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Abstract

In bacterial cells, gene expression is regulated
by multiple sigma factors, each of which has its
promoter specificity, according to their condi-
tions. Thus, if we can discriminate which sigma
factor binds to the upstream region of a given
coding sequence, we can predict in what con-
dition it will be expressed. In this paper, we
show this approach is feasible for the analysis of
Bacillus subtilis genome. Based on our collec-
tion of known promoter sequences, we prepared
8 predictors to characterize known sigma factors
using the hidden Markov model and their pre-
diction accuracies were estimated with a cross-
validation test. Furthermore, we predicted the
sigma-dependencies for each of 1415 candidate
genes in the genome. Our prediction results are
experimentally testable and seem useful for the
post-sequencing project.

Introduction

Since a number of bacterial genomes have been se-
quenced, there are great demands for practical compu-
tational methods to interpret their biological contents.
Although it is relatively easy to locate their candidate
genes (Yada & Hirosawa 1996), it is very difficult to
infer their function when no similar sequences were
found in databases. In this paper, we propose a new
approach for the interpretation of bacterial genome se-
quences: prediction of gene function from its regula-
tory sequences (a pioneering work has been done in
yeast (Fondrat & Kalogeropoulos 1994)).

It is well-known that all bacterial genes are not ex-
pressed all the time; their expression is regulated with
respect to various conditions. As for its molecular
mechanism, the use of multiple sigma factors seems
the most fundamental. Sigma factor is a subunit of
RNA polymerase that determines its promoter speci-
ficity (Lewin 1994). For example, when a bacterium is
in the condition of high temperature, it synthesizes a
specific heat-shock sigma factor and then RNA poly-
merases synthesize the mRNAs of genes dependent on
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Table 1: Functions of Genes Dependent on Bacillus
Sigma Factors *

Function
Housekeeping / early sporulation
General stress response
Expressed in postexponential phase
Chemotaxis/autolysin/flagellar related
Expressed in early mother cell
Expressed in early forespore
Expressed in late forespore
Expressed in postexponential phase;
competence and early sporulation
Expressed in late mother cell
Degradative enzymes
* Adopted from (Haldenwang 1995) with modification
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this factor. Thus, if we can predict which genes are de-
pendent on a specific sigma factor from the sequence,
we can predict the condition of their expression re-
gardless of our knowledge on their coding region. In
Bacillus subtilis, one of the most well-studied bacteria,
9 sigma factors have been cloned as listed in Table 1
(Haldenwang 1995), in addition to at least 3 other po-
tential sigma factors (N. Ogasawara, personal commu-
nication). Unlike Escherichia coli, B. subtilis under-
goes a morphological change called sporulation (Figure
1). When starved, the cell first becomes compartmen-
talized into two parts, the mother cell and the fore-
spore, and subsequently the latter becomes the dor-
mant spore. During these processes, there is a cascade
of gene activation using mulliple sigma factors. Thus,
several classes of genes must be specific for develop-
miental stages and/or cell types.

Although computational recognition of bacterial
promoters has been studied for many years. most of
them were on E. coli promoters dependent on o0,
Bacillus promoters for all sigma factors appear to share
their basic architecture with this class of promoters;
there are two relatively conserved sequence elements
around the positions —35 and —10, respectively, and
their distance is rather long. varying in several bases.
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Figure 1: Sporulation processes of B. subtilis. {a) First,
the septum divides the cell into the mother cell and the
forespore. {(b) Next, the spore is engulfed and is surrounded
by the spore coat. During these processes, some stage- and
cell-type-specific sigma factors are activated. (c) After the
lysis of the mother cell, the spore is released.

Because of the existence of this large gap, it is dif-
ficult to directly apply standard pattern-recognition
techniques such as the weight-matrix method. In
this study, we used the hidden Markov model, HMM
(Krogh et al. 1994; Yada, Sazuka, & Hirosawa in print-
ing), with which we can naturally treat the gap region.
Since another difficulty for promoter recognition is the
existence of extensive false positives (Horton & Kane-
hisa 1992), we tried to avoid this problem by restricting
the search region. In this paper, we report how the dis-
crimination of sigma-factor binding sites can be useful
to predict the gene function identified in a large region
of genomic sequence.

Materials and Methods

Data Collecticn and Preprocessing

A set of promoter sequences were collected for each
sigma factor from the literature (Table 2). Most of the
collected promoters were experimentally verified but
some of them were adopted by sequence homology only.
To make up for the small size, promoter sequences for
homologous factors of other bacteria were also included
for 0B, ¢P, and oL. Our collection were used as the
training data and are available upon request.

As for the test data, upstream non-coding sequence
segments starting from position —1 of any annotated
gene (ORF, tRNA, or rRNA) of length 200 bp at most
were collected from the 1.4 Mbp genomic sequence
determined by the Japanese Bacillus genome project.
When there is no intergenic sequence in the upstream
region, it is treated as “no promoter” (173 cases). Most
of them are likely internal genes within operons. The
total number of the test data was 1415. Their match-
ing with the training data was examined using the
BLASTN program (Altschul et al. 1990).

To construct HMMs, collected promoter sequences
were multiply aligned using the tree-based round-robin
iterative algorithm (Hirosawa et al. 1995). Then, the
significance of conservation was tested at each position
using a x? test. The threshold significance used was

Table 2: Summary of Collected Promoters. In the
2nd column, numbers after the plus sign means the ones
adopted from other species; In the 3rd column, typical con-
served segments corresponding to the -35 and -10 regions
are shown rather arbitrary.

Number Consensus pattern
o factor ¢ 4ata -35 spacer (bp) -10
a? 142 TTGA 14 TGNTATAATA
b 10+ 1 GTTT 16 GGGTAT
P 114+ 18 MTAAAST 12 TGCCGATAW
oF 18 KCATANT 14 CATACANT
o7 /aC 15 GNATAA 17 CANANTA
o 10 AGGATNT 14 GAAT
& 13 ACM 16 CATANNNT
ok 3+ 8 TGGCAC 5 TTGCNT

0.1 % for o4-dependent promoters, whose number is
exceptionally large, while 1.0 % was used for the others.

Hidden Markov Model

Based on the alignment of the maximum segment, an
HMM was built for each sigma factor. Its basic archi-
tecture is shown in Figure 2. It is a tied, left-to-right
HMM without internal loops. Corresponding to posi-
tion ¢ of the alignment where the conservation is sig-
nificant, two kinds of states, a match state M; and a
deletion state D; were prepared. On the other hand,
in position j where the conservation is insignificant,
an insertion state I; and a deletion state D; were pre-
pared. M; and I; output the four symbols A, C, G,
T. To avoid over-learning, the output symbol distri-
bution of insertion states were tied and their initial
values were set to the base frequency of each insignif-
icant region. Other initial parameter-values were also
defined from the conditional probabilities calculated
from the alignments in the way described in Yada et al.
(in preparation) and they were further optimized using
the Baum-Welch algorithm. Note that our model is de-
signed to restrict the number of adjustable parameters
to almost the same level with a weight matrix when
transitions to the insertion states are not occurred in
the significant regions.

Given a sequence segment, every subsegment whose
logarithmic likelihood exceeds a pre-defined cut-off
value is reported for each HMM using “local search”,
based on the Viterbi algorithm. To compare the values
for HMMs corresponding to different sigma factors, the
likelihood z; ;j of a subsegment j detected by HMM 1
is transformed to a z-score z,HJ (z,”g = (zi; — Xi)/si,
where the mean value X; and the standard deviation
s; were calculated from the genomic data). When
HMMs are applied to potential regulatory regions in
the genome, this z-score was modulated according to
the distance from the starting site of the downstream
coding region. We assumed that the distribution of
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Figure 2: Architecture of HMM. Circles, squares, and
diamonds represent match, deletion, and insertion states,
respectively.

5’ UTR length, i.e., the length of untranslated region
between the initiation sites of transcription and trans-
lation, follows the Poisson distribution (see Results).
Thus, for a subsegment at the position of distance L;,
the z-score for the positional effect is calculated with
this formula, zP. = (L; — p;)/\/Bi, where p; is the av-
erage distance between the 3’ end of HMM i and the
5 end of the downstream coding region. Finally, we
defined the score z; of sigma factor i for a given gene
as z; = max; {z; — —|zP [}

Estimation of Predictability

To estimate the discrimination ability for these HMMs,
a cross validation test was performed. For o#- and
P -dependent promoters, one-tenth of the data and
2 sequences, respectively, were randomly chosen as a
test set in each trial. These trials were repeated un-
til each sequence is selected 10 times on average. For
the other promoters, 1 sequence was used for a trial.
The predictability was evaluated both from the sen-
sitivity and the specificity. For the sensitivity eval-
uation, two criteria were used. In the “Approximate”
criterion, cases are counted to be correct when the cor-
rect HMM marks a larger likelihood than its minimum
value in the training data. In the “Rigorous™ criterion,
cases are counted to be correct when the correct HMM
marks the maximum z-score among the scores of all
HMMs and when it satisfies the former condition. For
the specificity evaluation, averaged number and stan-
dard deviation of apparently falsely-responded HMMs
per gene is calculated for each class of data although
our data are still likely to include yet-uncharacterized
promoters.

Results and Discussion
Estimation of Predictability

Among the sigma factors in Table 1, o€ was not con-
sidered because its in-vivo recognition sites are still
unknown, while the oF- and ¢¢-dependent promoters
were combined into one class because their recogni-
tion sites seem to largely overlap. Table 2 summarizes
our data used. Except for o4~ and ¢”-dependent pro-
moters, their data sizes are rather small and data for
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Table 3: Results of Cross Validation.

o factor Appi?:bltl;{itéomus Specificity
o 992 % * 83.0% * | 0.99 £ 0.93
of 54.6 % 54.6 % 0.82 %+ 0.39
aP 87.9 % 83.5 % 0.83 + 0.84
oF 55.6 % 55.6 % 1.33 £ 0.75
o fa® | 600%  60.0% 1.73 £ 0.93
o 50.0 % 50.0 % 1.10 £+ 0.70
o 61.5 % 61.5 % 1.46 + 0.50
ot 72.7 % 72.7 % 0.73 £ 0.75
Total 85.2 % 75.5 % 1.05

* Standard deviations on approximate and rigor-
ous criteria are 2.7% and 8.3%, respectively.

oP and of largely include the sequences from other
species. Some positions other than the so—ca.lled 35
and —10 regions were also conserved in o#- and o-
dependent promoters whlch are large in size. The con-
servation degree of the ol-dependent promoters ap-
peared to be the highest. Based on the derived align-
ments, 8 HMMs were constructed. The changes of the
parameter values from their initial values were rather
small during the optimization procedure.

The cross validation test was performed as described
above. The alignments were rather stable in many
cases when sequence(s) of test data were excluded.
In Table 3, the results for the sensitivity are shown.
The results were identical in the two conditions ex-
cept for 04 and oP and the ranking of sensitivity
roughly reflects the ranking of data size. Since we do
not know the relative frequency of various promoters
in the genome and since we have not characterized all
sigma factors yet, the exact estimation of total pre-
dictability is difficult. If we simply estimate it by the
ratio of correct predictions, they were 85.2 % and 75.5
% for the “Approximate” and “Rigorous” conditions,
respectively (for 04 and o”, average numbers were
used). Table 3 also shows the result for the specificity
evaluation. The oL promoters, again, show a marked
result probably due to their strong conservation. All of
sporulation-specific promoters (c®, oF' /0%, and o)
show lower specificity. It is likely that their recogmtlon
sequences more or less overlap like the of'- and o%-
dependent promoters which we treated as one group.
Such similar recognition sequences clearly provide the
bacteria with a subtle way of controlling the gene-
expression level in sporulation. Considering the pos-
sibility of multiple recognition-sites, our result seems
rather satisfactory. Moreover, since the ¢ and o?
both of which are relatively abundant in data smeb.
show better sensitivity, we can expect that the fu-
ture growth of our training data will improve the pre-
dictability significantly.



Table 4: Sample Prediction Result for Each Sigma Factor.

o factor Rank Score Gene Description

o 11 2.35 yfhN expression induced by environmental stress

o? 16 1.81 tipC methyl-accepting chemotaxis protein.

of 5 268 nucB sporulation-specific extracellular nuclease precursor.

¥ /a® 12 220 ygW  similar to SamB protein for UV protection and mutation
of 10 1.97 yyaA strong similarity to spo0J

of 2 2.72 gerKA spore germination protein GerKA

ol 2 4.33 yfiK probable acetoin dehydrogenase subunit

Application to Genomic Data

We applied the obtained HMMs to the sequences of up-
stream region taken from the genomic data. We first
examined the positional distribution of 67 promoters
involved in both the training data and the genomic
data. 85 % of the data were distributed under the
5'UTR length 125 and the average in this range, 45.7,
seems to fit the Poisson curve well. Based on this ob-
servation and the fact that about 50 bp is needed for
HMMs, we used a2 maximum length 200 bp when we
extract the upstream non-coding sequence.

Each upstream sequence was evaluated by § HMMs
and their z-scores were subtracted by the z-scores rep-
resenting the positional effect; we confirmed that the
result is not drastically changed even if we omit this
term (data not shown). In Table 4, a typical result not
involved in the training set is shown for each sigma
factor except 0. For example, since o mainly regu-
lates genes related to chemotaxis, the prediction that
the t{pC gene is regulated by o seems very likely. Al-
though some genes were apparently contradicting our
training data, it is possible that they are only the re-
sults for unknown alternative promoters.

Concluding Remarks

Previous attempts to detect the binding sites of vari-
ous sigma factors have been “at best problematic and
sometimes misleading” (Harwood & Wipat 1996). In
this study, to some extent, we could overcome this sit-
uation (1) by collecting as many promoters as possi-
ble and re-evaluating the alignments (2) by using the
HMM that is far more elaborate than “eye-balls” (3)
by restricting the search area based on the statistical
analysis and (4) by performing a systematic analysis
of genome-scaled data.

We are now studying the entire E. colt genome
with the same approach. Further incorporation of our
knowledge on other activators/repressors and the col-
laboration with the groups of B. subtilis and E. coli
post-sequencing projects will be promising for our un-
derstanding of the gene-regulation network.
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