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Abstract

Discrete motifs that discriminate functional classes of
proteins are useful for classifying new sequences,
capturing structural constraints, and identifying protein
subclasses. Despite the fact that the space of such motifs
can grow exponentially with sequence length and
number, we show that in practice it usually does not, and
we describe a technique that infers motifs from aligned
protein sequences by exhaustively searching this space.
Our method generates sequence motifs over a wide range
of recall and precision, and chooses a representative motif
based on a score that we derive from both statistical and
information-theoretic frameworks. Finally, we show that
the selected motifs perform well in practice, classifying
unseen sequences with extremely high precision, and
infer protein subclasses that correspond to known
biochemical classes.

1 Introduction

Sequence motifs allow functional inferences to be made on
the basis of homology, and provide clues to important
structural constraints. In the past, motifs have been found
by a hit-or-miss process of heuristically pruning the space
of motifs. We have discovered that, surprisingly, the motifs
can usually be enumerated exhaustively. This paper
describes the development of EMOTIF, a system that is
capable of enumerating the entire space of motifs from a
sequence alignment and choosing the motif that
maximizes a scoring function based on both statistics and
information theory. EMOTIF is an extension of the
SEQCLASS system described by Wu and Brutlag (1995),
and is available at http : //m0ti f. stanford, edu/em0ti f

As input, EMOTIF expects a multiple alignment such as
those from the BLOCKS database (Henikoff and Henikoff,
1991 ), which typically contains sequences from active sites
where sequence homology stems from functional
constraints. As output, EMOTIF generates a graphical
display of possible motifs in the style of PROSITE (Bairoch,
1991). The motifs discussed here take the form of
allowable amino acids for certain positions in a
subsequence. Rather than permitting an arbitrary set of
amino acids in each position, we prescribe a small number
of sets that correspond to some biochemical property, such
as charge or size. This cor~strains the space of motifs, and
ensures that the motifs have biochemical interpretations.

The small number of amino acid sets imposes a simplicity
bias on the motifs, and helps avoid the danger of
overfiLLing an alignment, which we believe is present in
manually compiled motifs such as PROSlTE. The problem
of identifying appropriate sets is examined in Wu and
Brutlag (1996).

As is common in inference of this type, there is a
tradeoff between accounting for positive examples in the
training set and excluding negative examples in a large
test set. A motif that is too specific fails to cover sufficient
sequences from the input, but one that is too general will
produce too many false hits when used to classify new
sequences. When making this tradeoff, EMOTIF can
identify functional subclasses of sequences, and we
describe a case study where the subclasses correspond to
known biological roles.

Our work is related to work by Brazma et al. (1996),
which identifies PROSlTE-style motifs from unaligned
sequences. They use an information-theoretic argument
for choosing motifs, but admit that the search that they
perform is a polynomial heuristic for a problem that is NP-
hard. The MEME system described by Bailey and Elkan
(1995) finds probabilistic motifs in unaligned sequences.
MEME performs alignment and motif identification
simultaneously, where the motifs are expressed as
distributions of symbols in consecutive positions of a
sequence. There are therefore a large number of
parameters to estimate from a dataset that is sometimes
small, and there is some danger of overfitting. The PiMA
system by Smith and Smith (1992) uses amino acid groups
to constrain motifs in a multiple alignment framework.

In our work, we show that the search space can be
constrained and restructured to permit exhaustive
enumeration and scoring of all possible discrete motifs for
a given family. Section 2 explains the process of motif
formation as well as the fundamental tradeoff of coverage
and specificity that finding a motif entails. Section 3
describes a new algorithm that is capable, in many
practical situations, of enumerating a space that can ~ow
exponentially with the number and length of sequences.
Section 4 describes how, given the universe of motifs, one
can be chosen that trades off coverage against specificity
in an optimal way, and provides derivations from a
statistical and an information theoretic perspective.
Section 5 presents and discusses results, including
identification of functional subclasses and prediction of
function of novel sequences.
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2 Example: The Universe of Tubulin Motifs

This section describes the process of exploring the
universe of motifs for a multiple alignment using sets of
related amino acids. The sets that will be used throughout
the paper are shown in Figure I along with their chemical
properties. Figure 2a lists 34 aligned sequences from c( and
[3 subunits of tubulin, and Figure 2b lists the amino acids
that occur in each column. Some columns contain only
one amino acid: for example, the first column contains
only methionines. These columns are highly conserved.
Other columns contain related amino acids; for example,
the second column contains phenylalanine and tyrosine,
which both have aromatic side chains. Still other columns
contain unrelated groups of amino acids; for instance, the
third column contains six amino acids that exhibit little
chemical similarity.

One might use this summary directly to detect new
tubulins. For a new sequence to match, it would have to
have in each position an amino acid that appears in the
corresponding column of Figure 2b. However, the resulting
motif would be overly specific. For example, given the
unrelatedness of the amino acids in column 3, it seems
likely that the amino acid in this position is functionally
unimportant, and that the particular amino acids that
occurred in the sequences are a result of random chance.
To reflect this, the motif should allow any amino acid in
this position. Figure 2c shows a generalized motif, where
the six amino acids in the third position have been
replaced with a period, which stands for any amino acid.
Similarly, when all amino acids in a column share some
property, we can infer that related amino acids with that
property also belong. For instance, the motif in Figure 2c
adds tryptophan in the second position, based on the
inference tb.at the amino acid in this position must have
an aromatic side chain. When all amino acids in a position
can be described equally well by more than one property,
the most specific property is chosen. Otherwise, all
positions might legally be represented by a period,
producing a motif that would match any sequence. Finally,
when a single unique amino acid occurs in a column, one
can infer that that particular amino acid is critical to the
function of the protein, so the motif requires its presence.
In such a position, the generalized motif of Figure 2c is
identical to Figure 2b.

AG
ST
KR
FWY
HKR
ILV
ILMV
EDNQ
AGPST

Figure 1:

small
small hydroxyl
basic
aromatics
basic
small hydrophobic
medium hydrophobic
acidic/amid
small polar
all amino acids

Some examples of sets of amino acids and
theircommon prope=ies

MFRRKAFLHWYTGEGMDEMEFTEAESNMNC~__n’AZVGG7
MFGKRAFVHHYVGEGMEENEFTDARQDLYELEVDYANL
MFKKRAFVHWYVGEGMEEGEFTEARENIAVLERDFE~V
MFKRKAFLHWYTGZGMDEMEFTEAESNMNDLVSEYOQY
MFKRKAFLHWYTGEGMDEMEFTEVRANMNDLVAEYQQv
MFKRKAFLHWYTSEGMDELEFSEAESNMNDLVSEYOQY
MFKRKGFLHWYTGEGMEPVEFSEAOSDLEDLILEY~QY
MFRRKAFLHWFTGEGMDEMEFTEAESNMNDLVSEYQOY
MFRRKAFLHWYTGEGMDEMEFSEAEGNTNDLVSEYQQY
MFRRKAFLHWYTGEGMDEMEFTEAESNMNDLMSEYQOY
MFRRKAFLHWYTGEGMDZMEFTEAESNMNDLVAEYQQY
MFRRKAFLHWYTGEGMDEMEF~EAESNMNDLVHEYQQY
MFRRKAFLHWYTGEGMDEMEFTEAESNMNDLVSEYQOY
MFRRKAFLHWYTGEGMDEMEFTEAESNMNELVSEYQQY
MFRRKAFLHWYTLEGMEELEFTEAESNMNDLVYEYQQY
MFRRKAFLHWYTNEGMDITEFAEAESNMNDLVSEYQQY
MFRRKAFLHWYTSEGMDEMEFTEAESNMNDLVSEYQQY
MFRRKRFLHWYTGEGMDEMEFTEAESNMNDLVSEYQQY
MFRRNAFLHWYTGEGMDEMEFTEAESNMNDLVSEYQQ
MFRRQAFLHWYTSEGMDEMEFTEAESNMNDLVSEYQQ
MFSRKAFLHWYTGEGMEEGDFAEADNNVSDLLSEYQQ
MFVKRAFVHWYVGEGMEEGEFAEARDDLLALEKDYESV
MYAKRAFVHWYVGEGMEEGEFAEAREDLAALEKDYEEV
MYAKRAFVHWYVGEGME
MYAKRAFVHWYVGEGME
MYAKRAFVHWYVGEGME
MYAKRAFVHWYVGEGME
MYAKRAFVHWYVGEGME
MYAKRAFVHWYVGEGME
MYAKRAFVHWYVGEGME
MYAKRAFVHWYVGEGME
MYAKRAFVHWYVSEGME
MYSKRAF~HWY~GEGME
MYSKRAFVHWYVGEGME

EGEFSEAREDIAALEKDYEEV
EGEFSEAREDLAALEKDFEEV
EGEFSEAREDLAALEKDYEEV
EGEFSEAREDMAALEKDYEEV
EGEFSEVREDLAALEKDYEEV
EGEFTEAREDLAALEKDYEEV
EGEFTEAREDLAALB~YIZV
EVEFSEAREDLAALEKDYEEV
EGEFAEAREDLAALEKDYDEV
EGEFSEAREDLAALEKDYEE~
EGEFSEAREDLAALB~)B"Y"E-£-’~

M FG KKAF VHHFVG EGMD EN EFAEARQN VAAL VK EFQQ L
YKRRRL WYTS EPGDSOVEEDLLDPLSD’YAS¥
R NG L IM T D ISE EY EEY
V O N L A MNVIA IN
A V N TE L
S T S Y V

I
MF. K. .FVH.F.. EGMQ..QFPO...0 ...... QF.. . i

I
Y R L Y N N AN N NY
W I w E E GE E EW

D D SD D D
T

lMF.K. .FVH.F.. EGMQ..QFPO...0.. .L..QF.. . I
Y R L Y N N AN N NY

LW I W E E GE E EW
D D SO D D

T

Figure 2: Building a motifi (a) aligned sequences, (b)
amino acids that appear in each column, (c) generalized
motif using chemical properties, (d) motif after
removing first sequence.

One problem with this approach is that it is sensitive
to noise. In Figure 2a, the first sequence has a
phenylalanine in the eighth position from the right, as
shown by annotation ®. Every other sequence has a
leucine in this position. If the first sequence were deleted,
the period in this position of the motif could be replaced
by the specific amino acid leucine, making the overall
motif much more specific. A more specific motif is less
likely to match a random sequence, so the possibility of
incorrectly identifying a sequence as belonging to this
functional group is reduced. A more specific motif reduces
the number of false positives that would be expected if the
motif were to classify new sequences. Therefore, when
motifs are constrained by physicochemical properties,
there is a fundamental tradeoff between the true positives
(the matching sequences in the alignment) and the false
positives that the motif is likely to match in a large
database. Furthermore, the appropriate property
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48 sequences covered 159

Figure 3: Sensitivity and precision of 6,000 motifs,
indicating subclasses covered

description at each position must be chosen; these choices
create a universe of possible motifs.

EMOTIF is able to search and evaluate this universe
exhaustively. Figure 3 shows the space of motifs explored
by EMOTIF for all 159 tubulin subunits. Each point
corresponds to a motif; its coordinates represent the true
positives on the horizontal axis, and the expected false
positives on the vertical axis. 1 The ideal motif would
appear at the bottom right of this graph--a highly specific
motif that matches all the input sequences. Because there
is no motif in this region, the task is to identify the ’best
motif’, by trading off the true positives against the
expected false positives. The dashed line is essentially a
Pareto-optimal curve. No motif on this line can be made
more specific without sacrificing coverage, or can be
increased in coverage without becoming less specific.
EMOTIF can search and rank the universe of motifs
efficiently. The tubulin example required approximately
30 seconds on a Silicon Graphics Indigo 2 workstation
with an R10000 CPU. The next two sections describe
technically how this process works.

3 Methods: Enumeration

3.1 Size of the space of motifs

The space of motifs is very large. For a multiple sequence
alignment with n columns and m sets of amino acids, there
are (m+20)" motifs, because each position can specify a set
or one of 20 specific amino acids. The sequences in Figure
2a are 38 amino acids long, so using 10 sets of amino acids
gives 30~s or 10s6 motifs. This space is clearly too large to
search exhaustively. Wu and Brutlag (1995) addressed this
problem by enumerating subsets of sequences, which for
small numbers of sequences is much smaller than the space

1 We will explain the vertical scale in Section 4.
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of motifs. For ten sequences, there are only 21° or 1024
possible subsets, and for each subset there is a single motif
that corresponds to the most specific amino acid or group
in each position. Thus the space of motifs is independent
of the length of the sequences and the number of amino
acid groups. Of course, the number of subsets grows
exponentially with the number of sequences, so for the 34
sequences in Figure 2a, there are 2.34 or 101° subsets. Wu
and Brutlag dealt with this situation by performing a beam
search, including or excluding new sequences and keeping
a limited number of subsets at each stage that generate the
highest-scoring intermediate motifs. This approach
performed well, but we have found that in practice it can
miss the highest-ranking motifs in the end.

Crucial to our new techniques is the observation that,
in practice, the space of motifs and the space of subsets are
highly redundant. That is, many motifs select the same
subset of sequences, and many subsets specify the same
motif. For example, in the case of tubulin subunits, there
are 1056 motifs, and 1048 subsets, yet only 39,000 motifs
that select distinct subsets. How can this be? First, recall
that for a given subset, EMOTIF calculates the most specific
mot/f that covers the subset. EMOTIF looks for a motif that
will generate few false positives, and therefore favors more
specific motifs. So out of the many motifs that select a
particular subset, EMOTIF records only one. For example,
in the motif of Figure 2d, which covers all but the first
sequence, replacing the methionine in column 1 with a
period does not change the subset that it covers. In fact, a
motif containing all periods except for the column with
the leucine in it will also cover the same subset. So many
motifs can cover the same subset, but only the most
specific one will be considered.

Similarly, many subsets can specify the same most
specific motif. For example, removing the last sequence
from consideration specifies the same motif as before. It
differs from the second-last sequence only in the sixth
position from the right, where it has an arginine instead of
a lysine (annotation ®). However, the fifth to last
sequence also has an arginine in this position (annotation
®), so the amino acids in this column do not change as 
result of removing the last sequence, and the motif
remains the same.

A motif selects a subset of sequences, and a subset of
sequences specifies a most specific motif, using the process
described in Section 2. We are interested only in the most
specific motif that selects a given subset. We will call this
a canonical motif. A canonical motif for a subset of
sequences is the most specific motif for that subset. A
canonical motif can be found from an arbitrary motif by
identifying the subset of sequences that it selects, then
finding the most specific motif for that subset.

The space of canonical motifs is still potentially
exponential: if there are many sets of amino acids, then
each subset could be described more specifically, and there
will be many more canonical motifs. At the extreme, there
could be 220 sets representing every combination of amino



acids, and the motif would be identical to the amino acids
in each column as in Figure 2b. In this case, the motifs
again grow exponentially with the length of the sequences.
Alternatively, if the sequences were unrelated, so that
removing one sequence always changed the most specific
motif, the number of motifs would grow exponentially
with the number of sequences. However, when the
number of amino acid sets (or equivalently, chemical
properties) is limited and the sequences are reasonably
homologous, we have found that the space of canonical
motifs is reduced in size considerably.

In addition to eliminating redundant motifs, we further
constrain the space of motifs by considering only motifs
that select some minimum number of sequences. If we
desire merely to exclude a small number of sequences that
contain errors, then it is reasonable to consider only motifs
that exclude, say, 10% of sequences from consideration.
This dramatically reduces the number of motifs that need
to be searched. We will show in Section 3.2 how motifs
can be enumerated from highest coverage to lowest
coverage, so it possible to implement this restriction
efficiently. A more conservative restriction, and one that
we prefer, is to allow the possibility that the set of
sequences contains functional subclasses, and set the
threshold at, say, 30%. In this scenario, up to three
subclasses could be identified from the set--at least one
class must be represented by at least one third of the
sequences--and setting the threshold at 30% also allows
for errors. These subclasses will be discussed further in
Section 5.

We have argued that the space of canonical motifs may
be much smaller than the exponential space of arbitrary
motifs, but it remains to be shown that the smaller space is
tractable in practice (since its size is determined by the
structure of the data) and that the motifs can be
enumerated efficiently. The next section describes an
efficient enumeration algorithm, and in Section 5 we
discuss real-world performance.

3.2 Enumeration algorithm

EMOTIF proceeds through the space of motifs position by
position: in the first position, it considers all amino acids
and sets of amino acids that match some subset of the
sequences. Each of the possibilities for position 1 produces
a subset of sequences, and these subsets are passed to the
next level, which evaluates the possibilities for position 2,
and so on for all positions in the alignment. Part of this
tree of motifs is shown in Figure 4, assuming the sets in
Figure 1 and a 30% minimum coverage (10 sequences). 
Figure 2a, the possibilities in column one are m, dim, and
period. These appear on the first row of Figure 4. Because
the specific amino acid m covers the same subset as the
other two possibilities, only the most specific possibility,
m, is considered in this position. In the second position,
shown on the second row of Figure 4, the possibilities are f,
y, or fwy. Choosing y produces a subset of 12 sequences, as

position

1

f22

2/̄
° ,

34
vlim m

y ~ fyw3~

¯ pagst ...

I I
° . ° ° . .

Figure 4: part of a search tree of motifs

indicated by the superscript yl2. For simplicity, the subtrees
from f and fttry are omitted. In the subset of sequences that
y selects, the only symbols that occur in the third position
are s and a, so the motif here could specify s, a, ag, st, pagst
or period. The groups s, a, and pagst cover the same subsets
as st, ag and period respectively, so the first three are used
in preference to the less specific groups. The s branch
selects only two sequences, which is below the 30%
threshold, so this motif and the subtree under it are pruned
from the search. Note that the branching factor of the
search tree is determined by the number of possible groups
at a position in some subset, and is often much less than
the theoretical maximum of 30. The depth of a branch is
limited by the minimum number of sequences that must be
covered.

Despite a drastic reduction in the number of motifs visited,
this traversal of the tree of motifs nevertheless visits some
motifs that are not canonical. This is due to the frequent
correlation of positions in homologous sequences. For
example, specifying r in the fifth position selects the same
subset of sequences as selecting v in the seventh position,
and d in the fifth position from the right, as illustrated by
annotation ® in Figure 2a. The canonical motif--the
most specific motif for that subset--contains both e and v
in their respective positions. Both motifs as well as the
canonical motif will be visited in the search tree, but
because they give rise to the same canonical motif, the
subtree starting at that motif need only be visited once.

To ensure that subtrees of previously visited canonical
motifs are not explored, EMOTIF must record motifs for
efficient lookup. As discussed in the previous section,
canonical motifs have a one-to-one correspondence to
subsets of sequences, so it is possible to index motifs by
these subsets. A subset can be represented by a binary
string with one bit per sequence, which is then stored and
queried in a hash table.

The entire algorithm is summarized in Figure 5. Its
heart is the recursive procedure form_motifs, which
considers possible groups in a particular column. If it
encounters a new canonical motif, it calls itself recursively
with the next column and the subset as arguments, in
order to explore the subtree of the motif.
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4 Methods: Ranking

So far we have described a way to enumerate all canonical
motifs, each of which selects a certain subset of sequences.
The task is now to choose one motif that is most likely to
make a good probe for a protein with this structure. As
mentioned in Section 2, EMOTIF attempts to identify a
motif that maximizes the number of positive examples
coveted and minimizes the number of sequences likely to
be matched by chance. Because it is unlikely that one
motif can accomplish these simultaneously, it is necessary
to trade one quantity off against the other.

This section describes two approaches to this tradeoff:
a maximization of statistical significance, and a
minimization of entropy. Derivations using both these
approaches yield very similar results, and the measure that
we use approximates both. Before we proceed to describe
the tradeoff, we must explain the vertical axis of Figure 3.
To compute the probability that a motif will match a
random sequence, we first assume that sampling short
amino acid sequences from a large database is equivalent
to drawing sequences of independently drawn symbols
from the distribution of amino acids in the database. That
is, if glutamine accounts for 7% of the amino acids in the
database, then it has a 7% chance of appearing in a
particular position in our random sequences. Given this
distribution, it is simple to calculate the chance that a
random sequence matches a given motif: it is the product
of probabilities that a random amino acid matches each
position in the motif. If a position has a period, the
probability is 100% for that position. If a position has a
specific amino acid, the probability is the probability of
that amino acid in the database distribution. If a position
specifies a group of amino acids, the probability for that
location is the sum of the probabilities of the amino acids
in the distribution. The probability for a motif is therefore

I-1

p(M)= 1-I~,,p(a) (1)
i=0 a~gi

where M is a motif with I positions, g is a set of amino
acids at position i in M, and a is an amino acid in the
group. It is this calculation that yields the vertical axis for
Figures 3, 6, and 7. Multiplying by the size of a database

procedure form_motifs(column, set)
record most specific motif implied by set

for all groups that match > 30% of column

subset := elements of set that match group in column

if subset hasn’t been visitec before,

record visit to subset

form_motifs(column + I, subset)

form_motifs(O, all)

Figure 5: The algorithm for enumerating motifs

gives the expected number of false positives when
classifying sequences from that database. The next two
sections describe alternative approaches to choosing the
best motif.

4.1 Statistical approach

The statistical approach identifies the motif that is least
likely to have matched ko sequences by chance. Given that
a motif M matches a random sequence with probability
p(M), it would be expected to match p(M).N sequences
out of a set of N sequences. Matching a sequence is a
binomial event, so the probability of matching at least k0
sequences is:

k~=~o(~)p(M)k (1-- p(M)) ~-* (2)

Because a motif is typically chosen to match the k0
sequences, which are far from random, p(M).N is usually
very close to zero, and the probability of matching k0
sequences or more is vanishingly small. This probability is
somewhat artificial, but since the purpose of this measure
is to provide a ranking of motifs, the absolute value is less
important than the value relative to other motifs.

For most motifs, p(M) << 1, so the koth term of the
sum is much greater than the (ko + l)th term. Also, 1 
p(M) is extremely close to 1, so the entire sum can 
approximated closely by p(M)t. Rejecting any motif where
p(M) > 0.001 is reasonable when searching sequence
databases containing millions of symbols, as these motifs
are likely to return thousands of false hits. This level
ensures that the second term in the sum is smaller than
the first term by a factor of 1000, so the approximation is
very close.

4.2 Description length approach

Alternatively, the problem of motif ranking can be
approached as a minimum description length problem, which
considers the most efficient way of storing or transmitting
N amino acid sequences. This section describes how
sequences can be transmitted efficiently without a motif,
then shows how much saving can be achieved by using a
motif.

Because there are only 20 unique amino acids, each
amino acid can be transmitted as a five-bit code. This is
wasteful, however, because there are 32 five-bit codes, of
which only 20 are used. When several symbols are being
transmitted, it is possible to transmit a symbol in a non-
integral number of bits using arithmetic coding (Witten et
al., 1987), so this could be reduced to 1og220, or 4.3 bits.
This transmission uses the same number of bits for each
amino acid, regardless of whether it is a common amino
acid such as leucine, or a very uncommon one such as
cysteine. An even more efficient way of sending a
sequence is to use short codes for common symbols and
long codes for uncommon symbols.
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48 sequences covered 159

Shannon (1949) showed that the optimal code length
for a symbol is -logzp, where p is the probability that the
symbol occurs. If we assume that the amino acids are
drawn from the same distribution as an entire database,
then the optimal code length for leucine should be -
Iogzp(leucine) = -log#(0.09) = 3.5 bits, and the 
length for cysteine = -logEp(0.017) = 5.9 bits. Overall,
because there are more leucines than cysteines, the
average code length will be less than logz20 bits. The
expected code length is

-Zp(a)log2p(a)
a~A

where A is the set of amino acids and p(a) is the actual
probability of a occurring in the sequence. For the
distribution in the SWISS-PROT database, the expected
code-length is 4.2 bits.

A motif can improve transmission efficiency by
allowing the following scheme. First, the motif is
transmitted, and the sequences that the motif matches are
identified. These sequences will be encoded using the
probability distribution implied by the motif, rather than
the marginal distribution of the database. That is, if the
motif specifies m in the first position, the distribution is
100% probability for m, and 0 probability of anything else.
Because all of the covered sequences must have m in this
position, only logz(100%) = 0 bits are required to transmit
the first amino acid in each sequence. In the second
position, the motif in Figure 2d narrows the possibilities to
only fwy. All other probabilities are to zero for this
column, and the probabilities for f, y and w are scaled to
add to one. The sequences that are not matched by the
motif are transmitted using the marginal distribution as
before.

The motif that provides the greatest saving is chosen as
the best motif. So how much does a motif save? There is
no saving on the sequences not matched by the motif--
they are encoded as before. To calculate the saving on a
matching sequence, consider a sequence that has f in the
second position. Without the motif, transmitting f would

cost -logzp(f). Now, p(f) has been scaled up by dividing 
P(D + p(w) + p(y) (which we will call p(fwy)). 
transmitting f now costs

-logz[pbO/p(fury )]

= -(logzp(f) - logzp(fwy)).

The saving in transmission cost by using the motif is
therefore

-logzp(D + (logzp(f) - logzpffwy))

= -logzp(fwy).

Over the whole sequence, the saving is

- ~ log2~p(a)
positions a~A

which is the same as logz(p(M)), where p(M) is defined 
( 1 ) above. Since this does not depend on the composition
of the sequence, the total saving over the k covered
sequences just klogz(p(M)). Maximizing this saving is 
same as minimizing p(M)k, which is the same measure that
we derived from the statistical point of view.

Figure 6 shows the same collection of motifs as in
Figure 3, along with shading that represents the klogp
score. The gradient has been discretized into bands for
illustrative purposes. Note that because the vertical axis
has a logarithmic scale representing logp, lines of equal
score, such as the boundaries between bands, are
hyperbolas. Darker points represent higher scores, so the
knee in the graph at (1)scores slightly higher than the
knee at (2), and is thus chosen as the motif for this
collection of sequences.

5 Evaluation

In the introduction, we claimed that motifs are useful for
classifying new sequences, and for identifying subclasses.
We will first examine the predictive accuracy of EMOTIF
versus the manually-compiled PROSITE motifs, and then
discuss subclasses that follow naturally from clustering of
sequences.

5.1 Predictive accuracy

A motif’s usefulness when classifying new sequences
depends on the context in which it will be used. Since
EMOTIF enumerates the entire universe of motifs, it can
rank them differently depending on the particular task.
Some tasks may require motifs that are highly specific,
whereas other tasks may require motifs that are sensitive.
Given a desired level of specificity or sensitivity, however,
the best motif should lie along the Pareto-optimal curve
found by EMOTIF.

In this experiment, we suppose EMOTIF is used to
classify new protein sequences that are generated by large-
scale sequencing projects. In this environment, thousands
of sequences, hundreds of amino acids long appear daily,
and there are thousands of motifs that a sequence may
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Figure 7: repetitive application of EMOTIF

match, so it is important to keep the rate of false positives
low. Even a 0.1% probability of a motif generating a false
positive will give rise to thousands of spurious hits. We
therefore aim for conservative motifs that make false
positives unlikely. Higher precision comes at a price,
however--more specific motifs are usually less sensitive,
and incorrectly classify some new sequences as negative
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examples. We are content to accept a lower sensitivity on
the assumption that less precise motifs can be employed in
a second pass if the work involved in weeding out false
positives is acceptable.

To test predictive accuracy against motifs in the
PROSITE database, we took all 410 motifs from PROS1TE
release 6.10 (February 1991), retrieved the sequences
specified in that gold standard, and aligned them
according to the PROSITE motif. For each multiple
alignment, EMOTIF generated one motif, using the ranking
described in Section 4 to choose among the motifs
generated as in Section 3. We then extracted sequences
that had appeared since 1991, and used both motifs to
classify them. Because this data was not used in the
formation of either the PROSITE or EMOTIF motifs, testing
on this data gives an accurate indication of the predictive
power of motifs on new sequences.

As hoped, EMOTIF motifs had much higher precision
than PROSITE, but with an accompanying drop in
sensitivity. Over all 410 sets, the PROSITE motifs matched
6598 true positives, and generated 880 false positives,
while EMOTIF matched 4619 true positives and 12 false
positives. That is, the false positive rate dropped by a
factor of 70, while the true positives dropped by a factor of
only 1.4. Clearly, a scientist would be well advised to look
at EMOTIF matches first, and progress to the other 40% of
PROSITE later, bearing in mind the likely extra work in
sorting out the false positives, which account for 43% of
the remaining data.

On a motif by motif basis, EMo’FIF has a lower
precision than PROSITE in only 4 cases, each time with
only one more false positive. Coverage drops in all but I00
motifs. Out of all the positive examples in the new
sequences, PROSITE identifies 44% of them, while EMOTIF
identifies 30%.

true

positives

PROSITE 6598

EMOTIF 4619

~lse ~lse
positives negatives

880 9068

12 11047

5.2 Subclass identification

Apart from prediction, EMOTIF’s motifs can identify
subclasses of motifs. Figure 3 shows the clouds of motifs
labeled according to the classes of sequences that they
select. To explain the clouds, it is necessary to briefly
describe the set of tubulin subunit sequences.
Microtubules, a class of cytoskeletal elements, are
constructed from a helical arrangement of alternating ix
and 18 subunits. A third kind of tubulin subunit is the
subunit, which is found at the microtubule organizing
center. The specific cloud at the lower left matches
exclusively 18 tubulin while the less specific motifs in the
next cloud to the upper left covers both (x and ~ subunits.
The cloud at the upper left covers ix, 13 and y subunits, but
these motifs are too general to be used for classification.



Each motif can be interpreted as specifying a cluster of
sequences, where specificity measures the homogeneity of
the cluster. A homogeneous cluster from the lower left of
Figure 7a (indicated by an arrow) matches the ~ tubulins.
Taking the remaining sequences and applying EMOTIF to
them gives the graph in Figure 7a. The best motif here
(again indicated by an arrow) covers just 0t subunits.
Applying EMOTIF again to the remainder gives the graph
in Figure 7c, where the best motif matches just g tubulins.
The disjunction of these motifs matches three kinds of
tubulins, while maintaining high specificity relative to a
single motif that covered the same set. Furthermore, if the
subclasses were biologically unknown, this process might
provide some insights about function.

6 Conclusions

We have extended SEQCLASS (Wu and Brutlag, 1995) 
five ways. First, by using the concept of a canonical motif,
and by observing that there are typically a much smaller
number of such motifs than the exponential worst-case
bounds suggest, EMOTIF is capable of enumerating all
motifs, obviating arbitrary pruning of the search space.
Second, we have derived a ranking function for motifs
based on both statistical and information-theoretic
arguments, lending confidence to the final motif that
EMOTII= produces. Third, EMOTIF generates a Pareto-
optimal set of motifs, which can be used with arbitrary
ranking functions to generate optimal motifs for specific
tasks. Fourth, we have evaluated the predictive
performance of EMOTIF against a large corpus of manually-
derived PROSITE motifs, using a test set of sequences
discovered after the PROSITE motifs were formed. In these
tests, EMOTIF demonstrates vastly increased accuracy with
only a comparatively small decrease in sensitivity. Finally,
we have shown how the space of motifs can be used to
identify clusters of sequences that correspond to protein
subclasses by iterative application of EMOTIF.
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