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Abstract
The structural comparison of proteins has become
increasingly important as a means to identify protein
motifs and fold families.  In this paper we present a new
algorithm for the comparison of proteins based on a
hierarchy of structural representations, from the
secondary structure level to the atomic level.  Our
technique represents α-helices and β-strands as vectors
and uses a set of seven scoring functions to compare pairs
of vectors from different proteins.  The scores obtained
are used in a dynamic programming algorithm that finds
the best local alignment of the two sets of vectors.  The
second step in our algorithm is based on the atomic
coordinates of the protein structures and improves the
initial vector alignment by iteratively minimizing the
RMSD between pairs of nearest atoms from the two
proteins.  We refine the final alignment by determining a
core of well aligned atoms and minimizing the RMSD of
this core.  In a comparison of our method to Holm and
Sander’s DALI algorithm, our program was able to detect
structural similarity at the same level as DALI.  We also
performed searches of a representative set of the Protein
Data Bank (PDB) using our program and detected
structurally similarity between several distantly related
proteins.

Introduction

The number of protein structures in the Brookhaven
Protein Data Bank  (Bernstein et al., 1977) has been
growing rapidly and is currently (as of January, 1997) more
than 5,400.  The number of known fold families into
which these structures can be classified, are, on the other
hand, relatively few (Chothia, 1992; Holm and Sander,
1996a; Orengo et al 1993).  With the growing number of
known unique protein structures, it has become
increasingly important to study the levels of structural
similarity that exist among these proteins as a means to
identify structural motifs and fold families.  The
comparison of proteins at a structural level is a
fundamental step towards the understanding of the folding
techniques that are used by biological organisms to

construct stable and functional proteins.  Structure is also
widely believed to be closer to function than sequence,
which further emphasizes the importance of studying the
three-dimensional relationships within and between
proteins.  In addition, since structure is more highly
conserved than sequence, the comparison of protein
structures is essential to obtain more accurate estimates of
evolutionary distances between proteins and protein
families.

There have been several methods proposed to compare
protein structures and measure the degree of structural
similarity between them.  These methods have been based
on comparing scalar distance plots (Holm and Sander,
1993), computing differences of vector distance plots
(Orengo and Taylor, 1996), minimizing the soap-bubble
surface area between two protein backbones (Falicov and
Cohen, 1996), and applying dynamic programming on
pair-wise distances between proteins (Subbiah et al, 1993;
Gerstein and Levitt, 1996).  Several other techniques have
also been reported (Holm and Sander, 1996a; Holm and
Sander, 1995; Russel and Barton, 1992; Godzik and
Skolnick, 1994; Zuker and Somorjai, 1989; Sali and
Blundel, 1990; Taylor and Orengo, 1989; Mitchel et al,
1989; Vriend and Sander, 1991; Barakat and Dean, 1991).
In this paper we describe a new algorithm for structural
superposition based on a hierarchical decomposition of the
protein structures from the secondary structure level to the
atomic level.  We represent the secondary structure
elements of the proteins as vectors and obtain an initial
superposition by computing a local alignment, using
dynamic programming, of these secondary structure
vectors.  We then compute an atomic superposition, using
the 3-D coordinates of the backbone atoms, by performing
a greedy search that tries to minimize the root mean square
deviation (RMSD) between pairs of nearest atoms from the
two proteins.  Our method is both robust and fast, and is
capable of detecting global similarity between entire
proteins as well as similarity of local structural domains.
Due to the hierarchical nature of our algorithm, it is able to
detect minor local structural similarities between proteins
and also manage such difficult features as variable length
loops or the insertion or deletion of entire secondary
structure elements.   We have tested our algorithm by
searching the PDB using various query structures and have
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been able to detect structural similarity between many
distantly related proteins.  We use both the RMSD value as
well as the number of "well aligned" atoms (described
below) as criteria for selecting the best superposition.
Though we only use the C-α atoms (i.e. the backbones) to
represent a structure in our alignment program, the
algorithm can be easily extended to include a final step that
hierarchically aligns the side-chain atoms as well.

Methods

Overview of the Algorithm
The following three steps briefly describe our hierarchical
structural comparison algorithm:

1. Local Secondary Structure Superposit ion:
Compare pairs of vectors from the target and query
protein using orientation independent scoring
functions (described below).  Select the pair that
results in the best local secondary structure
alignment and transform the query protein to
minimize the RMSD between this pair of vectors.
Now compare (using dynamic programming) all
vectors from the target and query proteins using
orientation independent and orientation dependent
scores.  Transform the query protein to minimize the
RMSD between the atoms of the aligned secondary
structure elements.

2. Atomic Superposition:  For every atom in the
query protein, find the nearest atom (within a
threshold distance) on the target protein.  Transform
the query protein to minimize the RMSD between
these pairs of atoms.  Iterate until the RMSD
converges.

3. Core Superposit ion: Find the best core of
correctly aligned and sequentially ordered atoms and
minimize the RMSD between them.  Iterate until
the RMSD converges.

In each of the above steps, the transformation matrix
that minimizes the RMSD between pairs of points is
computed using the absolute orientation algorithm
described in the following section.

Absolute Orientation of Corresponding Points
A fundamental question that needs to be considered in the
structural alignment of two objects arbitrarily positioned in
the same coordinate system is the following: given a list of
pairs of points, where the first point of each pair is taken
from object A and the second from object B, is it possible
to compute a transformation matrix that, when applied to
object B, minimizes the root mean squared deviation
between these pairs of points?  For example, to align the
chair and table in Figure 1 we would select the 8 pairs of
corresponding points that are shown in the figure.  A
closed form solution to this problem exists (Horn, 1987;
Horn et al, 1988) which computes, in time proportional to
the number of pairs of points, the 4x4 transformation
matrix that minimizes the RMSD between these points.
Other solutions to this problem have also been proposed
(Kabsch, 1978; Arun et al, 1987).  In this paper we use the
solution presented by Horn, which we shall refer to as the
absolute orientation algorithm.

The application of the absolute orientation algorithm
is possible only when correspondences between matching
points in the two objects are known.  In the case of the
structural superposition of proteins, these correspondences
are not always known.  It is possible to try to estimate the
correspondences between residues of the two proteins using
sequence alignment techniques, but this would lead to
highly erroneous results when distantly related proteins are
considered that have low sequence identity (Bashford et al,
1987; Lesk and Chothia, 1980).  Since it is these very
distantly related proteins with low levels of structural
similarity that we would like to detect, we developed a
structural comparison algorithm that does not use sequence
information at any stage.

Closed-from solution of absolute
orientation using unit quaternions

Berthold Horn, J. Opt. Soc. Am.,
April 1987, Vol. 4, No. 4

Figure 1.  Application of the absolute orientation algorithm to minimize the RMSD between
 pairs of corresponding points



Step 1:  Local Secondary Structure Superposition
Our use of secondary structures to find an initial orientation
of the two proteins is based on the assumption that it is
the well defined secondary structure elements within a
protein that provide most of the stability and functionality
to the protein and it is therefore these regions that are more
conserved through the evolution of the molecule. The
secondary structures that we base our alignment on are α-
helices and β-strands.  In our current implementation all
types of helices (α , π, 3-10, and left handed helices) are
grouped together in one class.  This can easily be altered to
create special classes for each type of helix.  The
classification of residues as either helix or strand was done
using the DSSP program (Kabsch and Sander, 1983).

To obtain an initial structural superposition, we first
represent each of the helices and strands in the two proteins
as individual vectors. For a helix beginning at residue i  and
ending at residue j , the following equations are used to
compute the beginning and end points of its representative
vector:

Xorigin = (0.74*Xi + Xi+1 + Xi+2 + 0.74*Xi+3)/3.48
Xend = (0.74*Xj + Xj-1 + Xj-2 + 0.74*Xj-3)/3.48

The multiplying factor of 0.74 in the above equations
is due to the fact that the rotation angle between the i+3
and i   C-α  atoms is 60º while the rotation between the
remaining pairs of adjacent atoms (i  to 1+1, i+1  to i+2 ,
i+2  to i+3 ) is 100º.  The above weighted sums therefore
compute centers of mass that are located at the center of the
circles inscribed by the first and last four C-α atoms of the
helix (rather than biased to one side).  Helices of length
less than 4 residues are not considered and helices of length
4 are extended by a single residue on either end to obtain a
non-zero representative vector.

Similarly, the following equations are used to compute
the beginning and end points of the representative vector
for a strand starting at residue i and ending at residue j:

Xorigin = (Xi + Xi+1)/2
Xend = (Xj + Xj-1)/2

Having reduced the two proteins to a series of either H
or S vectors (Figure 2), we now use a dynamic
programming algorithm to compare these two sets of
vectors to find the longest sequence of well matched pairs.
The scoring functions used in the algorithm compare single
vectors or pairs of vectors from each of the two proteins
and return a score that represents the degree of similarity
between these vectors.  Since we needed to make our
computation of the initial alignment independent of the
relative orientation and translation of one protein with
respect to the other, we defined two sets of scoring
functions: orientation independent and orientation
dependent.  Orientation independent scores are based on the
comparison of internal angles and distances between pairs
of vectors selected from the two proteins.  Orientation
dependent scores, on the other hand, compare individual
vector orientations and origins from the two proteins.  For
example, comparing the angle between vector i  and vector
k from protein A to the angle between vector p and vector r
from protein B would result in an orientation independent
score (Figure 3).  On the other hand, comparing the
orientation or origin of vector i from protein A to the that
of vector p from protein B would result in an orientation
dependent score.

The seven score functions we defined are listed below.
The vectors being compared in these functions are those
shown in Figure 3.  Note that only the vectors shown in
solid lines represent secondary structure elements (i.e. i , k,
p, and r).  The dashed lines are the intermediate vectors that
join the start and end points of two secondary structure
vectors.  The sum of the functions listed below gives us
the final similarity score between vectors k and r , with the
previous two aligned vectors in the alignment path being i
and p.

Figure 2.  Representing secondary structure elements as vectors



    Orientation Independent Scores:   

S1 = S{|angle(i,k) - angle(p,r)|}
S2 = S{|angle(i,j) - angle(p,q)|}
S3 = S{|angle(j,k) - angle(q, r)|}
S4 = S{|distance(i,k) - distance(p,r)|}
S5 = S{|length(k) - length(r)|}

    Orientation Dependent Scores:     

S6 = S{angle(k,r)}
S7 = S{distance(k,r)}

The function S is defined as follows (Gerstein and Levitt,
1996):
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where, M = maximum score
d = attribute value
d0 = value at which score should be 0

The distance between two vectors is computed by
averaging the distances between the corresponding start,
middle, and end points of the vectors.  The angle is
computed by taking the inverse cosine of the dot product of
the two representative unit vectors. The value of the M
parameter in the above equations acts as a relative
weighting factor for the attribute being measured.  Various
values of the M  and d0 parameters for the seven score
functions were tested based on the relative significance of
the attribute being compared and the expected value of the
attribute.  For example, lengths are de-emphasized by
giving them a maximum score of 5 (function S7) while
angle scores are given a maximum score of 10 (function
S6).  The final values of the parameters that we used in our
program are listed in Table 1.  These values were selected
by iteratively modifying them and then testing the program
with a chosen set protein pairs.  We found during this
tuning stage that the final output of the algorithm was
relatively insensitive to moderate variations in these
parameters, though they did affect the ability of the
program to detect the small degree of structural similarity

retained by distantly related proteins (e.g. myoglobin and
colicin).

Table 1.  Parameter values for the seven score functions
S1 S2 S3 S4 S5 S6 S7

M 10 4 4 2 5 10 5
dO

45º 45º 45º 5 Å 7 Å 45º 4 Å

We implemented a dynamic programming algorithm,
using the scoring functions defined above, to align the
secondary structure vectors of the two proteins.  Based on
the type of score functions used, we were able to obtain
either an orientation independent or an orientation
dependent alignment.  We used a variation of the Smith-
Waterman algorithm (Smith and Waterman, 1981) to find
the best local alignment of the secondary structure vectors.
The gap penalty was set to 0 since we did not want to
penalize the deletion of a secondary structure element which
could either be due to an incorrect classification by the
DSSP program or due to a single mutation that bent a
helix or converted a strand to a turn.  Our modification to
the Smith-Waterman algorithm did not allow the score to
decrease at any point during the computation of the score
matrix.  Therefore, if the score computed for position i,j
from position p,q is less than the score of position p,q
then the score of position i,j  is set to 0. This modification
was implemented because we were willing to trade-off the
length of the alignment towards greater confidence in the
final (shorter) reported alignment.  We therefore terminate
the alignment when any one pair of vectors returns a
negative score (even though the final score for that position
might be positive when it is added to the previous best
score in the alignment path).

The following algorithm uses the above secondary
structure alignment technique to compute an initial
superposition that is independent of the relative orientation
of the two proteins.

1. Run the dynamic programming algorithm using
only orientation independent scores

2. Use the start and end points of all the vectors in the
highest scoring alignment to obtain a transformation
matrix that best overlaps these points.  Apply this
matrix to the entire query protein.

3. Refine this initial alignment by repeating steps 1
and 2 using both orientation independent and
orientation dependent scores.

The above algorithm may often select an incorrect
initial superposition because of the fact that the highest
scoring alignment using only orientation independent
scores does not necessarily result in the highest scoring
alignment when both orientation independent and
orientation dependent scores are used.  Therefore several of
the sub-optimal alignments obtained from the orientation
independent step (step 1) also need to be tested in step 3 to
find the best initial alignment.  To solve this problem we
implemented the following algorithm instead:

i
j

k

p

q

r

Protein A Protein B

Figure 3.  Alignment of secondary structure vectors



1. For every pair of vectors in the query protein, find
all pairs of vectors in the target protein that align
well to this pair of query vectors.  The two pairs of
vectors are selected by comparing the total score
obtained by summing the orientation independent
functions, S1-S5, to a threshold value.  Also, at
least one pair of vectors from either the query or the
target protein must be adjacent (i.e. not have any
gaps).

2. For each set of 4 vectors selected above (2 from the
query protein and 2 from the target) find the
transformation matrix that best overlaps these
vectors.  Apply this matrix to the entire query
protein.

3. For each initial alignment found in step 2, run the
dynamic programming algorithm using both
orientation independent and orientation dependent
scores.  The traceback step to find the alignment is
not executed here since only the highest score is
needed.

4. Re-apply the transformation from step 2 that
produces the highest score in step 3 to the entire
query protein.

5. Re-align the two proteins using dynamic
programming with both orientation independent and
orientation dependent scores.

6. For each pair of aligned secondary structure elements
from step 5, find the transformation matrix that
minimizes the RMSD between the atoms in the
query secondary structure and their nearest neighbors
in the aligned target secondary structure.

7. Apply the transformation to all atoms in the query
protein and iterate steps 5,6, and 7 until the RMSD
converges.

Step 2:  Atomic Superposition
Assuming the initial superposition obtained in the
previous step is close to the globally optimal alignment,
we can now use the following simple three step algorithm
to minimize the RMSD between atoms from the two
proteins:  

1. For every atom in the query protein, find the nearest
atom in the target protein.

2. Apply the transformation that minimizes the RMSD
between these pairs of atoms to the query protein.

3. Iterate steps 1 and 2 until the RMSD converges.

By iteratively minimizing the RMSD between the two
proteins this algorithm essentially performs a greedy
descent to the closest local minimum in alignment space.
The alignment space here is defined as a six dimensional
coordinate system, with three dimensions for the rotation
around each axis and three for the translation.  The final
goal of structural superposition is therefore to find the

point in this alignment space that results in the “best”
overlap of the two proteins.

During this stage of the algorithm, we only consider
those pairs of atoms that are aligned within T Å. The value
we selected for T was 3 Å.  The algorithm uses this
threshold value to distinguish between those atoms that it
should or should not include in the computation of the
transformation matrix.  Since there may be deleted regions
or sub-domains in one protein that do not align to any
region in the other protein, these deleted regions have to be
ignored during this RMSD minimization stage.  For
example, there are several proteins that contain multiple
sub-domains of which only one domain correctly aligns to
the target while the other domains constitute deleted or
mutated regions.  If a threshold value is not used, the
algorithm will find an alignment that minimizes the
RMSD between all atoms of the two proteins, instead of
only minimizing the RMSD between regions that are
already close to each other.  

Step 3:  Core Superposition
While the RMSD value between the two proteins can be
considered a criterion for judging the quality of an
alignment, it does not result in a fair assessment since the
number of aligned atoms considered in the RMSD
computation may vary significantly from one alignment to
the next.  We therefore chose to use both the RMSD value
and the number of “well” aligned atoms to measure the
quality of an alignment.  We implemented the following
two tests to determine whether or not an atom is well
aligned:

1. For every atom in protein A, find the nearest atom
in protein B, and for every atom in protein B, find
the nearest atom in protein A (considering only
atoms that are aligned within T Å).  Select all pairs
of atoms that find each other as nearest neighbors.
For example, atom i  in protein A and atom p in
protein B are selected only if p is the nearest
neighbor to i and i is the nearest neighbor to p.

2. Delete all pairs of atoms in the list obtained from
step 1 that violate co-linearity; i.e., select the
maximum number of aligned pairs that are in order
in both protein A and B and ignore the rest.  This is
done by first sorting all pairs of atoms in increasing
order based on their atom number in protein A.  The
resulting sequence of atom numbers from protein B
is then parsed to find the maximum number of in
order atoms.

The well aligned atoms selected by this technique can
be considered the core alignment of the two proteins.  It is
therefore conceivable that the algorithm should now try to
improve the superposition of these core atoms even at the
cost of degrading the superposition of all non-core atoms.
This final refinement step is implemented by iteratively



determining a new core of atoms and then minimizing the
RMSD between these atoms until the RMSD of the core
converges.

Analysis of the Algorithm
The complexity of our algorithm can be broken up into
two components. The local secondary structure
superposition step (step 1) is of O((max(n,m))*n*m),
where n and m are the number of secondary structure
elements in the two proteins. The atomic and core
superposition steps (steps 2 and 3) are O(n*m), where n and
m are the number of C-α atoms in the two proteins.  

The program we implemented to run the above
algorithm is both robust and fast.  Since we are searching
for local alignments in the dynamic programming stage,
our method is capable of detecting global similarity
between proteins as well as local similarity of sub-
domains.  We have tested our program by searching a
representative set of the PDB using various query proteins
and motifs and detected structural similarity between many
distantly related proteins.  The details and results of these
tests are presented in the following section.  Each database
search compared a single protein against 796 representative
proteins from the PDB.  The total time required for this
search, using sperm whale myoglobin (1mbc, 153 residues)
as the query, was 18.28 minutes on a 180 MHz MIPS
R5000 microprocessor.  Approximately 62% (11.33
minutes) of the execution time for this search was spent on
the secondary structure and atomic superposition stages,
and the remaining 38% (6.95 minutes) was spent on the
core superposition stage.

Results

We compared our structural superposition algorithm,
LOCK, to that of Holm and Sander.  Their algorithm,
DALI, was used to construct the Families of Structurally
Similar Proteins (FSSP) database (Holm and Sander,
1996b).  As a test of our method, we obtained all the
structural neighbors of several proteins, as reported in
FSSP, and performed structural comparisons using LOCK
of each of these query proteins with all their neighbors.
The results for the following three proteins are shown in
Figures 4, 5, and 6:

• Sperm whale myoglobin (1mbc)
153 residues, all alpha
Number of structural neighbors 152
Time for search: 2 min, 27 sec

• Triosphosphate Isomerase (1btm-A)
251 residues, alpha-beta barrel
Number of structural neighbors 158
Time for search: 11 min, 14 sec

• Complex - MHC II/Peptide (1seb-A)
181 residues, mostly beta
Number of structural neighbors 49
Time for search: 2 min, 24 sec

The graphs in Figures 4, 5, and 6 plot the protein
number along the X-axis (i.e., the number of the protein in
the list of structural neighbors reported by FSSP).  Figures
4a, 5a, and 6a show the RMSD values computed by DALI
and LOCK while Figures 4b, 5b, and 6b show the number
of aligned residues (i.e., the number of residues included in
the RMSD calculation) reported by DALI and LOCK.  The
proteins along the X-axis are sorted based on the
significance-score for each of the alignments reported in
FSSP and not based on the RMSD value.  The alignments
closest to the origin are therefore considered most
significant in the FSSP database.  We can see from these
graphs that LOCK is able to detect all of the close
structural neighbors for each of the query proteins.  Since
the number of aligned residues varies greatly among the
distantly related or unrelated proteins, we cannot use the
RMSD value to compare our results with those produced
by DALI.  For example, the RMSD values reported by
LOCK never exceed 3 Å due to the threshold value we
enforced which only considers those atoms that are within
this range.  LOCK therefore yields alignments with lower
RMSD values for distantly related proteins because it
classifies fewer atoms as being correctly aligned.  The
curves for the number of aligned atoms found by LOCK
show a very distinct cut-off beyond which the two proteins
can be considered un-related.  For the case of myoglobin,
the proteins close to this cut-off value (approximately 100-
120 on the X-axis) included those proteins with small
degrees of structural similarity to myoglobin, such as the
phycocyanins and colicin.

We also tested our program by performing a series of
PDB searches using both complete proteins and small
structural motifs as queries.  The representative set of the
PDB that we searched contained a maximal set of proteins
that had a resolution of less than 3.5 Å and sequence
similarity of less than 40%.  The number of proteins
found, using the OBSTRUCT algorithm (Heringa et al,
1992), were 796.  The two query structures whose results
are reported here are the following:

• Sperm whale myoglobin (1mbc)
153 residues, all alpha
Time for search:  18 min, 17 sec

• Helix-Turn-Helix motif
Residues 32-53 from 1lmb-3
Time for search: 3 min, 14 sec

The results of these searches were sorted according to the
number of well aligned atoms.  The top 25 hits for the
above query structures are shown in Tables 2 and 3.



(a) (b)

Figure 4.  Comparison of LOCK and DALI - Sperm whale myoglobin

(a) (b)

Figure 5.  Comparison of LOCK and DALI - Triosphosphate Isomerase

(a) (b)

Figure 6.  Comparison of LOCK and DALI - Complex-MHC II/Peptide



Table 2.  Top 25 hits obtained by searching the PDB using sperm whale myoglobin as the query

Protein        RMSD     Atoms Aligned            PDB Header                  

1myh-A  0.562531        153     MYOGLOBIN (AQUOMET, PH 7.1) MUTANT
2dhb-A  1.335804        132     HEMOGLOBIN (HORSE,DEOXY)
1eca   1.497830        130     HEMOGLOBIN (ERYTHROCRUORIN, AQUO MET)
1flp 1.349387        129     HEMOGLOBIN I (MONOMERIC) (FERRIC)
2lhb    1.084818        128     HEMOGLOBIN V (CYANO,MET)
1hds-B  1.235697        128     HEMOGLOBIN (SICKLE CELL)
1ith-A  1.302358        126     HEMOGLOBIN (CYANOMET)
1mba    1.501337        126     MYOGLOBIN (MET) ($P*H 7.0)
1hbg    1.412812        125     HEMOGLOBIN (CARBON MONOXY)
1ash    1.431599        122     HEMOGLOBIN (DOMAIN ONE)
1hlb    1.475264        121     HEMOGLOBIN (SEA CUCUMBER)
1hbi-A  1.408008        118     HEMOGLOBIN I (OXYGENATED, HOMODIMER)
1gdi    1.476536        118     LEGHEMOGLOBIN (CARBON MONOXY)
1cpc-A  1.787059        80      C-PHYCOCYANIN
1cpc-L  1.682854        74      C-PHYCOCYANIN
1tox-A  1.640087        63      DIPHTHERIA TOXIN DIMER COMPLEXED WITH NAD
1pbg-A  1.701624        60      MOL_ID: 1;
1col-A  1.798676        58      COLICIN *A (C-TERMINAL DOMAIN)
2sbl-B  1.519786        53      LIPOXYGENASE-1 (SOYBEAN)
1oxa    1.851156        52      CYTOCHROME P450 (DONOR:O2 OXIDOREDUCTASE)
1krb-C  1.680887        49      MOL_ID: 1;
1irk    1.409630        48      INSULIN RECEPTOR (TYROSINE KINASE DOMAIN)
2hpd-A  1.619509        48      CYTOCHROME P450 (BM-3)
1le2    1.623706        48      APOLIPOPROTEIN-*E2
2cp4    1.900296        47      CYTOCHROME P450CAM (CAMPHOR MONOOXYGENASE)

Table 3.  Top 25 hits obtained by searching the PDB using the helix-turn-helix motif as the query

Protein        RMSD     Atoms Aligned            PDB Header                  

1lmb-4  0.207748        22      DNA-BINDING REGULATORY PROTEIN
1pra    0.451552        22      GENE REGULATING PROTEIN
1adr    0.472226        22      TRANSCRIPTION REGULATION
1yrn-A  0.492206        22      COMPLEX (TWO DNA-BINDING PROTEINS/DNA)
1dik    0.517499        22      PHOSPHOTRANSFERASE
1pnr-A  0.613499        22      COMPLEX (DNA-BINDING REGULATION/DNA)
4fis-A  0.677586        22      DNA-BINDING PROTEIN
1oct-C  0.697683        22      DNA-BINDING PROTEIN
1ftt    0.742871        22      DNA BINDING PROTEIN
1cop-E  0.768256        22      GENE REGULATING PROTEIN
1dtr    0.780090        22      DNA BINDING PROTEIN
1gdt-A  0.795171        22      COMPLEX (SITE-SPECIFIC RECOMBINASE/DNA)
3gap-B  0.817812        22      GENE REGULATORY PROTEIN
1lfb    0.820489        22      TRANSCRIPTION REGULATION
1ads    0.920977        22      OXIDOREDUCTASE
1pdn-C  0.949104        22      COMPLEX (GENE REGULATING PROTEIN/DNA)
1hom    0.958631        22      DNA-BINDING PROTEIN
1mse-C  0.965817        22      COMPLEX (BINDING PROTEIN/DNA)
1cma-A  1.023169        22      DNA-BINDING REGULATORY PROTEIN
1trr-A  1.048990        22      DNA-BINDING REGULATORY PROTEIN
1tpl-B  1.467803        22      LYASE(CARBON-CARBON)
1hcr-A  0.930009        21      DNA-BINDING
1neq    0.949148        21      DNA-BINDING PROTEIN
1ade-A  0.979226        21      LIGASE (SYNTHETASE)
153l    1.093427        21      HYDROLASE(O-GLYCOSYL)



Discussion

The algorithm we have developed for protein structure
superposition is based on alignments at both the secondary
structure level and the atomic level.  This use of secondary
structure information gives our technique the increased
flexibility of detecting global as well as local similarities.
By first comparing only pairs of vectors from both
proteins, we are able to find a short sequence of well
aligned secondary structure elements that serves as an
anchor for the remaining RMSD minimizing and
refinement stages of the algorithm.  Our representation of
secondary structures as single vectors enables the use of
multiple vector comparison techniques and also
significantly reduces the computation required to find a
good initial superposition of the two proteins.  The initial
superposition is then improved by iteratively applying the
absolute orientation algorithm to  minimize the RMSD
between all pairs of nearest atoms from both proteins.
This stage of the algorithm searches the alignment space to
find the local minimum closest to the initial superposition
obtained from the previous step.  It is this hierarchical
technique of first searching among secondary structure
alignments and then among atomic level alignments that
results in the increased flexibility and speed of our
algorithm.  

We implemented our algorithm on a Silicon Graphics
Indy workstation (MIPS R5000, 180 MHz) and provided a
convenient graphical user interface (Tcl-Tk based) to run
the alignment and view the structural superposition of the
two proteins. The program takes approximately 18 minutes
to compare myoglobin (153 residues) to a representative set
of 796 proteins from the PDB.  Our alignment program
also performs iterative subdivisions and re-alignments of
the non-aligned regions from the two proteins.  In addition,
when two sub-domains are found in the query protein that
align separately to two different regions of target, the
program computes the optimal bending point in the query
protein that will maximize the number of aligned atoms.

The results of a comparison of our alignment
technique to that of Holm and Sander show that we are able
to detect structural similarities at the same level as those
detected by their DALI algorithm. In addition, by searching
a representative set of the PDB using myoglobin, we were
able to detect a few proteins with low structural similarity
that were not included in the list of proteins that were
reported as structurally similar to myoglobin in the FSSP
database.  We also used our program to align the pairs of
proteins that were used as test cases in the paper by Falicov
and Cohen on the minimum area metric for structural
comparisons (Falicov and Cohen, 1996).  Though we did
not perform a detailed analysis of the alignments reported
by both techniques, our program found alignments that
were in all cases close to those of Falicov and Cohen.  We
tested the ability of our program to detect small structural
motifs within proteins by searching a representative set of
the PDB using the helix-turn-helix and EF-hand motifs as
query structures.  The results for the helix-turn-helix motif

(Table 3) show that the program correctly ranked the
proteins that contained this motif (mostly DNA binding
proteins) at the top of the list.

LOCK will be made available to academic and non-
profit institutions by request to the authors.  Commercial
firms should contact the Office of Technology Licensing at
Stanford University.
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