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Abstract

We have developed a knowledge-based system which
models the side chain conformations of residues in the
variable domains of antibody Fv fragments. The sys-
tem is written in Prolog and uses an object-oriented
database of aligned antibody structures in conjunc-
tion with a side chain rotamer library. The antibody
database provides 3-dimensional clusters of side chain
conformations which can be copied en masse into
the model structure. The object-oriented database
architecture facilitates a navigational style of data-
base access, necessary to assemble side chains clusters.
Around 60% of the model is built using side chain
clusters and this eliminates much of the combinator-
ial complexity associated with many other side chain
placement algorithms. Construction and placement of
side chain clusters is guided by a heuristic cost func-
tion based on a simple model of side chain packing in-
teractions. Even with a simple model, we find that a
large proportion of side chain conformations are mod-
elled accurately. We expect our approach could be
used with other homclogous protein families, in ad-
dition to antibodies, both to improve the quality of
model structures and to give a “smart start” to the
side chain placement problem.

Introduction

Modelling antibody structures is an important exer-
cise because, in the absence of a crystal structure, a
good 3-dimensional model can help to explore struc-
tural reasons for observed antigen binding affinities.
Antibodies, like many other homologous protein
families, have highly conserved secondary structures.
This is especially true in the S-sheet framework regions
which give the characteristic Greek Key motif of the
immunoglobulin fold (Chothia & Lesk 1987). Know-
ledge of such structural parsimony is often used to ini-
tialise a new model structure by selecting the backbone
conformation of a known structural homologue. How-
ever, if we have several known structures for a par-
ticular protein family then we should be able to draw
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upon knowledge of all of these structures to build a
better model. In order to use this knowledge effect-
ively we need to represent it in a form that provides a
convenient way to compare parts of one structure with
corresponding parts of other family members.

The main goal of antibody modelling is to pre-
dict the loop structure and side chain conformations
of the complementarity determining regions (CDRs),
since these are involved in antigen binding. Chothia
and Lesk (1987) have shown that the CDR loops of-
ten adopt a small set of canonical backbone conform-
ations and this behaviour can be exploited to build
models with greater accuracy (Martin, Cheetam, &
Rees 1989). In this paper, we assume that we have
a good model backbone conformation and we focus
on solving the resulting “3-dimensional jigsaw puzzle”
(Taylor 1992) of assigning side chain conformations to
the model structure. Our approach differs from previ-
ous side chain placement methods in that we search a
database of known structures (Kemp et al. 1994) using
a simple heuristic cost function to find 3-dimensional
clusters of side chains which can be copied to the
model. The Kabat sequence alignment (Kabat et al.
1992) is used to restrict the search to those residue
positions that are conserved in the model. Effectively,
much of the model is built from structural units from
the database for which evolution has already “solved”
the problems of conformational search and energy min-
imisation. The model is completed and refined with
side chain conformations from the database and from
a rotamer library using further pairwise heuristics.

Results of testing our approach with a model-built
structure of the murine anti-phenylarsonate antibody,
36-71 (PDB code 6FAB), are presented. These results
show that around 60% of all side chains are placed
as clusters from the database, of which 84% have
correctly! predicted conformations.

!We use Levitt’s (1992) criterion of 2A RMS or less for
a correct conformation.
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Materials & Methods

Our database currently contains 71 antibody and
Bence-Jones structures taken from the PDB (Bern-
stein et al. 1977) and over 3500 aligned antibody se-
quences taken from the Kabat data bank (Kabat et al.
1992). The database is implemented using the P/FDM
object-oriented database management system (Gray et
al. 1990; Gray, Kulkarni, & Paton 1992) and is based
on Shipman’s (1981) functional data model (FDM).
The FDM is a semantic data model whose basic con-
cepts are entities which represent classes of object (e.g.
chains, residues and atoms), and functions which rep-
resent entity attributes and relationships.

A particularly useful relationship function, derived
from the Kabat sequence alignment, maps a Kabat po-
sition code and a chain identifier onto a residue pos-
ition. Thus structurally conserved positions can be
identified easily.

Both P/FDM and our modelling system are imple-
mented in Prolog. The cost function described below
is implemented as a composition of simple object-level
database queries with call-outs to compiled Fortran
and C routines for computationally intensive calcula-
tions. Building the model framework and CDR loop
conformations is described elsewhere (Ritchie & Kemp
1997).

Pairwise Interactions

An empirically formulated cost function is used to score
the interaction between a pair of residues ¢ and j:

Fij = Gij *Bij [Py (1)

where G;; represents a “packing gain”, P;; is a “steric
overlap penalty” and B;; is a “bonding bonus”. The
dimensionless pairwise score, F;j, increases with good
volumetric packing and good chemical interactions but
decreases in the presence of steric clashes. Each indi-
vidual term is unity when it has no contribution to
make, for example in the case of distantly separated
residues.

The extent to which a pair of side chains pack to-
gether is estimated by calculating numerically side
chain bounding spheres and by finding the ratio of the
volume of the separated spheres to that of their union
to give a sidechain-sidechain “packing gain”, Ggs:

Gss=(SiUSj)/(S.iUSJ‘—S,'ﬂSj) (2)

Sidechain-backbone packing is estimated similarly and
these quantitics are summed to give a pairwise residuc
packing score:

Gij =1+ (Gss — 1)+ (Gsp — 1)+ (Gps — 1) (3)
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We also use residue and domain bounding spheres to
identify all interacting pairs of neighbouring residues.
These are calculated once for each antibody and stored
in the database. This hierarchical system of bound-
ing spheres allows all pairwise interactions to be found
without the need for coordinate grids.

Steric clashes are modelled by summing pairwise
atom overlaps, Py, to give the “overlap penalty”, P;;,
for a pair of residues:

_ [ (R, +R,)*/R}, if Ryy<R.+R,
Frs = { 1 otherwise (4)
Pi=14) % (P, - 1K, )

r€i s€j

where R, and R, are the effective van der Waals radii of
the two atoms, reduced by 10%, and R,, is the inter-
atomic separation of their nuclei. The factor K, is
used as a bias term to give a higher penalty value
for sidechain-backbone overlaps than for sidechain-
sidechain overlaps. Similarly, pairwise atom “bonding
potentials”, B,,, are summed to give the bonding term,
Bj;, for the residue pair:

{ (Rr + R:)"/Ry, if D™ < R,y < DI
B, = .
1 otherwise

(6)
By=1+Y > (Bys—1) (7)

r€Ei 8€J

where D™" and D%¢ define the distance over which
the bonding term is applied. We use 2.45A to 3.44
and n = 4 for hydrogen bonds and 1.95A to 2.154 and
n = 6 for disulphide bonds.

Side Chain Cluster Placement

We define a cluster of neighbouring residues as a group
of N or more residues where (i) each has a pairwise in-
teraction with at least one other member of the cluster
in which the cost function score is greater than some
threshold and (ii) each has a Kabat position code cor-
responding to an unplaced position in the model. N is
typically from 2 to 4. The cluster score C}, of cluster
k is the net sum of the pairwise cost function scores of
the cluster members:

Ch=1+9_ > (Fj—1) ;i<jecusterk (8
i J

This definition of a cluster means that the database
search for side chain clusters only needs to examine



Kabat position codes and stored pairwise interaction
scores. A recursive search of a list of pairwise interac-
tions for each antibody structure quickly resolves mu-
tual neighbours into a set of distinct clusters.

Each antibody structure in the database can provide
several candidate clusters, many of which would over-
lap if copied directly into the model. Consequently,
cluster placement proceeds iteratively. At each itera-
tion a list of candidate clusters is drawn from the data-
base and clusters are ranked according to their number
of side chains, their cluster score (Eq. 8), and by how
well they fit the model backbone. The side chains of
the highest scoring cluster are copied to the model and
any remaining clusters that now contain residue posi-
tions for which model side chains have been assigned
are discarded from the cluster list. This procedure is
repeated until the list of clusters is exhausted. The
complete procedure is repeated for a further 4 cycles,
gradually reducing the threshold score at each cycle.
Conceptually, strongly interacting residues are placed
first, followed by tightly packing groups, although in
practice the behaviour is less clear-cut.

Completing the Model

Since a cluster must contain at least two side
chains, the cluster algorithm may leave some unplaced
singleton side chains in the model structure. Working
outwards from the core region, unassigned model side
chain conformations are selected from conserved data-
base positions (using the Kabat sequence alignment),
choosing the residue that gives the best cluster score
(Eq. 8) with its immediate neighbours in the model en-
vironment. Finally, any model side chains that remain
unplaced are assigned a conformation from the rotamer
library (Ponder & Richards 1987) using a similar scor-
ing scheme. The quality of the model is estimated by
evaluating the cost function for all pairs of neighbour-
ing residues in the model. Any side chain that contrib-
utes to a bad pairwise score is refined by finding the
rotamer substitution that gives the greatest reduction
in a refinement score:

R; = ZI /Fij ; 1,j neighbours (9)

This equation dampens good interactions (Fj; > 1)
and amplifies the contributions from bad steric clashes
(Fi;j — 0) and thus is useful in “de-bumping” the
model.

Results

To test our algorithm we randomly selected 6FAB
from the P/FDM database and modelled its struc-
ture with all 6FAB data excluded from the database.

The VH and VL backbones were taken from 2F19,
having the highest sequence identity with 6FAB, but
the L1 and H3 loops were spliced from 1FGV and
8FAB, respectively, to give loops of the correct length
and good sequence identity. 158 residues (69%) were
placed as clusters with an average of 4 side chains
per cluster. The largest cluster contained 11 side
chains. The backbone donor structure, 2F19, contrib-
uted 111 side chains from clusters, showing that sub-
stantial 3-dimensional regions of the model were copied
directly from an existing database structure. 47 side
chains were copied as clusters from other structures.
A further 47 individual database residues were copied
to equivalent model positions, leaving 24 that were
placed from the rotamer library (mostly GLY, ALA
and PRO). Cluster placement takes 25 minutes (on a
Sun Sparcserver 1000) with rotamer refinement taking
a further 95 minutes to replace 27 conformations.
The results of this test are tabulated in Table 1, us-
ing side chain RMS differences from the known crystal
structure. In these figures, GLY is always excluded,
but we include the Cs of ALA and the ring atoms of
PRO, although these coordinates are essentially fixed.
RMS deviations can be slippery quantities (Lee & Sub-
biah 1991; Levitt 1992) so both all-atom and average
side chain RMS errors are given, although we prefer
to use the latter values since all-atom values are eas-
ily skewed by a few outlying values. We also give the
numbers of correctly placed side chains using Levitt’s
(1992) criterion of 2A RMS or less for a correct con-
formation. The final model contains 133 side chains
(58%) that derive from clusters, of which 84% are
placed correctly. Overall, 74% of all side chains and
58% of the CDR side chains are placed correctly. Most
of the error is in the L3 and H3 loops, which is not un-
expected since the structure of the H3 loop is notori-
ously difficult to predict (Martin, Cheetam, & Rees
1689). Analysis of steric clashes in the final model
shows only 5 bad pairwise interactions (4 of which in-
volve PRO) and no non-bonding contact is closer than

2.5A.

Table 1: 6FAB model average and (all-atom) side chain
RMS errors (A) and fraction correctly placed (n/N).

VH domain VL domain
Side Chain  Ave. All n/N Ave. All n/N
all 1.38 (2.06) 82/107 1.31 (2.20) 70/98
framework  1.35 (2.02) 73/91 1.42 (1.95) 61/83
all CDRs 1.60 (2.23) 9/16 2.02 (3.24) 9/15
CDR 1 0.83 (0.89) 5/6 1.36 (1.74) 5/7
CDR 2 1.68 (2.04) 1/2 2.67 (3.44) 2/3
CDR 3 2.16 (2.73) 3/8 2.56 (4.63) 2/5
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Discussion

Our cluster placement algorithin makes intelligent use
of existing structural knowledge to reduce dramatic-
ally the combinatorial complexity of the conforma-
tional search space. Around 60% of model antibody
side chains are placed as clusters in only about 20%
of the total execution time, of which 80% are within
2A of the crystal structure. Hence around 50% of the
model structure is correctly constructed from database
side chain clusters. As might be expected, our method
is most accurate when modelling the conserved frame-
work side chains (77% correct), but we still achieve an
encouraging figure of 58% correct for the CDR. con-
formations.

Although the rotamer refinement algorithm elimin-
ates bad steric clashes it is less successful at driving
the model towards the desired solution. This could
probably be improved by using a more realistic soft
potential. Additionally, our system contains several
distance thresholds and clustering parameters which
we have done little to optimise. Thus, we believe that
further investigation would enable us to improve upon
the encouraging results presented here.

The modelling approach described here depends cru-
cially on the availability of a structural database in
which the residues at equivalent 3-dimensional posi-
tions in different structures have been identified. In
extending this approach to other families of homolog-
ous structures, it would be useful to generate struc-
tural alignments automatically, e.g. (Russell & Barton
1992), and to adopt numbering conventions for struc-
turally equivalent positions.

Conclusions

Our knowledge-based approach demonstrates how in a
homologous protein family entire 3-dimensional regions
of known database structures can be copied en masse
to a model structure. Around 50% of the side chains
in the model are placed rapidly and accurately from
these clusters, thus providing a “smart start” to the
side chain placement problem.

As further members of each structural family are de-
termined, the knowledge derived from structure com-
parisons and alignments will be of increasing value in
homology modelling. However, it is important that
this knowledge is represented and stored in a system-
atic way. We believe that a database architecture like
ours, that allows search to be combined with compu-
tation, can help us exploit this knowledge effectively.
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