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Abstract
A Bayesian procedure for the simultaneous alignment

and classification of sequences into subclasses is
described.  This Gibbs sampling algorithm iterates
between an alignment step and a classification step.  It
employs Bayesian inference for the identification of the
number of conserved columns, the number of motifs in
each class, their size, and the size of the classes.   Using
Bayesian prediction, inter-class differences in all these
variables are brought to bare on the classification.
Application to a superfamily of cyclic nucleotide-binding
proteins identifies both  similarities and differences in the
sequence characteristics of the five subclasses identified
by the procedure: 1) cNMP-dependent kinases, 2)
prokaryotic cAMP-dependent regulatory proteins, CRP-
type, 3) prokaryotic regulatory proteins, FNR-type, 4)
cAMP gated ion channel proteins of animals, and 5)
cAMP gated ion channels of plants.

Introduction   

Modern high-throughput sequencing technologies and
genome sequencing projects have greatly accelerated the
growth of the sequence databases.  This expansion  has
led to the need for more sensitive and efficient methods of
classifying proteins computationally, so that more specific
inferences can be made about the structures and functions
of specific classes of proteins.

Several databases of aligned collections of proteins
(protein families) have been developed, such as Blocks
(Henikoff et al., 1996), PROSITE (Bairoch et al., 1997),
and Pfam (Sonnhammer et al., 1997).   Identification of
family membership using these databases can be very
useful for  prediction of putative biological function of
unknown sequences.   Several methods to create such
databases have been developed: Hidden Markov Model
(HMM; Krogh et al., 1994), neural nets (Wu, 1996), and
Gibbs sampling (PROBE; Neuwald et al., 1997).   Protein
families often consist of many proteins that share some
common characteristic(s), such as binding of a small
molecule; alignments produced by the methods listed
above provide valuable information about the family and
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its shared features. However, such families often include
many subclasses based on more specific functions which
the current database and methods do not differentiate.  For
example, the Ras family in Pfam contains several
subfamilies, including the Ras, Rab, and Rho subfamilies
(Casari et al., 1995). Therefore, protein family
classification becomes important to separate the proteins
within a family into subfamilies, thus providing
researchers with a better understanding of the specific
functional and structural characteristics of the
subfamilies.  Since there is no universal agreement on the
definitions of the terms superfamily, family, and
subfamily, we will call the starting group of sequences
input into a classification procedure a collection and the
output groups subclasses.
 Phylogenetic tree reconstructions are the most popular
method for classifying proteins into related groups, but
these methods focus on evolutionary relatedness rather
than on the sequence characteristics that distinguish
subclasses (Golding & Felsenstein, 1990).  Classification
through  principle components, a frequentist statistical
method,  has been described by Casari, et al. (1995).
Classification is achieved by projections of high-
dimension sequence space onto a small number of
principle components. While this procedure has a number
of useful features, it has two important limitations: 1)
classification is limited by the amount of information
captured in the principle components, accordingly there
can be substantial loss of  information, and 2) since the
classification is based on the principle components of the
entire aligned class, differences of aligned subclasses are
not available to the classification procedure.

Recently, it has been shown that Bayesian statistics
offers several advantages for the analysis of biopolymer
data (Zhu et al., 1997; Liu & Lawrence, 1998; Lawrence
tutorial).  Specifically, Bayesian inference and model
selection methods provide a sound means to relax or
eliminate the need to specify parameter settings, and to
make inference on all unknowns in a problem.  Here, we
describe a Bayesian procedure which classifies a
collection of sequences into subclasses and multiply
aligns the members of each subclass. These Bayesian
methods yield inference about many important variables
for each subclass, including the number and sizes of
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subclasses, the number and sizes of motifs, and the
number of conserved columns.

Methods

We begin our classification with any collection of
sequences.  Most often this collection will represent a
diverse family or a superfamily of proteins which share
some common sequence characteristics stemming from
common functional or structural features.   Often these
collections will contain subclasses.  The goal of this
procedure is to classify the collection into subclasses and
to identify the similarities and differences in the sequence
characteristics of the subclasses.  To achieve this goal, we
employ a procedure which iteratively aligns the subclass
sequences and re-assigns sequences to the post-classified
subclasses.  Alignment is carried out by using a recently
developed Bayesian multiple sequence alignment tool,
PROBE (Neuwald et al., 1997).  Classification is achieved
by using the predictive update version of the Gibbs
sampler (Liu et al., 1995),  which employs an algorithm
similar in principle to the motif sampler described by
Neuwald, Liu and Lawrence (Neuwald et al. 1995; Liu et
al., 1995).  The models used in these procedures are
identical with those used by PROBE (Neuwald et al.,
1997) which describe a multiple alignment by a product
of multinomial models for the aligned positions while the
remaining positions are modelled by a single multinomial
model: the “background”.

A collection of sequences is said to be classified when
every sequence in the collection is assigned to one   of
M max subclasses.   Let M1,2,... = M j max  be an

assignment variable which indicates to which subclass
sequence j has been assigned.  Also let p)|MP( j  be

multinomially distributed with parameters
)p,...p,p( = p M21 max
, and let

)R,...R,R( = R jt,j2,j1,j t][1,
  be the j-th sequence,  with

the length of t, in the sequence collection R. The
alignment model used here is an extension of block based
Gibbs sampling models (Lawrence et al., 1993; Neuwald
et al., 1995; Liu et al., 1996; Neuwald et. al., 1997).
Accordingly, the alignment of any sequence Rj can be
described by a vector of the indices  which specify  the
first position in each block, )A,...A,A( = A jk,j2,j1,j

where k is the number of blocks in the model, and the k-th
block has a length of lk.

The algorithm proceeds by iterating between an
alignment step and a classification step.  The alignment
step begins with the sequences assigned to subclasses.
For each subclass the sequences are aligned using the
propagation algorithm (Liu and Lawrence, 1996; Neuwald
et al., 1997).   The MAP criterion is employed to
determine the number of blocks and the number of
conserved columns for the model that fits each subclass

(Neuwald et al.,1997).  The fragmentation procedure is
employed to allocate conserved positions within and
across motifs and to infer the width of each (Liu et al.,
1995; Neuwald et al., 1997).

The classification step  uses the predictive update
version of the Gibbs sampler (Liu et al., 1995).   As with
all Gibbs sampling algorithms the process advances by
iterating through the sequences one at a time. At any point
in the iteration it begins with all the sequences assigned to
subclasses and multiply-aligned within each subclass.
Sequences are removed from the models one at a time,
either in successive order or via sampling.  In  the  current
iteration  assume that sequence j  is  withdrawn.   Let

A(m)
[j]  be  the  alignment  of all the sequences in subclass

m with possible exception of sequence j which may have
been removed from this subclass.

The Bayesian procedure which re-assigns sequence j to
a subclass is based on joint probability of the sequence j
and its alignment, i.e.

 )Am)P( = MR,A,A|RP(

 = m) = M,R,A|A,RP(

jj[j][j]jj

j[j][j]jj
(1)

 where
m) = M,R,A,A|RP( j[j][j]jj

 is obtained by predictive inference (Liu et al., 1995).
Historically the so-called entropic explosion in the
number of alignments with increasing number of gaps has
been treated by assigning gap penalties.  Zhu, Liu and
Lawrence (1997) have recently shown, using a Bayesian
approach, that the  more direct approach of discounting
alignments with k gaps inversely  proportional  to the
number of alignments with k gaps, is an alternative which
shares some advantages over  the  historic approach.

Accordingly,   here we set  
N

1
 = )AP(

m,A j
j  , where

N m,A j
  is the number of alignments of sequence j to the

model describing subclass m.
The probability that sequence j belongs subclass m is

obtained from equation (1) as follows:

 
m)=M,R,A|RP( 

m)=M,R,A|RP(

 = )R,R,A|m=MP(

j[j][j]jM

j[j][j]j

j[j][j]j

∑

(2.a)

 where

   m)=M,R,A|A,RP( 

= m)=M,R,A|RP(

j[j][j]jjA j all

j[j][j]j

∑
(2.b)

The sum in equation (2.b) is obtained recursively in the
following manner. Given the alignment of k blocks in the
subsequence R[1,t]=R1,R2,…,Rt. There are only two
possibilities for extension to t+1 residues: 1) residue Rt+1



belongs to the background model, or 2) Rt+1  becomes the
last residue in the k-th block. Because these two situations
are mutually exclusive and exhaustive, the probability of
finding t+1 residue in sequence Rj with k blocks is the
probability sum of the above cases:

P)|2+l-t=AP(*1)-k=KP,|RP(

+k)=KP,|RP( = k)=KP,|RP(

kjk,j 1]+l k-t[1,

j t][1,j 1]+t[1,
(3)

Using this basic recursion, we sum over all alignments in
a manner similar to the sum forward step of the
propagation recursion (Liu and Lawrence, 1996) to
complete the summation in equation (2.b). Sequence j is
now assigned to a subclass, say subclass m’, by sampling
in proportion to the probabilities given by equation (2.a).
Re-assignment back to the subclass from which it was
drawn is permitted.

Once sequence j has been sampled into subclass m’, its
data must be incorporated into the model describing
subclass m’.  This requires its alignment with the
subclass, which is obtained by using a recursive back
sampling procedure similar to the forward step of the
recursion.  With this sequence added to the alignment of
subclass m’,  the process is repeated until the collection is
exhausted.

After this re-classification, each of the subclasses is re-
aligned using the propagation algorithm.  Sometimes the
initial collection will contain sequences that are too
closely related. Sequence weighting (Henikoff et al.,
1994)  or purging (Neuwald et al., 1995) can be employed
to address this problem. Here we employ a purging
strategy.  Since a subclass often is characterized by
sequences that are more closely related than the collection
from which it was derived, an adjustment in the purge
level is made. The algorithm iterates between the
alignment and classification until convergence.  These
two steps together simultaneously build the alignments of
each subclass and the assignment of sequences to
subclasses in proportion to the posterior probability of
class membership.

The most important product of this process is the
characterization of the sequence similarities and
differences between the subclasses.  These are obtained
by comparing  the posterior Dirichlet distributions of
residue probabilities of the subclasses. Since Bayesian
inferences are applied separately to each subclass, the
subclasses often differ in the number of motifs, size and
alignment of each motif, and the conserved columns in
the alignment.

As shown in the results, the subclasses can contain
motifs that are common to the entire collection and other
motifs which are only present in a subset of classes.
Motifs which are specific to subclasses  describe sequence
characteristics which distinguish them from the rest of the
subclasses.  These often describe distinctive structural
and/or functional characteristics.  While motifs common
to the entire collection tend to describe common features,

subclasses may still differ within these motifs as well.
These differences are reflected in the posterior Dirichlet
distributions’ residue probabilities of the subclasses.  We
have found sequence logos to be a useful tool to display
these differences (Schneider and Stephens, 1990).

Results

As a test case for Classifier, we examined putative cyclic
nucleotide (cNMP) binding proteins.  The cyclic
nucleotides cAMP and cGMP are second messengers -
changes in the intracellular concentration of these small
molecules are caused by the activation of adenylate and
guaninylate cyclase, respectively, which occurs in
response to an extracellular signal (Alberts et al., 1994).
Binding of cAMP or cGMP to target intracellular proteins
then triggers a change in the activities of those target
proteins.  cAMP acts as a gene regulation signal in
prokaryotes (Kolb et al., 1993).  The cAMP-binding
proteins are homodimers that bind DNA non-specifically,
but undergo an allosteric change upon binding 2
molecules of cAMP (one to each monomer).  The cAMP-
protein complex is a highly specific DNA-binding protein
that regulates transcription initiation.  Cyclic nucleotides
mediate their effects in eukaryotic cells primarily by
activating cAMP-dependent protein kinases (Su et al.,
1995).  These kinases exist as heterotetramers composed
of two catalytic and two regulatory subunits in the
inactive state.  When the regulatory subunits bind 4
molecules of cAMP (2 to each regulatory monomer), the
catalytic subunits are released from the complex and are
thereby activated to phosphorylate substrate proteins.  A
small group of cGMP-dependent protein kinases have also
been identified in eukaryotes which act as homodimers,
and for which the kinase activity and cGMP-binding
activity are present on the same polypeptide.  The only
other proteins known to bind cyclic nucleotides in
eukaryotes are a small group of gated ion channels in
sensory neurons responsible for cell depolarization in
response to external stimuli.

Existing computational methods do not divide the
cNMP-binding protein superfamily into subclasses or
identify sequence similarities and differences that
distinguish the subclasses within the superfamily.  The
PROSITE database (Bairoch et al., 1997) contains two
motifs describing the cNMP-binding domain, both of
which are present in each of the proteins described above.
Pfam (Sonnhammer et al., 1997) defines a superfamily of
cNMP-binding proteins that was developed from a seed of
32 cNMP-binding sites and includes (in the full
alignment) sequences from 41 different proteins with 67
cNMP-binding sites; this family has representatives from
all of the types of proteins described above.  Separately,
Pfam defines a family of 26 prokaryotic regulatory
proteins related to Escherichia coli CRP, a cNMP-binding
regulatory protein; this Pfam pattern describes only the
helix-turn-helix DNA-binding motif possessed by all
members of this family of prokaryotic regulatory proteins.



We started our analysis with Streptomyces griseus P3, a
protein of unknown function that is expressed only during
sporulation of the bacterium.  When P3 was compared to
the PROSITE database, a potential cNMP-binding site
was identified only by allowing one mismatch in each of
the PROSITE cNMP-binding motifs.  When compared to
the Pfam database, P3 was again identified as having a
potential cNMP-binding domain, but with a low bit value
score (25.12).  We identified a collection of 114 proteins
using PROBE (Neuwald et al., 1997), given the S. griseus
P3 sequence (gi|1196910) as the seed and using the non-
redundant database (NCBI).    The collection of proteins
identified by PROBE as having motifs in common with S.

griseus P3 contained representatives from all of the
known types of cNMP-binding proteins.  The PROBE
model consisted of four motifs, three of which appeared
to correspond to the cNMP-binding region, based on the
PROSITE and Pfam motifs and comparisons to the
proteins of known structure in the group, E. coli CRP
(PDB accession 3GAP; Kolb et al., 1993) and bovine
KAP0 (PDB accession 1RGS; Su st al., 1995).  This group
of 114 proteins became our cNMP-binding protein
superfamily.  Sequence logos for motifs 2 (part of the
cNMP-binding domain) and 4 of the superfamily model
are shown in Fig. 1.
 Because the proteins in the superfamily appeared to

Figure 1.  Sequence logos for motifs 2 (top) and 4 (bottom) of the cNMP-binding protein superfamily.  There were 114
proteins in the original collection identified by PROBE.  The sequence logos were produced using a BLAST cutoff of 150,
which includes 24 sequences.  Motif 2 represents a region common among the subclasses of this superfamily; three
conserved glycine residues involved in β barrel formation are shown (positions 2, 13, and 17), as well as the glutamate
that is involved in cNMP binding (position 18).  Motif 4 extends from position 1 to position 33; the last 11 positions have
been truncated to improve readability.



belong to approximately three separate subfamilies we
randomly divided our collection into three subclasses.
Therefore, the sequences of all three subfamilies were
fairly evenly distributed across the subclasses.
Application of the Classifier to these three groups, using a
purge cutoff of 150,  yielded one empty subclass and two
occupied subclasses. The first of these consisted of
primarily kinases and channel proteins, while the second
subclass consisted of primarily kinases and the
prokaryotic regulators; therefore, it appeared that the
prokaryotic regulators were separated from the channel
proteins, but that the kinases remained divided between
these two subclasses.  Each of the two subclasses were
then randomly divided again, resulting in 4 subclasses.
Classifier was applied again to these 4 groups, but with
purge cutoff of 250; at convergence, four subclasses
remained with four distinct models.

One of the subclasses contained only 5 proteins, all of
which are ion channel proteins from plants.  Another of
the subclasses contained 27 proteins; most are known or
predicted ion channel proteins from animals, though 5 are
proteins of no known or predicted function.  These
unknowns included 3 hypothetical protein sequences from
the genomes of the eukaryotes, Caenorhabditis elegans
and Saccharomyces cerevisiae, as well as 1 sequence
from the chloroplast genome of the algae Porphyra
purpurea and 1 sequence from the genome from the
prokaryote Alcaligenes eutrophus.  We have focused on
the remaining two subclasses, which contained the
eukaryotic kinases and the prokaryotic gene regulatory
proteins, respectively, in part because each contains a
protein sequence for which the structure has been solved.

Both E. coli CRP and bovine KAP0 form a flattened β
barrel structure, which is a major part of the cAMP-
binding site (Kolb et al., 1993; Su et al., 1995), and
contain 5 highly conserved glycine residues that are
important for the formation of the β barrel.  These
glycines are evident in motifs 1 (positions 11 and 23) and
2 (positions 2, 13, and 17) of the prokaryotic regulatory
protein subclass (Fig. 2).  Highly conserved glycine
residues also appear in the eukaryotic kinase subclass
motifs discussed below.  In fact, these residues illustrate a
motif common to all the subclasses of our superfamily.

The prokaryotic regulatory protein subclass contained
44 proteins, all of which are of prokaryotic origin and
many are known to bind to DNA and regulate
transcription.  Of these, 5 have no known or predicted
function; the remaining 39 proteins are described as
members of the CRP/FNR family of regulatory proteins,
for which only the CRP proteins are known to bind a
cyclic nucleotide.  The model for this CRP/FNR subclass
contained 5 motifs.  The first 3 motifs of this model
correspond to the first 3 motifs of the superfamily model,
and therefore to the cNMP-binding region.  Motif 2 of this
subclass, which corresponds to motif 2 of the superfamily
model, had been noticeably modified, however.
Refinement of the cNMP-binding region to better describe
the prokaryotic regulatory protein subclass is reflected in

the stronger conservation of the glycine-arginine-
glutamate residues at positions 2-4 and the relaxed
conservation at position 18 (Fig. 2, motif 2) relative to the
corresponding positions in the superfamily model (Fig. 1,
motif 2 positions 2-4 and 18).  Additionally, motif 5 of
this CRP/FNR subclass is unique to this group of proteins
and encompasses the helix-turn-helix motif that is
responsible for DNA binding (Fig. 2); this motif
corresponds to motif 4 of the superfamily model (Fig. 1).
Again, modification of this motif was apparent when
positions 9, 13, 14, and 17 of motif 4 in Fig. 1 was
compared to positions 13, 17, 18, and 21 of motif 5 in Fig.
2.  The indicated positions in motif 5 of the subclass are
important for the formation of the helix-turn-helix; the
glycine (Fig. 2; motif 5 position 13) is part of the turn and
the other positions are involved in DNA binding.  In the
subclass model, these positions exhibit clear conservation,
whereas in the superfamily model, conservation at these
positions is relaxed due to the inclusion of protein
sequences from the kinases and channel proteins, which
do not contain a helix-turn-helix.  Therefore, this
represents a motif unique to this subclass.

The 44 proteins in the prokaryotic regulatory protein
subclass (CRP/FNR subclass) were further classified by
randomly dividing the group into three subclasses and
applying Classifier with a purge cutoff of 500.  At
convergence, three subclasses remained: a CRP subclass
containing 14 proteins, a FNR subclass containing 28
proteins, and a subclass containing 2 proteins, both of
which are hypothetical (i.e., translations of DNA
sequence) and so are of unknown function.  The CRP
subclass contained E. coli CRP and related proteins that
likely bind a cyclic nucleotide, and the FNR subclass
contained E. coli FNR (which is also a transcription
regulation protein) and related proteins that are believed
to be regulated by a mechanism other than cNMP
(Fischer, 1994).  These subclasses have 2 motifs in
common: one in the region of the 5 glycines necessary for
β barrel formation, and one in the region of the helix-turn-
helix.  These motifs show no significant differences from
the corresponding motifs of the CRP/FNR parent model
(Fig. 2).  The difference between these two subclasses
resides in the sequence motif downstream of the
conserved glycines.  Both subclasses have significantly
conserved motifs in this region; these motifs do not,
however, resemble each other (not shown).  Of particular
interest is a conserved arginine, known to be important for
interaction of E. coli CRP with cAMP (Kolb et al., 1993),
that is present in the CRP subclass model, but not present
in the FNR subclass model.

The kinase subclass contained 38 proteins, most of
which are known kinases.  Only one protein in this
subclass is of unknown function, a hypothetical protein
sequence from the genome of C. elegans.  The cNMP-
binding kinases bind 2 molecules of cyclic nucleotide per
monomer (Su et al., 1995), which resulted in a kinase
subclass model that contained two very similar cNMP-
binding motifs.  The final model for the kinase subclass



Figure 2.  Sequence logos for motifs 1 (top), 2 (middle), and 5 (bottom) of the prokaryotic regulatory protein (CRP/FNR)
subclass of cNMP-binding proteins.  The BLAST cutoff was raised to 1000 to include enough sequences for the sequence
logos, because the sequences are more closely related in a subclass.  Motifs 1 and 2 show the five conserved glycines of the
β barrel (see text).  Motif 5 is a distinctive motif for this subclass, and represents a helix-turn-helix motif; the highly
conserved glycine of the turn is at position 13, and the highly conserved glutamate and arginine at positions 17 and 21 are
involved in DNA contacts (Kolb et al., 1993).  The first 9 positions of motif 1 and the last 15 positions of motif 5 have
been truncated to improve readability.



contained 7 motifs, of which motifs 4 and 6 corresponded
to regions known to be important for cNMP binding,
based on the structure of the bovine kinase, KAP0.  These
regions correspond, in part, to motif 2 of the superfamily
model.  The eukaryotic kinase cNMP-binding motifs are
in Fig. 3, and show the strongly conserved glutamate  and
arginine residues, which distinguish the cNMP-binding
pocket and have been shown by Su et al (1995) to be
involved  incNMP binding (Fig. 3, motif 4 positions 5 and
14, motif 6 positions 6 and 15).  In addition, these two
kinase  motifs show two of the highly conserved glycine
residues that   are important for β barrel formation (Fig. 3,
motif 4 positions 1 and 4, motif 6 positions 1 and 5), as
well as a relatively strong conservation of hydrophobic
residues immediately following the conserved glutamate
(Fig. 3, motif 4 positions 6-9, motif 6 positions 7-10);

these hydrophobic residues are not conserved in the
cNMP-binding region of the prokaryotic regulators and so
are not included in that model (Fig. 2, motif 2).
Additionally, it could be expected that the two cNMP-
binding regions of the kinases might differ, based on the
evidence that when a molecule of cAMP binds to a
regulatory subunit of a heterotetrameric kinase, allosteric
changes occur in the protein structure that allow
cooperative binding of the second molecule of cAMP (Su
et al., 1995).  Indeed, the two motifs are significantly
different, p ≤ 2-11 (signed test).  However, from these data
we cannot determine if the differences reflect
structural/functional constraints or phylogenetic ancestry.

Based on the sequence number found for the above four
subclasses, estimation of the proportions of the collection
that belong to each subclass are as follows: 1) 33% for

Figure 3.  Sequence logos for motifs 4 (top) and 6 (bottom) of the kinase subclass of cNMP-binding proteins.  The
BLAST cutoff was raised to 1000 for the same reason as in Fig. 2. Positions 5 and 14 of motif 4 and positions 6 and 15
of motif 6 are the conserved glutamate and arginine residues involved in cNMP binding (Su et al., 1995).



kinase, 2) 38% for prokaryotic regulatory proteins (32%
for CRP and 62% for FNR), 3) 24% for ion channel
proteins from animals, and 4) 5% for ion channel proteins
from plants.

Discussion

The classification procedure we have described utilizes
iterations between a multiple alignment step and a
classification step, and simultaneously updates all model
parameters (including that of block numbers, block width,
column position and amino acid composition for each
column), as well as class membership. An important,
distinct feature of this algorithm is that equation (2)
incorporates all these inter-class differences in the
variables for improved classification, via recent Bayesian
prediction inference.  This is a dynamic process based
only on the sequence data, no manual interference is
involved and no prior information about any of the model
parameters is provided.

The example illustrates the application of this
procedure to classifying the cNMP-binding protein
superfamily into subclasses.  The original collection
contained proteins with a common motif that represented
a common structural/functional feature, the β barrel.  We
have demonstrated that this procedure is able to identify
differences between the subclasses of this superfamily;
this was illustrated by differences in the common motifs
between subclasses, as well as the identification of motifs
unique to subclasses.  Additionally a protein of unknown
function, S. griseus P3, was classified with the FNR
subclass of bacterial regulatory proteins, illustrating the
use of this technique to classify unknown protein
sequences that do not convincingly belong to a known
superfamily.

The results also illustrate some limitations.  From the
biological data, we believe that the heterotetrameric and
homodimeric kinases constitute two separate but related
subfamilies.  Yet they were not separated by this analysis,
likely because too few protein sequences for the
homodimeric kinases are available in the database to
allow a separate model for these proteins to develop.
Also the estimated proportion of sequences in each
subclass is a reflection of the numbers of these in the
non-redundant database.  For the present, these estimates
have little meaning because they are biased in the
direction of the interests of the community of sequencing
labs.  As more complete genomic sequences become
available, these proportions will gain biological meaning.
The results shown here are an application of the Bayesian
Classifier to a set of proteins that constitute a relatively
small superfamily.  Future tests of the Classifier will
include test cases of larger collections of proteins.

Additionally, for the cNMP-binding protein example,
uninformed priors were used, i.e., the probability of each
sequence belonging to each class was treated as equally
likely.  In many cases, however, information about a
target protein's biological characteristics is available from

experimental data. Therefore, for future work, informed
priors will be integrated into the classification procedure,
which could lead to more precise results.

Recent reports indicate that Bayesian inference is a tool
of considerable value for many bioinformatics problems.
The results presented here indicate that it shows good
promise in the classification of protein sequence
collections into subclasses.
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