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Abstract

In this study, starting with a newly introduced
concept of data complexity (" empirical data com-
plexity” ), we specify the concept of complex-
ity more concretely in relation to mathemati-
cal modeling and introduce "model-based com-
plexity (MBC) ”. Inductive inference based on
the minimum model-based comnplexity method is
then applied to the recoustruction of molecular
evolutionary tree from DNA sequences. We find
that minimnum MBC method has good asymp-
totic property when DNA sequence lengths ap-
proach to infinite and compensates the bias of
maximum likelihood method due to the differ-
ence of tree topology complexity. The efficiency
of minimum MBC method for reconstruction of
molecular tree is studied by computer simulation,
and results suggest that this method is superior
to the traditional maximum likelihood method or
its modification by Akaike's AIC.

Introduction

The reconstruction of phylogenetic trees from molecu-
lar data is one of important problems in evolutionary
studv and many methods have been proposed so far.
These methods are mainly divided into two groups:
maxitnum likelihood methods and distance methods.
Both groups of methods, however, have superiorities
as well as defects.

Maximum likelihood method (Felsenstein 1981).
though it is rigorously based on the probabilistic model
of base substitution process along the whole phyloge-
netic trees, has a defect in that maximum likelihood
value itself is conditional on tree topology so that it
cannot, at least in principle, determine the goodness of
assumed tree topology (Nei 1987, Saitou 1988). On the
contrary, the distance methods such as the neighbor-
joining method (Saitou & Nei 1987) which are based
on the distances (number of base substitutions per site)
hetween the homologous DNA or amino-acid sequences
of any pair among the species, have several eriteria such
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as a minimum sum of branch lengths for choosing cor-
rect topology, but they are criticized in that they use
probabilistic model of base substitution only in calcu-
lation of distance between two species, and do not use
it any more in the subsequent reconstruction process
of the whole evolutionary tree.

With this background, we have been engaged to de-
velop a new method which incorporates both of the
superioritics of the ML methods and distance methods
for these years(Ren, Tanaka and Gojobori 1995a;: Ren
ct al. 1995b: Tanaka 1996). In our study, the phy-
logenetic tree reconstruction problem is considered as
a kind of inductive inference to extract the minimum
complexity model from observed data.

In this study we improve our previous method and
give a more exact model of molecular evolution and its
complexity. Specially, (1) we investigate the coneept
of complexity more rigorously in relation to mathe-
matical modeling and define "empirical model-based
complexity”. (2) This model-based complexity is then
applied to the problem of reconstruction of molecu-
lar phylogenctic tree from homologous DNA sequence
of scveral species. (3) The cfficiency of this minimum
modecl-based complexity estimation method for recon-
structing the correct phvlogencetic tree is studied by
computer simulation.

Model-based Complexity

Concept of minimum complexity is often referred in re-
lation to the inductive inference. In the inductive infer-
cnee, there would be many theories which can explain
the given data to the equal extent, so that we would
have to use a certain criterion to select the best one,
In this context, so called "principle of parsimony”™ or
“"minimum complexity principle ™ is often used, which
states that the theory which has the least complex-
ity and nevertheless explains the data well should be
chosen as the first option for true one.

Concept of the complexity of the given data is orig-
inated by Solomonoff (Solomonoft 1964), Kolmogrov
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(Kolmogorov 1963) and Chaitin (Chaitin 1966) in con-
structing algorithmic information theory. They mea-
sure the complexity of data by the length of program
which generates the given data on universal compu-
tation machine (Turing machine).  As is known, the
winimum length program is almost impossible to de-
termine (non-computable).

The subsequent studies such as by Wallace (Wallace
1968), Schwarz (Schwarz 1978) and Rissanen (Rissa-
nen 1978) define the complexity of data in statistical
framework, where they use stochastic model instead of
Turing machine to measure the complexity of gener-
ated data. For example, in Rissanen’s MDL principle,
data complexity is measured by the code length of a
statistical model M, (M) plus code length of data with
respect to the model A7, [(D/Af). Then minimization
procedure is taken by varying the model Al among the
assumed model family.

Our minimum complexity estimation is essentially

same to the Rissanen’s or other similar approach, but
different from theirs in starting with defining “abso-
lute stochastic complexity™ which in principle need not
refer any of statistical model family to describe the
complexity of data. Then we formulate the model-
based complexity which improves several commonly
refered defects of MDL. Anyhow, our starting point
is to formulate the definition of model-based complex-
ity of data.
Definition 1{Model-based complexity)} Suppose
we take some family of model set M = {A /A € I}
(1 is some index set of A) which is supposed to gener-
ate data sequence D = {xy,---,x,}. The model-based
complexity of data is defined as

Kyr(D) = i‘l;f{[((\[)‘) + I\'(D/."I)\)}
RYN

where K (Aly) is an appropriate measure of complerity
defined on the model A\ and K(D/Afy) cannot cr-
plain.

The details of this concept must be specified in ro-
lation to model specification. We start with our defi-
nition of abhsolute stochastic complexity.

Newly Introduced Concept of
Empirical Stochastic Complexity
The well-known definition of stochastic complexity is
Shannon’s one, so that we first start with this defini-

tion, that is

Kan(r) = 3 plrs dogplr).
i
This definition has two problems:

(1)One is the assumption that we have complete knowl-
cdge of the probability density function{PDFY) of the
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data p(x). Burt it is almost impaossible to have a com-
plete knowledge of the data generating PDFE in the real
world.
(2)The second is that we have only finite number of
samples or a part of data among their possible outputs,
so that we can not take summation over the possible
data space like in the definition of Shannon complexity.
Hence, more realistic definition of the complexity,
or cntropy of the data should be provided which only
uses finite number of data without any assumptions
of perfect knowledge about the distribution. We now
introduce a new definition of crapirical stochastic com-
plexity or empirical entropy H,(x) of one dimentional
real valued data of D = {x|.ura, -+, 2, ) as follows.
Definition 2(Empirical Stochastic Complexity)
Let D = {x, 22, . x,} be n real-valued data which
are supposed to be gencrated independently from an
identical unknown probabilistic distribution, then the
empirical complexity of data of n length is defined by,

. 13 T,
H,(x) = - Zlog——

Tn (I( i) )
or, in more succint form,

1 n R
Hy(x) = - Zlog Fnl@ii)

where
“mlTgyy)
r,
and {x(;} is the permnutation of {&;} in the order of
increasing magnitude (order statistics). ¥, (x;,) is the

:."n(-'l'(i)) =

empiricel probability density approrimating “L’I (F), is
empirical distribution function of n real valued datu)

at o, where

mmlrgm) = nil{[(-"(nn"(:))}' g

Yalrn) — m;{I(I4i—l)-~l'(:))}
LR VICTRIF TN
(t=2.--.n 1}

Ylr) = Tlﬁ{f(ﬁn neron)t

and I(a.b) = b - a defines the interval length belween
a and b. Further.

i=1

Remark In the above definition of empivical entropy,
the empirical probability density 2(r;,) is estimated,




based on the fact that the densely scattered arca of
data, where the intervals I(xg;. 1), 2(;;) between the
ncighboring sample points is small, reflects the high
values of empirical probability density, so that we cal-
culate the interval between adjacent points and inverts
it to estimate the probability dense. This is original
motif of the above definition.

Furthermore, following theorem about the consis-

tency of the above definition of empirical complexity
also gives a general idea about why we adopt such kind
of definition.
Theorem 1(Consistency of empirical stochas-
tic complexity) If the empirical distribution function
F, converges to the limiting distribution function F,
which is first order differentiable with respect to z, then
the empirical stochastic complezity H,(x) converges to
Shannon complezity when n — oc, so that we have

Hoo(2) = Ky ().

Proof. On account of the limitation of space. we here

only refer to our previous paper where detailed proof
is given (Theorem 1 in (Tanaka 1996)).<

Thus defined empirical complexity can be calculated
without any assumption of probabilistic structure. If
the data is multidimentional, we can casily extends the
above definition of empirical complexity.

Here we assume the model of the data generating
mechanism M. In defining the model-based stochastic
complexity, empirical version of the relative entropy,
Kullback-Leibler divergence, must be introduced.
Definition 3 (Empirical KL information) Let the
empirical probability of the data D = {z;,---,z,} de-
notes ,(x;). the empirical Kullback-Leibler informa-
tion of D with respect to other probabilistic function
() is given by

Fﬁ;fn(;pi)

KT 1
I (D/p(xn—nzijlog TR

where

5= plr:)

=1

If we model stochastic data generating machinery by
some probability density function p(x), then the empir-
ical stochastic complexity can be given by the sum of
the empirical Kullback-Leibler information of the data
with respect to the model and the complexity of the
model, so that we have the following definition.
Definition 4 (Model-based stochastic complex-
ity) The stochastic complervity of the data D
{xy. - .>,}. when using model M, is given

Kar(D) - inf{K(M) + 1IN (DML,

where K (M) is the complexity of the model and

I (i)

K . l
I(D/M) - nE’:k‘g—p(;r,—/M)'

Remark In relation to the general Definition 1 in
the previous section, the empirical KL complexity cor-
responds to the complexity of data with respect to the
model. Thus, in the empirical context,

K(D/M) — IX"(D/M).

The empirical KL information I¥7(D/M) can be
shown to be essentially equal to the log likelihood of
model M with data D, p(D|M), except for the term
not relating to the model M. Because,

- 1
I"HD/M) = == logp(xi/M)

1 Fp:)'n(‘ri)
- log 22—
+ n ZI: & r,

Thus in our definition of the empirical complexity, 1/n
of the negative log likelihood function is equal to cm-
pirical KL information except for the terms which do
not relate to the model to be selected. This shows the
naturalness of our definition of empirical entropy.

Complexity of Structured Model

In the induction of the mathematical model from data,
the candidate model is not just a simple probabilistic
density function but the one that has a structure with
certain degree of complexity reflecting our knowledge
about the entities gencrating those data. Hencee, when
we infer the best model from the data, we should de-
termine the structure as well as the parameter values.
But structure also can be represented by values of spe-
cial parameters or indices. Hence, we treat two kinds
of parameters: compositional parameters and inferen-
tial paramecters when we determine the model. Each
of the two kinds of parameters define the complexity
of the model.

In this section, we consider the complexity of model
in term of its paramcters. We introduce the distine-
tion and dcfinitions of compositional and inferential
complexity of parameters.

Compositional Complexity

In the ordinary modeling, the model space in which
the best model is to be explored has its own structure
(composed of classes) exhibiting various degree of com-
plexity. To characterize this structure such as a modeal
lattice, we can use some index parameters (Af) which
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define the model classes. We call this kind of parame-
ter as a compositional parameter of model space.

The frequent ways to introduce the measure of comn-
plexity into these classes are: (1) to assign(universal)
prior probability p[¢(Af)] to the cach clement contained
in these classes and uses — log p{€(Af)] as a measure
of complexity for this clement, or (2) to assign the
logarithm of the size (cardinality) of cach j-th classes,
log |M¢|, as complexity measure of the elements con-
tained in that class if the cardinality is finite. If the
cardinality is infinite, we can use e-entropy for suitably
chosen e-net introduced into the model classes.
Definition 5 (Compositional complexity of
model) If the model space has a sequence of subspaces
M¢ which has a strict inclusion relation, that is. A —
MY D M3 D M3 ... which defines the gencralization-
specification hicrarchy into the model space, then com-
plexity of the model m in the subspace M¢ is given by
(1) when M is discrete model space,

K.(m) = log |AI8],
(2)when A is continuous model space,
K.{(m) = log N.(M%),

where N, (M%) is the number of elements of Kol
mogorov £-net covering M and = is given by empirical
precision of dm.

Inferential Complexity

Other than the compositional parameters which spec-
ifics the model class. there are ordinary parameters
which are estimated from data and define a particular
modecl clement in the model class. We call this ordinary
parameter as an inferential parameter 6. There are
several approaches to describe the complexity of infer-
ential parameters.

Well-known is Akaike’s ATC' (Akaike 1977), the half

of which is given by
1 N
5,41(' — ~log L(zx|0) + k,

where & is the number of inferential parameters which
also deseribes its complexity and @ is data and 6 is
maximum likclihood estimation of parameter valyes.

The other approach to inferential parameter com-
plexity is given by Rissanen. In deseribing the total
code length. he added code length for deseribing the
precision of data: the approximate term of {his is given
by

- ; IS
RKarpr, = - log I.(:rl()) + 5 log n
where i is number of samples in data. This termu is also

obtained from the Bayesian view point. In Bayesian
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framework, posterior probability of the model given
data, p(@|x) is proportional to p(x|@)7(0). If we take
negative logarithm of this. then corresponding model
complexity is given by —logn(8). We can use non-
informative prior of parameters by Jeffrey for 7(@).
that is, §logdct I™(8), where IF(8) is Fisher's infor-
mation matrix. This term asviptotically approaches
to _i_,'log n+ O(k), if n goes to infinite. Thus we have
essentially equivalent definition of inferential complex-
ity.

Definition 6 (Inferential complexity of the
model) Let I7(0) be an empirical Fisher information
matriz of the probabilistic model p(x/0) which is given

by "
I;; HOER Z m log p(x/0),
(=1 !

then the inferential complexity of this probabilistic
model is given by

1 .
Kin(6) = sup{5 log det 1(0)}.
M

The sup-operation in the above definition is empiri-
cally often impossible to execute, and besides, in real
application, not all the parameter are independent so
that more feasible definition is to introduce the of-
fective dimension of the parameter space by applying
cigenvector analysis to Fisher information matrix.
Definition 7 (Empirical inferential complexity
of model) The empirical inferential complexity of date
is given by
e— dim(8)
—
where e— dim(8) is effective number of empirically in-
dependent parameter which is given by the number of
parameters whosc corresponding eigen value A; of em-
pirical Fisher information matriz 1{8) satisfies \; <
A*, where A* is threshold to reflect inferential precision
of the parameters.

Usually the components, the sum of the eigenvalues

up to which falls within 95 % of the sum of total cigen-
values are included in the cffective components. Hence,
the total model-based complexity is composed of three
terms which are (1) compositional complexity of the
model, A,.(m), (2)inferential complexity of the model.
K, (m) and (3) empirical KL information between the
data and model, 17 (x/¢. 8).
Definition 8 (Model-based data complexity rep-
resented by parameters) Lel & be the compositional
paramcters and @ be the inferential parameclers. then
modcl-based complexity of data is given by

Ky (D) - lél.lél{[\—l,(ﬁ) +R,(0) FINT(x/E. 0.

I"in (0) = l'.)g n,



Thus, starting from Definition 1, we have reached
the final concrete form of the general model-based com-
plexity definition that consists of three different kinds
of complexitics. We can usc this model-based complex-
ity to extract the model from data by finding the model
which minimize the model-based complexity(MBC).

Reconstruction of Molecular
Phylogenetic Tree

Hercafter we apply the minimum model-based com-
plexity method to the reconstruction of molecular
phylogenetic tree.  In the evolutionary phylogenctic
tree, the model space M7 is decomposed into (1)tree
model (tree topology T, and branch lengths t), and
(2)evolution model (base substitution probability
between two of four bases in DNA during time t along
the trece).

Complexity of Tree Model

The class of the tree topology is determined by topo-
logical paramecters: the number of leaves e and that
of internal nodes v. Following the graph theory, the
number of branches b is related with e and v as

et+v=>b+1.

The phylogenetic tree is a tree with one root and e
leaves, where only v or equivalently b can be varied. We
take v as defining class of tree topology space: the com-
positional parameter of the tree. If v equals 1, we have
a star-shaped tree. According to the increase of the v,
tree becomes more complex. In this case v = e — 1,
we have fully expanded binary tree. The complexity
of natural number v is given by log* v. Even if the
number of internal nodes v is determined, the tree is
not. unique. Rissanen (Rissanen 1989) shows approxi-
mation of possible number of tree topology of the class

e+ v — 2
defined by v is et . If we think cach of these

trees is equally probable, the resultant complexity of
the tree topology is given by

PIE 2
[\-(-(11) 38 l()g* v+ 1()g (F + :_' ) .

The branch lengths of the tree are considered as
paramecters to be estimated in the reconstruction of
phylogenetic tree and can be consider as inferential
parameters of the tree. Branch lengths are also not
arbitrary. If we describe branch lengths in time, for
cxample using Myr as an unit, then cach sum of the
branch lengths along the pass from the root{common
ancestor) to one of the leaves (current species) should
be equal, so that in the given topology independent

components of branch length is ¥ = b — ¢. Thus, the
complexity of branch lengths is given by

€— dim(t')

Kin(t) = =5

logn,

where t = (t1. ...ty ) is the independent component of
branch lengths, n is the length of nucleotide sequence,
and ¢— dim(t)' is the number of efficient cigen vectors
of Fisher's information matrix I7(t').

Complexity of Evolution Model

After the structure of tree is fixed, we need the model
for evolution mechanisi along the tree from the root
to cach leave. Elemental base substitution probability
with time ¢, denoted by {P;;(t)} where ¢,j is one of
the four nucleotides, must be first modeled. We assume
P;;(t) follows Markov process. According to the theory
of Markov process, the probability (I%;) that a base
which is initially in state i changes to state j after
time(¢) have elapsed is given by

{Pij(t)} = exp(Rt),

where i and j represent the one of four bases A,C,G and
T. R is a rate matrix deseribing the number of bases
have changed in a small interval of time of length dt.
This rate R is given by Hasegawa (Hascgawa 1985) as
follows,

~dMy —nga Ted nrd T
Ta3 —3Mp- nra nrd3 e
mad ncaQ —Blgp—nco me i3
Tacx e ud nr3 -y -macx

where a denotes the transition and 8 denotes the
transversion rate. If we think the rates are varied
among branches, we denote them by rate vectors o =
(a),...cep), B = (71, ...0) which are thought to be the
inferential parameters. wa, e, ©r and 7 represent
the overall equilibrium frequencies of base A, C, T and
G, respectively and Iy = w7 + w¢- and Ml = w4 +
e .

This Markov matrix R satisfics two needs for cal-
culating the probability of base substitution: one is
that the transition and transversion rate can be dis-
tinguished, and the other is that the frequency of A,
(. T and G approaches their equilibrium values when
t = oc. In constructing the probability of the observed
sequences given the model from the elemental base sub-
stitution matrix, we follows Felsenstein’s method. We
assume that the evolution is independent at different
sites in the nucleotide sequences. so that the proba-
bility of a given set of data can be computed site by
site.
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Figure 1: Two model trees used for computer simulation

To illustrate how the probability of current se-
quences is constructed, we take a particular case, which
is shown in Fig.1. In Fig.1, 1.2 and 3 denote the cur-
rent DNA sequence data which are assumed to be A,
G and T respectively, and 4 and 5 are internal nodes.

If we assume that node 4 and 5 are base A, the like-
lihood of the branch ¢,(the segment from node 4 to
node 3) is P44 (1). From node 4 up to the correspond-
ing node 1 and node 2, the probability of this part will
be computed by multiplying the transition probability
during ¢, and t,. We compute the probability along
the whole tree in the same manner as the above, and
finally obtain the probability of whole tree as to one
site of sequences, denoted by:

Peresitc(feque = A, (G, T/root — A)

o 1[) h 1)(?4)[1)“‘111)(?:)_

In fact, as the bases at internal node 4 and 5 are un-
known. we take the sum of probabilities of the four
cases and the probability will be rewritten by:

1
Pun(-‘ecite(‘_‘,(:.T) — Z )‘f'ﬂz P{f.u I—,f 1—;({—»\J

8z 21 g4=1

where sy and s; mean the base states of internal node
4 and 5.

The overall probability for current sequences is a
product of the probability observed base of all sites
under consideration.

Taking the sum of the above formulation of the com-
plexity of the cach component of a phylogenctic tree,
we have the total complexity to be minimized.

K (S) .50 min{K.(v) +4 Kot
r.t

+ INED/e )

lllil]l{ log L(S,.---.S, /"_-\[.I.]
.t
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+ [l()g* v+ log ((’. + 1; B 2)]

- dim(t")
2

where S),---, S, denotes the sequence data, and
log L(S1.- -+, Sc|M7) is likelihood function which ap-
proximates empirical KL information of model with
respect to sequence data.

logn}.

Computer Simulation

We have used the preliminary version of MBC method
to reconstruct the phylogenetic trees of Primate and
Mammalian with real DNA sequence data (Ren
Tanaka, & Gojobori 1995). Since the exact cvolu-
tionary pathwavs of the extant species are usually un-
known, it is not proper to examine the cefficicney of a
tree-making method with real molecular data. Hence,
in this study we cmploy a computer simulation to ex-
amine the efficiency of the MBC method. The ofli-
ciency of MBC method for sclecting the correct tree
topology is comparced with those of ML method and
AIC method.

Method and Model

The method of the computer simulation used is as
follows: First, two topologies, a bifurcate tree and
a trifurcate tree were prepared ag the model trees
(shown in fig.2). The both model trees consist of
four OTUs(species). Second, the ancestral sequence
of 1008-bp nucleotides was generated by Monte Carlo
simulation. This sequence was assumed o evolve along
the topologies of the predetermined maodel tree to pro-
duce the sequences of four OTUs at the leaves. In this
stimulation. we assume that the nucleotide substitution
follows a Markov process and the rate of the nucleotide
substitution is allowed to be varied from one lincage to
the other lincage. Third, the phylogenctic trees were
estimated from the generated sequences of four OTUs



Bifurcate tree

tS

Trifurcate tree

Figure 2: Two model trees used for computer simulation

by MBC method, AIC method and ML method. This
process of the simulation of tree-making and recon-
struction by 3 methods were repeated 1000 times. We
develop the programs for reconstructing trees based on
MBC method, AIC method and ML method. In or-
der to compute optimal parameter values which attain
the maximum likelihood value or minimum complexity,
our programs employ the Downhill Simplex method
which is developed by Nelder and Mead (Nelder &
Mead 1965). For computing the maximum likelihood
method, we developed our own program. Based on
this program, we developed the programs for comput-
ing AIC method and MBC method in which the term
of model complexity is added to ML program.

Our ML program differs from Felsenstein's PHYLIP
in several points:  First, our ML programs usc
Hascgawa’s model to calculate the nucleotide substi-
tution, and the transition{a) and transversion(3) rate
can be estimated from the data by the programs if
they are not specified by users. Second, our programs
allow the multifurcate tree as the candidates of true
tree. Third, in our programs, the evolutionary times
can be estimated by incorporating the divergence date
of outgroup species(whose divergence time is known).
In this study, the sequence d is taken as an outgroup
data and its divergence time was assumed to be 200
Myr (million years) ago from the other species. The
tree models and parameter values in the simulation
of this study are taken as examples from the partial
mammalian evolution(Human, Bov and mouse).

In this simulation. we only used 4 OTUs to recon-
struct the phylogenetic trees considering the calcula-
tion time. In this case, if the base substitution rates(ca,
) are constant, the difference of parameter number be-
tween bifurcate tree and trifurcate tree is very slight (2
and 1). Thercfore, the varied base substitution rates
are assumed. In addition, in order to examine the sig-
nificant correlation between the parameter number and

cach method, the phylogenctic trees are estimated in
three different conditions in which the length of se-
quence n is (1)1008-bp, (2)2016-bp and (3) 3024-bp.

Results

The results under thesc three conditions are shown
from Table 1 to Table 3. Abbreviation is used in the
Tables. As for the true model, the "bi-modcl” means
the bifurcate model tree was used to generate the data
for simulation, and "tri-model” means the trifurcate
was used to generate the data for simulation. As for
the estimated "bi-tree” and "tri-trec”, they mean the
number of bifurcate tree or trifurcate tree which is es-
timated as true tree among 1000 data.

Table 1 shows the results with 1008-bp. In the
casc that the bifurcate tree model is true, ML method
reconstructs the correct tree 976 times when sim-
ulation is repeated 1000 times and it shows high-
est performance compared with other methods. The
AIC method is a little inferior (953/1000) to the ML
method, but it is superior to MBC method(778/1000).
On the contrary, in the case when the trifurcate tree
model is true, the lowest cfficiency in reconstructing
the correct tree are observed(598/1000) in the ML
method, whercas the MBC method shows very high
performance(971/1000). The AIC method still show
an intermediate efficiency(771/1000) compared with
ML method and MBC method as well as in the case
when the bifurcate tree model is true one.

Table 2 shows the results with 2016-bp. Compar-
ing the results of Table 1, all the methods show in-
crease of accuracy. This is because these method are
derived from asymptotic considerations. But the in-
creasing rate of the accuracy of estimation is slow both
in ML and AIC method, whercas MBC method shows
the rapid increase of the accuracy both in the cases of
the bifurcate and trifurcate model being used.

Table 3 shows the results with 3024-bp. In the
case that the bifurcate model is true, ML method and
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Table 1: Simulation results with n=1008-bp

ESTIMATED TREE TOPOLOGY

MODEL ML AIC MBC
bi-tree  tri-tree  bi-tree  tri-tree  bi-tree  tri-tree
bi- model 976 24 953 47 778 222
tri- model 402 H0R 229 771 29 971
Table 2: Simulation results with n=2016-bp
ESTIMATED TREE TOPOLOGY
MODEL ML AIC MBC
bi-trce  tri-tree  bi-tree  tri-tree  bi-tree  tri-tree
bi- model 998 2 993 7 949 51
tri- model 255 745 157 843 15 985

AIC method do not show the increase of accuracy any
more(ML: 996/1000, AIC: 989/1000), whercas MBC
method still show increase of accuracy(984/1000). In
the case that the trifurcate model is true, though all
methods show the increase of accuracy, but, as it is
same with Table 2, MBC wmcthod shows rapid in-
crease of accuracy than ML method and AIC method.
Thus we may conclude that the model-based complex-
ity method shows a good asymptotic nature. On the
other hand, ML and AIC seem not to have a good
asymptotic property and the biases by the ditference
of parameter number is not compensated so rapid as
in MBC method.

Discussion

ML Method Tends to Choose More
Complex Model

The MBC method not only has a term for the like-
lihood of the tree, but also has some terms for esti-
mating the tree complexity. so that it tends to obtain
a minimum complexity tree. If we only consider the
case of fully expanded binary tree, complexity terms
do not effeet too much. Because, in this casethe can-
didate trees are same with cach other in the number of
parameters of the tree model (such as the number of
nodes and branches) even though they have different
tree topologics. But. in the case that the tree has a
multifurcation. the ML method tends to select an ex-
tra complexity tree (fully expanded binary tree) as a
true one as shown in Table 1| where ML method esti-
mates binary tree (102/1000) when the trifurcate tee
is correct. In the case of multifurcate tree, the number
of parameters of the tree model are different. but sim-
ple ML method does not involve the correction term
to prevent overfitting by extra complexity tree.
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On the other hand, MBC mecthod shows relatively
poor results when bifurcate tree, which is more com-
plex tree, is correct (778/1000), but not so much poor
comparing with the estimation of ML method in the
case that the simple tree is correct. For long DNA
sequences, MBC method provides good results both
in the cases of the bifurcate and trifurcate tree be-
ing correct.  Exactly, there are tendencies that AIC
overestimates and MBC underestimates the number of
parameters. but the bias will be compensated much
faster in MBC than in AIC. So, which is the recom-
mended method? We think MBC is more appropri-
ate than AIC for the molecular phylogenctic analyvsis.
This is because, in the recent vears, the genetice data
is rapidly accumulated and it becomaes more common
to use 10,000 or longer bases of DNA sequences for
molecular phylogencetic analysis, so that NMBC which
have good convergence property is considered as the
best method.

Relevancy of Multifurcate Tree

Questions may be raised about whether multifurcate
evolutionary trees are biologically relevant. If we rig-
orously think, there may not exist strictly simultaneous
divergence of several species. But moleenlar phyloge-
netie tree with multifurcation does not insist on such
strictly simultancous multiple branching of species. In-
stead, it ingists that. with current information avail-
able from DNA sequences. we cannot conelude which
branch of the multifurcate node separates carlier. 1f
woe seleet one of these by any unrcasonable tmanner,
wo probably choose a erroneous tree which brings also
biologically wrong conclusion. Henee, the multifurcate
evolutionary tree. understood in the above sense. may
sometimes be the only tree that is methodologically
and biologically incrrant.



Table 3: Simulation results with n=3024-bp

ESTIMATED TREE TOPOLOGY

MODEL ML AIC MBC
bi-tree  tri-tree  bi-tree  tri-tree  bi-tree  tri-tree
bi- model 996 4 989 11 084 16
tri- model 133 867 82 918 2 998

Other Studies of Evolutionary Tree Based
on Minimum Complexity Principle

Alternative applications of minimum complexity prin-
ciple method to estimate the phylogenctic tree have
been studied by Cheeseman (Checseman & Kanef-
sky 1992) and Milosavljevié (Milosavljevié & Jurka
1993). Although both studies are unique in using MDL
method to molecular phylogencetic problem, they are
different from ours in definition of evolutionary com-
plexity in that their reconstruction method is primarily
based on the conventional parsimony method (Cavalli-
Sforza & Edwards 1967). In the parsimony method,
minimization procedure is taken with base-by-base
comparison among the sequences of nodes,so that the
global mathematical nature is not so clear. Morcover,
several comparative studies about the conventional
molcecular tree reconstruction methods show that par-
simony method is not so effective as other methods
such as maximum likelihood method and neighbor-
joining method (Tateno, Nei and Tajima 1982). Hence,
we could think that MBC-based tree reconstruction
method might be more proper to be based on the max-
imum likelihood method and to improve it.

Conclusion

In this study, the concept of complexity in inductive in-
ference is investigated more closely in relation to math-
cmatical modeling and model-based complexity. Then
we apply this concept to develop a new method to ex-
tract the minimum complexity phylogenetic tree from
homologous DNA sequences of different species. This
method describes the molecular phylogencetic tree by
three terms, which are related to tree topology. the
estimated paramceters and fitness between the model
and data measured by likelihood function. The re-
sultant method has the good asvmptotic properties
and compensate the bias of the maximum likelihood
method when model has a structural variability. The
computer simulation is used for investigation of the of-
ficieney of this method. The results suggest that this
method is superior to the traditional method because
it avoids excess-complexity of the tree model in rela-
tion to the amount of the information available from

DNA sequences of current species. !
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