NTMEAED

TGVYFCARDGGHGFC SSASCFGPDYWGq
I I I

AAIYYCQqWTYPLITFGAGTKLET.K---

b. alignment vith context-dependent partitions

EVQLVQSGGGWQP-GRSLRLSCSSSGFIFSSYANTWVRQAPGKG
I I li I * II I I I I I
EIVLTQSPAITAASLGQKVTITCSASSSVSSLH---k’YQQKSGTS

LE-WVAIIWDDGSDQHYADSVKGRFTISRNDSKNTLFLQMDSLRP

*1 I I I II I I I *
PKPWIYEISKLASG ...... VPARF--SGSGSGTSYSLTINTNEA

EDTGVYFCARDGGHGFCSSASCFGPDYWGQ
II I I I
EDAAIYYCqQ’dTYPLITFGAGTKLELK---

c. structural alignment

EVQLVQSGG-GVVqPGRS-LRLSCSSSGFIFSSYANY’dVP~AP--
J J JJ ~ I~ J
EIVLTQSPAITAASLGQKVTITCSASSSV ..... SS~QQKSG

GKGLEWVAIIWDDGSDQHYADSVKGRFTISRRDSKNTLFLQMDSL
I I I II II I I

TSPKPWIYEI ...... SKLASGVPARFSGSGSG--TSYSLTINTM

RPEDT-GVYFCARDGGHGFCSSASCFGPDYNGQ

II I I
EAEDAAIYYCQQ~r .... YPLITFGAGTKLRT.K

Figure 5: Effect of the context-dependent representa-
tion on the alignment of two immunoglobulins: 2fb4-H
(top sequence) and 2fbj-L (bottom sequence). The 
alignment was done with identities. Vertical bars indi-
cate identity matches. The second alignment was done
with our improved representation. The asterisks indi-
cate matches based the context-dependent partitions,
rather than identity. The third alignment was con-
structed manually from comparison of the structures.
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some of these contexts together, for example by clus-
tering, to merge rules for sites with similar substitution
patterns. In the most general case, context could be
described as arbitrary patterns of properties among an
arbitrary set of neighbors using expressions in a general
concept-description language.

In addition to the definition of context, we could
have manipulated the set of properties used in the
search. New groups of amino acids could be formed
by swapping amino acids from the group in which they
are most likely to reside to other groups to which they
could plausibly belong. This suggests a hypothesis-
testing approach in which secondary properties, such
as the hydrophobicity of tryptophan and phenylala-
nine, are used to intelligently guide the generation and
evaluation of alternative partitions in random contexts.
This approach is not only applicable to qualitative de-
scriptions of amino acid properties in terms of subsets
of amino acids, but could also be used with numeric
scales, such as by identifying the optimal contexts for
the various measures of hydrophobicity and bulk.

The power of our search-based approach comes from
an effective combination of both domain expertise and
computational resources. Understanding the forces in-
volved in determining protein structure is an extremely
difficult task. The growing databases of protein se-
quence and structure provide an excellent source of ex-
amples of this relationship, and we want to use compu-
tational techniques to extract the patterns implicit in
this data. The search method we have presented in this
paper incrementally explores a space of these patterns
looking for those that fit the data well. But the search
must be adequately controlled to be both effective and
efficient. This control is exercised through the use of
background knowledge about the kinds of patterns that
are expected (i.e. definitions of contexts and proper-
ties). This knowledge-based approach contrasts with
other methods, such as using Bayesian techniques to
calculate prior weights for mixtures of similarity scales
that best explain a set of amino acids observed at a
site (Brown et al. 1993).

In our experiments, we used biochemical knowledge
to choose a particular definition of context that we be-
lieved would be useful in separating sites with distinct
substitution patterns, and to choose a particular set of
properties that we expected might be relevant. These
choices resulted in the discovery of representations of
amino acid sequences that make significant improve-
ments in alignment sensitivity within 1000 iterations,
reflecting sufficient constraint of the search. However,
each iteration is very computationally intensive, re-
quiring tens of thousands of sequence alignments, and
the entire experiment accumulated approximately one
day of CPU time on a supercomputer. Therefore, we
are near pragmatic limits on the computational com-
plexity of the search, which emphasizes the importance
of the background knowledge we used. Without these
initial guesses, the search for relevant groups of amino



acids in arbitrary contexts would be too unconstrained.
To make additional gains in sequence alignment sensi-
tivity by this approach will require using more back-
ground knowledge to help make intelligent decisions
about how to explore the space of hypotheses about
the context-dependence of the relevance of anaino acid
properties.
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