
Inference of Molecular Phylogenetic Tree Based on Minimum
Model-based Complexity Method

H.Tanaka, F.Ren, T.Okayama* and T.Gojobori*
Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113, Japan

{ Tanaka ,ten } ,:t!,mri.t md .ac.jp
*National Institute of Genetics, llll Yata: Mishhna: Shizuoka 411, Japan

{ t okaymna,t go job or) (¢_~genes.nig.az.j 

Abstract

In this study, starting with a newly introduced
concept of data complexity (" empirical data com-
plexity" ), we specif-)., the concept of complex-
ity more concretely in relation to mathemati-
cal modeling and introduce "model-based com-
plexity (MBC) " Inductive inference ba~d 
the mi,fimum model-based complexity method is
then applied to t~m reco~tstruction of molecular
evolutionary tree from DNA sequences. We. find
that minimum MBC method has good asymp-
totic property when DNA sequence lengths ap-
proach to iI,fildte aaid compensates the bias of
maximum likelihood method due to the differ-
ence of tree topology complexity. The efficiency
of minimum MBC method for reconstruction of
molecular tree ~s studied by computer simulation,
aald results suggest that this method is superior
to the trmlitionM maximmn likelihood method or
its modification by Akaike’s AIC.

Introduction

The reconstruction of phylogencti(: trees from molecu-
lar data is one of important problems in evolutionary
study and many methods have bc~:n proposed so far.
These methods are mainly divided into two groups:
maximum likelihood methods and distance methods.
Both gxoups of methods, however, have superiorities
as well a~s defects.

Maxinmm likelihood method (Felsenstein 1981).
though it is rigorotLsly b~sed on the probabilistic model
of ba~se substitution process along the whole phylogo-
n(’tic trees, has a defect in that nmximum likelihood
value itself is eonditionaJ on tr¢x~ topoloKv so that it
cannot, at lea.st in principle, detellnine the goodness of
assumed tree topology (Nei 1987, Saitou 1988). On the
contrary, the distm~c(’ methods such as the neighbor-
joining method (Saitou gz Noi 1987) which are ba.sed
on the distanc~.~ (number of base substitutions per site)
between the homologous DNA or mnino-acid s¢<tuenees
of any pal," among the speci(’s, have several criteria such
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as a minimum sum of branch lengths for choosing cor-
r(mt topology, but they are criticized in that they" use
probabilistic model of base substitution only in calcu-
lation of distance between two species, and do not use
it any more in the subsequent reconstruction proc(~s
of the whole evolutionaxy tr(.~:.

With this background, we have been engaged to de-
velop a new method which incorporates both of the
superiorities of the ML methods and distanc.c methods
for these ycars(Ren, Tanaka and Gojobori 1995a; Ren
et al. 1995b: Tanaka 1996). In our study, the phy-
logenetic tree reconstruction problem is considered a.s
a kind of inductive inference to extraet the nfininmm
complexity model from observed data.

In this study we improve our previous method and
give a more exact model of molecttlar evolution and its
complexity. Specially, (1) we investigate the concept
of complexity more rigorously in relaOon to mathe-
matical modeling and define "empirical modd-ba..~d
complexity". (2) This model-ba.~(~l complexity is then
appli,~ to the problem of reconstruction of molecu-
lar phylog*metic tree from homologotLs DNA SC~luence
of several species. (3) The efficiency of this minimum
model-bas(~t complexity estimation method for recon-
structing the correct phylog(-netic tr(x~ is studied 
computer sinmlat ion.

Model-based Complexity

Concept of nfininmm complexity is often referred in re-
lation to the inductive inference. In the inductive infer-
ence, there would be mmw theori(~ which ean exphdn
the given data to the ~.~lUM extent, so that we would
have to u~ a certain criterion to select the t)t~t one.
In this cont(,xt: so ("ailed "principle of parsimony" 
"’minimum complexity principle ’" is often used, which
states that the theory which h~s the least complex-
it3’ and nevertheless explains the data well should be
(’hosen a.s the first option for true one.

Con(’ept of the complexity of the given data is orig-
inated by Solomonoff (Solomonoff 1964), Kohnogrov
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(Kohnogorov 1965) and Chaitin (Chaitin 1966)ill 
structing algorithmic infornmtion theory. They nwa-
sure the con:t)lexity of data by the length ()f program
which generates the given data on universal (’Ollq)u-
ration machine (Turing machin,,). As is known, the
mininmm length program is ahnost impossible to de-
teiTnine (non-computable).

The substxtuent studies such a.s l)y Wallace (Wallace

1968), Schwarz (Schwarz 1978) and Rissmlen (Rissa-
non 1978) define the complexity of data in statistical
framework, where they use stochastic modal instead of
Turing machine to nw~sure the complexity of goner-
ated data. For examph,, in llissmlen’s MDL principle,
data complexity is measured by the code length of a
statistical model M, l (M) plus code length of data wit 
restx’ct to the model 21.I, l(D/M). Then minimization
procedure is taken by varying the model M anmng the
assumed model fmnily.

Our minimum complexity estimation is es.~mtiMly
same to the R.iss~men’s or other similar approach, but
different from tlmirs in starting with defining "abso-
lute stochastic complexity" which in principle need not
refer ~my of statistical model family to describe the
complexity of data. Then we fommlate the model-
based complexity which improves several commonly
refered defects of MDL. Anyhow, our starting point
is to formulate the definition of model-b~ksed complex-
ity of data.
Definition 1(Model-based complexity) Suppose
we take some family of model set ,~,I = {Mx/A C I}
(I is some index set of A) which is supposed to gener-
ate data sequence D = {x~,...,-r,, }. The model-based
complexity of data is defined as

KM(D) in f{K(M~) + K(D/Ma)}.
Mx ’ "

where ff ( :lIa ) is an appropriate measu~ of complexity
defined on the model :~lx and K(D/Mx) cannot ex-
plain.

The details of this concept must bc specified in ro-
lation to model specification. We start with our doff-
nition of absolute st och~tstic complexity.

Newly Introduced Concept of
Empirical Stochastic Complexity

The well-known definition of stochastic comph.,xity is
Shanlaon’s one, so that we tirst start with tiffs ch.,lini-
tion, that ix

h’st, (.r) := Z I)(Xi log p(.ri).
i

This definition has two t)roblems:
( 1 )One is the assumption that we have complete knowl-
edge of the probaMlity (h.,nsily fun(’tion(PDF) ,.,f 
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data p(.r). But it is almost impossibh, to have a oom-
ph,to knowledge of the data goncrating PDF in l]:,, real
world.
(2)The second is that. we have only finite number 
samples or a part of data among their possibh., outputs,
so that we cmi not take summation ow?r the possible
data spaco like in the definition of Shmmon eo,nplexity.

Hence, more realistic defilfition of the complexity,
or entropy of the data should be provided which only
uses tinite number of data without any assumptions
of perfect knowledge about the distribution. We now
introduce a new definition of empiricM stochastic com-
plexity or empirical entropy I4,, (x) of one dimentional
real vMued data of D = {xl. x._,,-.., :v, } a.s follows.
Definition 2(Empirical Stochastic Complexity)
Let D = {xl,.r..,,... ,xn} be n real-valued data which
are supposed to tm generated independently fi’om an
identical unknown plvbabil~stic distribution, then the
empirical complexity of data of n length is defined by.

ro/I,,(x) = - log-
n i ?.,, (x: i) ) 

or, in more succint form,

tl1 Z log 5’,(x(il)
/4,, (x) -- ---

i

where
-,,,, (x(,) 

%(xli)) - 

and {x(i)} is the permutation of {xi} in. the onler 4
increasing ma.qnitude (order statistics). 7y,,(.rli) ) is 

0v.. (F,, isempirical probability density approximatin.q z-57-,
empirical distribution function of n real "vahu:d data)
at x(i} where

1
?,,(x:,l - --{l/x:,+,.r+._,l) } ’’ n+l " ’

1
?.(x(i,,) 2(n + l) [{I(x(i_j),x:,3)} 

+ {1(*,.,,,.rli.~ ,))}-’]
(i--2.....,~ 1).

1
?,,(.r(,~) - {f(.r,,, ,:...r(,,))}~¯

n+ 1 ’

and I(a. b) = b -- c,. defines the inte~wal length between
,, and b. Fm’th, e.r.

Renmrk In the above (h’finition of enq)it’ical ontrol~V
th(. empirical probabili!y &,nsity "~ (a’iil) is ostimao,d,



ba.sed on the fa~’t that tile den~:ly scattered area of
data, where the intervals I(x(i-i),x(i)) between the
neighboring sample points is small, reflects the high
values of empirical probability density, ~ that we cal-
culate tile interval betwe.en adjacent points and inverts
it to estimate the probability dense. This is original
motif of the above definition.

Furthermore, folloMng theorem about, the consis-
tency of the above definition of empirical complexity
also gives a general idea about why we adopt such kind
of definition.
Theorem l(Consistency of empirical stochas-
tic complexity) If the empirical distribution function
F,, conve~leS to the limitin.q distribution function F,
which is first order differentiable with respect to x, then
the empirical stochastic complexity Hn(x) converges to
Shannon eomplearity when n -+ oc, so that we have

B,~(x) = K,h(X).

Proof. On account of the limitation of space, we here
only refer to our previous paper where detailt~’t proof
is given (Theorem 1 in (Tmraka 1996)).<1

Thus defined empirical complexity can be calculated
without any assumption of probabilistic structure. If
the data is mulfidimentional, we can easily., extends the
above definition of empirical complexity.

tlere we assume the modal of the data generating
m(~:hanism M. In defining the nmdel-based stochastic
complexity, empirical version of the relative entropy,
Kullback-Leibler divergence, must be introduced.
Definition 3 (Empirical KL information) Let the
empirical probability of the data D = {xl,.." ,xn} de-
notes ~’,(xi), the empirical Kullback-Leiblcr informa-
tion of D with respect to other probabilistic function
p(x) i.s given 

--

io ;.. .

Ih-r(D/p(x)) = 1 Elog Fn 1,,(xi)
n i p(xi)

where
71

= Z P(*,)
i=1

If we model stochastic data generating machineu" by
solne probability density function p(.r), then the empir-
ical stochastic (’omplexity ccm be given by the sum of
the empirical Kullt)aek-Leiblcr information of the data
with respect to the model and the complexity of the
model, so that we have the following definition.
Definition 4 (Model-based stochastic complex-
ity) The .~toeh(~stic complexity of the data D ....
{xl,..-,x,}. when using model M, is given

h.~t(D) i~ f{K(M)-+ Ia L(D/M)},

where K(M) is the complexity of the model and

1_ I’~,,(x~)Ih’L(D/M) =: Elog
ni

p(xi/M) 

Remark In relation to the general Definition 1 in
the prexious s~tion, the empirical KL (~mplexity cor-
responds to the complexity of data with resp(x:t to the
model. ThtLs, in the enlpMcal context,

K(D/M) ~-~ Ih’L(D/M).

The empirical KL information I~’L(D/M) caal be
shown to be c.’s’sentially t~lual to the log likelihood of
modal M with data D, p(DIM), except for the term
not relating to the modal M. Because,

1
Ih’L(D/M) =: -~Zl°gp(xi/M)

1

1 F~5n(x,)
+ n El°g F,,

r

Thus in our defhfition of the empirical complexity, 1/n
of the negative log likelihood flmction is equal to em-
pirical KL information except for the terms which do
not relate to the nmdel to be selected. This shows the
naturah~ess of our definition of empirical entropy.

Complexity of Structured Model

In the induction of the mathematical model from data,
the candidate model is not just a simple probabilistic
density function but the one that has a structure with
certain deglme of complexity reflecting our knowledge
about the entities generating those data. Hence, when
we infer the best model from the data, we should de-
termine the structure a.s well as the parameter values.
But structure also can be represent(~l by values of spe-
cial paranmters or indices. Hence, we treat two kinds
of parameters: compositional parameters and inferen-
tin parameters when we determine the modal. Each
of the two kinds of paranmters define the complexity
of the model.

In this .section, we consider the complexity of model
in term of its paranmters. We introduce the distinc-
tion and definitions of compositional and inferential
complexity of pm-ameters.

Compositional Complexity

In the ordinary- modeling, the model space in whi(’h
th,’ best model is to b(, explored has its own stm(’ture
(compos(~d of cla.sses) exhibiting various dega’t~ of (’om-
plexity. To characterize this stru(’ture such ;ts a model
lattice, we (ran use some index parameters ((M) which

Tanaka 321



define tile model classes. We call this kind of paraane-
(or ~ks a compositional parameter of model space.

The fr(’quent ways to introduce the measure of com-
plexity into these (:lasses are: (1) to assiDl(universal)
prior probability p[{(M)] to the each element contained
in these clltsses and uses -logp[~(,’ff)] as a me~t~ure
of complexity for this element, or (2) to assign the
logarithm of the size (cardinMity) of each j-th (:lasses,
log [M~[, as complexity mea~sure of the elements con-
tained in that class if the cardinality is finite. If the
eardinality is infinite, we can use e-entropy for suitably
chosen a-net introduced into the model classes.
Definition 5 (Compositional complexity of
model) If the model space has a sequence of subspaces
M~ which has a strict inclusion relation, that is. M =
M1 D ’If 2 D M"a.-. which defines the generalization-
specification hierarchy into the model space, (.hen com-
ple’a’ity of the model m in the subspaee M~ is 9iven by
(1) when is" di screte model space,

lf,.(m) = log I.’1/"1,

(2)when M is continuous model .space,

If,.(m) = log .’V..(M~ ),

where N.(MZ) is the number of elements of Kol-
mogorov e-net covering M~ and e is given by empirical
precision of am.

Inferential Complexity

Other than the compositional paralneters which spec-
ifi~.~ the model cla~s, there are ordinary parameters
which are estimated from data and define a particular
modal element in the model class. We call this ordinary
paranmt(’r as an inferential parameter O. There ar~
.~weral approaches to describe the complexity of infer-
(,ntial paranlet(ws.

Well-known is Akaike’s AIC (Akaike 1977), tim half
of which is given by

1AIC - --logL(x[O) + k,
2

wh(.r(, k is the number of inh,r(’ntial parameters which
Mso describes its eonlph~xity ml(I .T. is data and 0 is
inaxinllll-ll likelihood (~stimat.ion of l)aranwl er values.

The (~thcr approach to inferential param(qor eom-
t)l(’xity is given by Rissanen. In describing 1hi, t,)tal
(’od(, length, tit’ added (’ode length flw describing 
precisi,m ,)f data: the al)I)roximate term of 1 his is gdw’n
[.)V

k
h’.~fDr = ... log L(xlO) -I- 7~ logn

wh,,r(, rt is nunfl)(,r of sanlph.,s iu data. This t(’tau is 
obtained from the Bayesian vi(,w 1)oint. In Bayesian
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framework, post(wior probability of the model given
data, p(Olx) is proportional to p(x[O)Tr(O). If we take
m,gative logarithm of this. then corresp()nding model
eomph.,xity is given I)3’ -log n(O). We c,m u..~ non-
informative prior of l)m’anmters by Jeffrey for rr(O).
that. is, ~l logdct Ir:(O), where IF(O). is Fisher’s infor-
mation matrix. This teml asymptotieMly approaches
to .~ hog n + O(k), if n go(w to infinite. Thus we have
,.~sentially equivalent definition of inferential complex-
ity.
Definition 6 (Inferential complexity of the
model) Let IF(O) be (in empirical Fisher information
matrix of the probabilistic model p(x/O) which is given
by

Lj F(O) = 

then the inferential
model is given by

Kin(O) 

02 Iogp(xt/O)

1= i OOiOOj
complexity of this probabilistic

1
sup{- logd( t I(0)}.
,;t 2 "

The sup-operation in the above definition is empiri-
(tally often impossible to execute, and besides, in real
application, not ~dl the parmneter are independent so
that more feasible definition is to intr~.*duce the ef-
fective dinlerLsion of the paranmter space by applying
eigenvector analysis to Fisher ixlfornmtion nlatrix.
Definition 7 (Empirical inferential complexity
of model) The empirical inferential complexity of data
is given by

Kin(O) -- e- dim(0) h)gn,
2

where e-dinl(O) is effective number of empirically in-
dependent parameter which is .qiven by the number of
parameters whosc eorrespondin9 eige.n vah,e Ai oJ em-
pirical Fisher information matrix. I(0) satisfies Ai 
M, where A* is threshold to reflect inferential precision
of the parameters.

UsuMly the components, tim sum of the eig(’nvalues
up to which falls within 95 (/~: of the sum of total oigen-
valuc.’s are includ(u:l in the effective conlpon(,nts, lit’at’e,
tim total model-bas(ut (’omplexity is composed of throe
terms which are (1) compositional coml)h,xity ,ff 
mod,,l, If,.(m), (2)itff¢,rential complexity of the mod,,l.
Ki,,(nl) an(1 (3) empirical KL informati,)n I)etwet,n 
data and model, IKr(x/(, O).
Definition 8 (Model-based data complexity rep-
resented by paranmters) 1..el ~ be the compositional
paranu:t~:rs and 0 be the inferential paramelers, then
m.odcl-based complex.ity of data is given by

h’:~t(l)) : mi,,{K,({)-t-Ki,,(O) t- lt(rIx/~.O}.
~.0 ....



Thus, starting from Definition 1, we have reached
the final concrete form of the general nlodel-based com-
plexity definition that consists of three different kinds
of complexities. We can use this model-ba.sed complex-
ity to extract the model from data by finding the model
which minimize the model-b~od complexity(MBC).

Reconstruction of Molecular
Phylogenetic Tree

Hereafter we apply the minimum model-based com-
plexity method to the reconstruction of molecular
phylogenetic trc~. In the evolutionary phylogenetic
tree, the model space MT is decomposed into (1)tree
model (tree topology Tp and branch lengths t), mid
(2)evolution model (base substitution probability
between two of four bases in DNA during time t along
the trt~:).

Complexi W of Tree Model

The class of the tree topology is determined by mpo_
logical parameters: the number of leavt~ e and that
of internal nodes v. Following the graph theory, the
number of branches b is related with e mM v as

e+v=b+l.

The phylogenetic tree is a tree with one root mid e
leaves, where, only v or c~tuivalently b can bc varied. We
take t’ as defining class of tree topology space: the com-
positional parameter of the tree. If v equals 1, we have
a star-shaped tree.. According to the increase of the v,
tree becomes more complex. In this case v = e - 1,
we have fully expande<t binary tree. The complexity
of natural number v is given by log* v. Even if the
numt)er of internal nodes v is determined, the tree is
not unique. Rissanen (Rissanen 1989) shows approxi-
mation of possible nunfl)er of tree topolog3" of the class

defintxl by v is (e + v - 2~. If we think eacll of these
\ U /

trc~’.s is equally probable, the resultant complexity of
the tree topology is given by

ICe(v) =::l°g* v+h’g e+vv - 2).

The branch lengtlls of the trc~ are considered a.s
parameters to be estimat.c~l in the recormtruetion of
phylogen(’t.ic tree and can be consider as inferential
parmneters of the tree. Branch lengths are "also not
arbitrary. If we describe branch lengths in time, for
example using Myr a~s an unit, then each sum of the
branch lengths along the pass from th(, root(common
anc(~tor) to one of the leaves (cttrreilt species) should
be equal, .~) that in the given topology independent

components of branch length is b’ = b - e. Thus, the
colnplexity of brall(’h lengths is given by

e- dim(t’) log.n,
Kin(t) ....

2

where t’ = (tl .... tb,) is the independent component 
brmach lengths, n is the length of nucleotide ..~quence,
and ¢- dim(t)’ is the number of efficient eigen vectors
of Fisher’s information matrix I r (t’).

Complexity of Evolution Model

After the structure of tree is fixed, we need the model
for evolution mechmfism along the tree from the root
to each leave. Elemental base substitution probability
with time t, denoted by {Pij(t)} where i,j is one of
the four nuclt~tides, nmst be first modeled. We &ssume
Pij (t) follows Markov process. According to the thc~)ry
of Markov process, the probability (Pij) that a b~sc
which is initially in state i changes to state j after
time(t) have elaps(.M is given 

{Pij(t)} exp(Rt),

where i and j represent the one of four bases A,C,G and
T. R is a rate matrix describing the number of bases
have changed in a small interval of time of length dr.
This rate R is given by Hasegawa (Hasegawa 1985) 
follows,

--/J[ly -- 7/’0 fit "ffC .L’~ "ffT~"~ 71"(; G~
,’r..t/3 -.3Hn-- ~r ra ~-8 7r(:13

7r Ai3 rtO(~ --[3Hn-- rfCrOt
nc:fl

~ A O~ n(,fl ~T 2, -dH’~- - rr a o

where c~ denotes the transition and [3 denotes tim
transversion rate. If we think the rates are varied
~mlong branches..’, we denote them by rate vectors c~ =
(ol, ...ab),/3 = (/$1,-..fib) which are thought to bo 
inferential parameters. 7ra, 7r(_., 7rT and 7rc; repre~nt
the overall equilibrium frequencies of base A, C, T and
G, respe.ctively and Ily = 7rr + uc’ and IIn = 7r.~ +
7rG.

This Markov matrix tt satisfies two needs for cal-
culating the probability of base substitution: one is
that the transition and transversion rate cm~ be dis-
tinguished, and the other is that the frequency of A,
C, T and G approacht..’s their equilibrium valu(..’s when
t = ,.’yz. In constructing the probability of the observed
.~.~quences given the model from the elemental ba.se sub-
stitution matrix, we follows Felsenstein’s method. We
~tssume that the evolution is independent at diff(u~nt
sites in the nuch~)tide sequences, so that the proba-
bility of a given set of data cm~ be coml)uted sit(~ 
sit(,.
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Figure 1: Two nmdel trees used for computer sinmlation

To illustrate how the probability of current se-
quenc~ is constructed, we take a partic.ular case, which
is shown in Fig.1. In Fig.l, 1.2 and 3 dcnote the cur-
rent DNA sequence data which are assumt~t t.o be A,
G and T resp<x:tively, and 4 and 5 are internal nodes.
If we mssulne that node ,1 and 5 are ba,~ A, the like-
lihood of the branch tt(thc segment from node 4 to
node. 5) is PA..~(/)- Front node 4 up to the corr+.~pond-
ing node 1 and node 2, the probal0ility of [.his pm’t will
be. computed by multiplying the trmlsition probability
during tq mid t.,. Wc compute the probability along
the whole tree in the stone mmmer as the above, and
finally obtain the prol0aloility of whole tree as to one
sit(’ of ~<tuenees, (.lanou,d by:

P°~csit" (leavc = .4, G, T/root - A)

p(t-4)l)(t4l[l)(tl IiD{ t’2 l -
/I-A" .’IT *,’1.1 L*.4A " .,IG.’

In fact. a.s the bas+,~ at internal node ,1 and 5 are un-
known, we take the sum of probabilities of the four
cas(~ and the probability will bc rewritten t0.v:

!̄ I

p,.,,,esitc( 4, (7,’, T) D:fal
= 7rslstTE P(fa!IDf+ p{f2~.|" sasqt sa’q s~C;J"

85 ’:. ] .~4 = I

where st and sT, nlem~ th<, base states ~)[ internal node
4 and 5.

The overall probal)ility for current ,~’quen(’(’s is 
product of the prol~ability obs(’t~,ed base of all sites
under consideration.

Taking the sum [of the ahoy(’ fornmlation of the (’om-
pl+’xity of the (.’a(’h (’()mpon(’I~t of a phyh)gon[’tic tl’[~’,
we have thc total (’onq)h.,xit.v t[) be minimiz[,(l.

tk.’ilr(Sl,’’" : S,. ") -- miu{/((.(c) -t /(i.(t’)
t’,t’

+ la1(D/r,t’)}

mi!,{ IogL(St..--.S../Mr)
V,t

+
v ]

t.
e.-- &m(t 

+ 2 h)gn}.

where S~,’",Se denotes the sequence data, and
logL(S1,.--, Sole’tiT) is likelihood function which ap-
proxinlates empirical KL information of mod(’l with
respet:t to sequence, dal.a.

Computer Simulation

We have used the preliminm’y version of MBC method
to re(’onstruct the phylogenetic trees of Primate and
Mammalian with r[,al DNA sequence data (Rea:
Tanaka+,& Gojobori 1995). Since the exa(’t evolu-
tionary pat.hways of the extant species are usu’,dly un-
known, it is not t)roper to eXanline th(’ eftici(,ncy [of 
tree-making method with real molecular data. Hence,
in this study we emph)y a computer simulation to ox-
atnine the efficien(’y of tlm MBC meth<Jd. The effi-
ciency of MBC method for sele(’ting the correct tr(~
topology is compared with tho,’~: of ML nmthod an(t
AIC method.

Method and Model
The tnethod of the computer simulation used is ms
follows: First, two ot)oh~gi+.’s, a bifurcato tre[., aatd
a trifln’cate tr<m were prepared a,s tit(’ nl<)del tr(’(’s
(shown in fig.2). The both model tr(..es consist 
four ()TUs(sp(,[’i.,s) Second, lh(~ anc(,stral sc(lllon¢’(,
of l()08-bp nu(’hu~tid[.,s was genorat.ed by Monte Carh)
sitntl]ation This sequence was iYqSllnl(,d t.() evolve along

the topologies <.Jr th<’ l)r+~det(a’min[’d model t.rec t<) pro-
&Ice th<.’ seqlleltC[~s [}f four OT1;s at the leaves. In this
simulation, we aSSlllnO that the nu(’h’otido subst itmi[.m
follows a Mark[,v t)r[)ccss an d t he rate of the lm(’h,[ Jt 
stlbstit tltiOli iS all,)wcd to Im vari[’d fr[)ltl <)11¢! ]in(’a~4’ 
tim other lincag[,. Third, th(, phylogen<,tic trees wore
estimatv(I from t tw pSCnol’ated sequon(’es [)f flmr ()’[’ls
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Figure 2: Two model tr~_~s used for computer simulation

by MBC method, AIC method and ML method. This
proeess of the simulation of tr~x~-m’,~ing and recon-
struction by 3 methods were repeated 1000 times. We
develop the programs for reconstructing trees based on
MBC method, AIC method and ML method. In or-
der to compute optimal parameter valu¢~ which attain
the ma.xinlunl likelihood value or mininlum complexity,
our programs employ the DownhiU Simplex method
which is developed by Nclder and Mead (Neldcr 
Mead 1965). For computing the maximmn likelihood
method, we developed our own prog, ram. Based on
this program, we developed the progreans for comput-
ing AIC method and MBC method in which the term
of model complexit.y is added to ML progTam.

Our ML progranl differs from Felsenstein’s PHYLIP
in several points: First, our ML progrmns use
Hasegawa’s model to calculate the nuck~)tide substi-
tution, and the transition(a) mid transversion(3) 
Call he estimated from the data by the programs if
they arc not specified by u~rs. Second, our programs
allow the nlultifurcate tree as the candidates of true
tr(s~. Third, in our programs: the evolutionary times
can be estimated by incorporating the divexgcnce date
of outgroup speeies(who,~’ divergence time is known).
In this study, the sequence d is taken as an outgroup
data and its divergence time was assumed to be 200
Myr (million years) ago fl’om the other species. The
tr(s-~ models and parameter values in the sinmlation
of this study are taken a.s exmnples fronl th,, partitfl
ma~nnr, flian evolution(Human, Boy and mouse).

In this simulation, we only used 40TUs to recon-
struct the phylogenetic trees considering the calcula-
tion thne. In tiffs case, if the base substitution rates(o,
3) are constant, the difference of parameter number be-
tween bifurcate tr(~ and trifurcate tree is very slight (2
and 1). Therefore, tile vmi(.,d base substitution rates
are assumed. In additiom in order to examine the sig-
niticant corrolati,m between the parameter number asl(l

each method, the phylogenetic trees axe estinmted ill
thr(.~ ~ different conditions in which the length of se-
quence n is (1)1008-bp, (2)2016-bp and (3) 3024-bp.

Results

The results under th(.~c thr(~ conditions are shown
from Table 1 to Table 3. Abbreviation is used in the
Tables. As for thc true model, the "bi-model" means
the bifurcate model tree was used to generate the data
for sinaulation, and "tri-model" means the trifurcate
was used to gene.rate the data for simulation. As for
the e.stimated "hi-tree" asld "tri-trec’, they mean the
nmnber of bifurcate tree or trifurcate tree which is es-
timated as true tree mnong 1000 data.

Table 1 shows the r~ults with 1008-bp. In the
case that the bifurcate tree. model is true, ML method
reconstructs the correct tree 976 times when sinl-
ulation is repeated 1000 times and it shows high-
,.~t performance compared with other methods. The
AIC method is a little inferior (953/1000) to the 
method, but it is superior to MBC method(778/1000).
On the contrar).’, in the case when the trifllrcate tree
model is true, the lowest efficiency in reconstructing
the correct tree arc observed(598/1000) in the 
method, whereas the MBC method shows very high
perh)rmance(971/1000). The AIC method still show
an intcrnlcdiate efficiency(771/1000) compared with
ML method and MBC method as well as in the ca.~e
when the bifurcate tree model is true one.

Table 2 shows the results with 2016-bp. Compar-
ing the results of Table 1, all the methods show in-
crease of accuracy. This is be(~use these method are
derived from asymptotic considerations. But the in-
creasing rate of the accuracy of ( .’stimation is slow both
in ML and AIC method, wherea.s MBC method shows
the rapid increase of the accuracy both in the cas(..’s’ of
the bifltrcate and trifurcate model being used.

Table 3 shows the r~ults with 3024-bp. In the
cttse that the bifurcate model is true, ML meth(M and
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Table 1: Simulation results with n=10()8-t)p

ESTIMATED TREE TOPOLOGY
MODEL ML AIC MBC

bi-tree tri-tree bi-tree tri-tree I)i-tr(~ tri-tree
bi- model 976 24 953 47 778 222
tri- model 402 598 229 771 29 971

Table 2: Sinmlation results with n=2016-bp

ESTIMATED TREE TOPOLOGY
MODEL ML AIC MBC

hi-trtx’ tri-|,r(x~ bi-tree tri-tree bi-tree tri-tree
bi- model 998 2 993 7 9q9 51
tri- model 255 745 157 843 15 985

AIC method do not show the incr(’a.q(’ of accuracy any
more(ML: 996/10(10, AIC: 989/100(I), wherea,s 
method still show increase of ~u’cttra(:y(9&l/1000). In
the case that the t rifltr(’ate model is trtle, though "all
methods show the increase of accuracy, hut, as it is
same with Table 2, MBC method shows rapid in-
crea,se of accuracy thasl ML m(’thod and AIC method.
Thus we may conclude that the inodel-hased complex-
ity method shows a good asymptotic nature. On the
other hand, ML and AIC seem not to hay(’ a good
~symptotic property and the I)ia.ses by the difference
of parmneter number is not comp(’nsated so rapid as
in MBC method.

Discussion

ML Method Tends to Choose More
Complex Model

The MBC method not only has a term for the like-
lihood of tile tr(’e, but. also has sonic terms for esti-
mating the tr(~, (’omplexity. so that it ten(ts to ()brain
a minimum complexity tree. If we (rely consid(,r the
case of fully expanded binary tree, complexity terms
do not effect too ninth. Be(’auso, in this (’as(,,the (’an-
didate trees are same with each other in the numh(,r of
parameters of the tree model (such ~s tll(’ number 
nod(~ and branches) ev(,n though they haw, different
tree topologdes. But. in the (’~(, that th(’ tree ha.s 
nmltifurcation, the ML nlothod tends to s(d(’(’t an 
tra comph’xity tr(u.’ (fully expand(,d 1)inary trq~) 
trm, one a.s shown in Tal)le I where NIL method (,sd-
mat(’s binary tr(x~ (102/1000) when tim trifurcate 
is correct. In the c’a.~(.’ of multifur(:al e tree, the nunllwr
of 1)aram(’ters of the t.r(~, mo(M are dilli,rent, but 
ple ML method do(,s not involve the correction term
t.o prev(’nt overfitting by extra comph’xity tree.

On the other hand, MBC method shows r(’latively
poor results when bifurcate tree, whid~ is more c.om-
plex tree, is correct (778/1000), but not so much poor
comparing with the estimation of ML method in the
case that the simple tree is correct. For long DNA
sequences, MBC method provides good results both
in the cases of the bifurcate and trifurcate tree he-
ing correct. Exa(’tly, there are tendencies that AIC
overestimates mid MBC underestimates the numhcr of
parameters, but the bias will be compensated mu(’h
fa.ster in MBC, them in AIC. So, which is the recom-
mended method? We drink MBC is more appropri-
ate thmi AIC fox" the molecular phylogenetic amdysis.
This is be(’ause, in the recent y,ears, the genetic data
is rapidly aecunmlated and it becom(~ more (’(minion
to u,.~: 10,000 or longer ha.s(,s of DNA sequ(,n(’(,s 
molecular phylogenetic analysis, so that MB(’ whi(’h
have good convergence property is considered as the
best method.

Relevancy of Multifurcate Tree

Questions may b(, ndsed about wheth(’r multifuI’cate
evolutionar3." l.r(.~s are l)iolo/4ically relevant. If we rig-
orously think, t.her(~ may not exist strictly simultan(~,us
divcrgen(x~ of sev(’ral sp(wi(’s. But moh"(’ular phyloge-
re,tit two with multifurcation does not insist ()n such
strictly sinmltaneous multiple brant:hint of sp(,(’i(,s. 
stead, it insists that. with (’UIT(.’nI informa|ion av~fil-
able from DNA sequences, we (’ann()t ccm(’lude which
branch ()f the anultifllrt’ate node Sel)arates earlier. 
we S(~I(’ct Olle of these bv all}" unrt.,aSOllabh? ln~tllnel’.

we t)rohal)ly choose a (’rr(m(~)us tr(x’ which brings 
1.)iolot,dcally wrong conclusiolL tlen(’e, tit(, multifur(’at(/
(,v()hltionary trot,, ulld(’rsto()(] in the ab()v(’ s(,nso, 

s~mu,tilnes b(, the only tr(,e ihat is methodoh.)gically
and biologi(:ally inerrant.
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Table 3: Simulation restflts with n-3024-bp

ESTIMATED TREE TOPOLOGY
MODEL ML AIC MBC

bi-tree tri-tree bi-trec tfi-tr(~ bi-t.rec tri-trec
bi- model 996 4 989 11 984 16
tri- model 133 867 82 918 2 998

Other Studies of Evolutionary Tree Based
on Minimum Complexity Principle

Alternative applications of mininmnl complexity prin-
ciple method to (~timate the phylogenetic tr(,~ ~. have
been studied by Cheeseman (Checseman & Kanef-
sky 1992) and Milosavljevid (Milosavljevi( ~ &: Jurka
1993). Although both studies are unique in using MDL
method to molecular phylogenefic problem, they aw
different from ours in definition of evolutionary com-
plexity in that their reconstruction method is primarily
based on the conventional parsimony method (Cavalli-
Sforza & Edwards 1967). In the parsimony method,
minimization procedure is taken with base-by-ba~e
comparison among the sequences of nodes,so t.hat the
global mathematical nature is not so clear. Moreover.
~weral comparative studies about the conventional
mohwular tr(~ reconstruction methods show that par-
simony method is not ~) effe.ctive as other methods
such as mm~:immn likelihood method and neighbor-
joining method (Tateno, Nei and Tajima 1982). Hence:
we could think that MBC-bascd trec reconstruction
method nfight be more proper to be bas(~ on the max-
inmm likelihood method and to improve it.

Conclusion

In this study, the concept of complexity in inductive in-
ference is inv(~stigated more closely in relation t.o math-
ematical modeling ~ul(l model-based (’omt)lexity. Then
we apply this concept to dev(’h)p a new method to (’x-
tract the minimum compl(’xity phylogenetic tr(.~, from
homologous DNA sequences of different, species. This
method describes the molecular phylogenetic tree by
three wrms, which are related to tree t.opology, the
estimati~d parameters and fit.hess between ttw mo(Icl
and data measured by likelihood fun(’lion. The rc-
sultarlt method h~s the good ~symptotic properties
and compensate the bias of the maxinmm likelihood
method when model has a structural variability. The
computer simulation is used for investigation of the ef-
fi(’iency of this method. The results suggest that ~his
method is superior to the traditional method because
it avoids excess-complexity of the tree mo(h.’l in rela-
tion to t t~(.~ amotmt of the inflJrmalion available from

DNA ..~.quences of current species.
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