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Abstract

Computing three-dimensional structures from sparse
experimental constraints requires methods for combining
heterogeneous sources of information, such as distances,
angles, and measures of total volume, shape, and surface.
For some types of information, such as distances between
atoms, numerous methods are avaijlable for computing
structures that satisfy the provided constraints. It is more
difficult, however, to use information about the degree to
which an atom is on the surface or buried as a useful
constraint during structure computations. Surface measures
have been used as accept/reject criteria for previously
computed structures, but this is not an efficient strategy. In
this paper, we investigate the efficacy of applying a surface
measure in the computation of molecular structure, using a
method of probabilistic least square computations which
facilitates the introduction of multiple, noisy, heterogeneous
data sources. For this purpose, we introduce a simple purely
geometrical measure of surface proximity called maximal
conic view (MCV). MCYV is efficiently computable and
differentiable, and is hence well suited to driving a structural
optimization method based, in part, on surface data. As an
initial validation, we show that MCV correlates well with
known measures for total exposed surface area. We use this
measure in our experiments to show that information about
surface proximity (derived from theory or experiment, for
example) can be added to a set of distance measurements to
increase significantly the quality of the computed structure.
In particular, when 30 to 50 percent of all possible short-
range distances are provided, the addition of surface
information improves the quality of the computed structure
(as measured by RMS fit) by as much as 80 percent. Our
results demonstrate that knowledge of which atoms are on
the surface and which are buried can be used as a powerful
constraint in estimating molecular structure.

Introduction

The primary means for determining molecular structure
remains high resolution X-ray crystallography and nuclear
magnetic resonance (Blundell& Johnson, 1976; Markley &
Opella, 1997). However, some molecules are difficult to
study with these techniques, and so structural information
must be gathered using a variety of experimental means.
Distance information is obtained from chemical cross-
linking (Harris et al, 1994), enzymatic and chemical
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protection experiments (Powers & Noller, 1995), and
fluorescence energy transfer. Volume and shape
information can be obtained from small angle scattering
(Glatter, 1979), and surface/buried information can be
obtained from solvent accessibility (Lane & Jardetzky,
1985) or sensitivity to chemical probes (Moazed et al,
1986).

Methods for handling distance information are the most
mature, including distance geometry algorithms (Crippen &
Havel, 1988), rtestrained molecular dynamics methods
(Nilges et al, 1988), and our method of probabilistic least
squares estimation (Altman, 1995; Chen et al, 1996). The
representation of non-distance information is more
problematic, however. Some experimental techniques
yield information that a particular atom is near the surface
of a molecule, or is buried and relatively inaccessible. The
representation of surface/buried information cannot
unambiguously be translated into a set of distances, and so
distance-based algorithms need to have additional pre- or
post-processing modules to handle these constraints. Our
method of probabilistic least squares was designed
specifically to allow the introduction of multiple, noisy,
heterogeneous data sources. The method uses probability
theory to combine sources of evidence with different
degrees of reliability. The main requirements of the
probabilistic least squares estimation technique are that (1)
each constraint must be represented as a deterministic
function of the coordinates of the structure being computed
(plus an additive noise term as described in next section),
and (2) the function should be differentiable, so that the
algorithm can conduct a search of conformational space
based on the gradient.

In this paper, we investigate the addition of a measure of
surface proximity in our computation of ‘molecular
structure. While numerous surface measures have been
defined, none seemed ideally suited for our purpose. The
commonly used measure of solvent accessibility of
individual atoms (Connolly 1985, Kabsch and Sanders
1983) provides a sensitive characterization of atoms on the
molecular surface, but was not designed to differentiate
between buried and deeply buried atoms. All buried atoms
have a solvent accessibility of zero. In addition, since
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infinitesimal movement of any of the atoms does not
change the solvent inaccessibility of the buried atom, the
derivative of such a function is zero as well, and a gradient
based method would gain no information on how to move
such atom towards the surface of the molecule. Other
measures focus on the total surface area, a critical
parameter for computing solvation energy; these include
Arteca et al 1988, F. Eisenhaber, P. Argos 1993 G. Perrot
et al 1992, Sridharan et al 1994 and Eisenhaber et al 1995,
and an extensive overview of these by Connolly 1996, to
mention just a few. These measures do not provide a
surface measure for each individual atom.

We introduce a new measure of surface proximity called
the maximal conic view (MCV, illustrated in Figure 1).
The measure, as we will show, is efficiently computable,
continuous and differentiable in the interval [-1,1], and well
suited for our computations. The surface proximity of a
point is measured by the degree to which a point has an
unobstructed view beyond the borders of the molecule,
looking out into the surrounding media. Formally, for any
atom X, we determine the widest circular cone with apex at
X (and axis extending to infinity in one direction) which
does not include any other points in the structure. The
entire "view" as determined by the cone is hence
unobstructed by any other point. Our measure of the view
is defined as the cosine of the angle between the axis of the
cone and a ray originating at the apex along the surface of
the cone. A limiting value of 1 hence denotes a point that
is completely buried, for which the widest cone of view
reduces to a line. A value of O represents a cone that
delimits a half plane and corresponds to a “"wide" and
"unobstructed" view (all points in the structure lie on one
side of the half plane). We also extend our measure to
cover a cone that is even larger and "flips over”. In
particular, a value approaching -1 corresponds to a point
situated at the tip of a thin peninsula and having virtually a
360-degree view of the surrounding media. We can also
capture the occurrence of pockets on the surface by
allowing a cutoff radius which limits the relevant
environment of a point X. MCV bears some similarity to
the solid angle measure defined by Connolly (Connolly
1985), but differs in several important ways as it was
designed for a different purpose. Connolly places a (very
small) sphere of fixed radius around an atom on the
surface, and measures the solid angle corresponding to the
portion of the sphere that lies inside the protein. His
method is sensitive to detecting changes in surface shape,
but Would assign a solid angle of 360 degrees to any buried
atom. In addition, his measure is also considerably more
expensive to compute, which is not surprising as it was not
designed to be used in structure estimation. Connolly’s
solid angle measure has been applied to rigid body docking
(Hendrix & Kuntz 1998).

Our measure does not treat surface atoms differently from
internal atoms and uses a continuous measure to
characterize their surface proximity. It is easily

differentiable, and is thus well suited to gradient-based
search methods, such as is employed by our probabilistic
least squares algorithm. We present an initial validation of
our measure showing that it correlates with the commonly
used ‘“solvent accessibility” measure (Lee & Richards,
1971). We have also performed experiments in estimating
structure from a set of synthetic distance constraints with
and without surface information. We show that surface
measurements produce improved structures when added to
a baseline set of distance information. The benefits of the
surface information are not overly sensitive to the accuracy
of the provided measurements, and the value of the surface
information seems to be highest when 30—50% of short-
range distances (simulating a typical NMR data set) are
provided. We conclude that our measure is useful for both
analysis of structure, as well as for computation of structure
using constraints on the degree to which a subset of atoms
are buried or on the surface.

Methods

We summarize the method for probabilistic least-squares
estimation which has been described in detail previously
(Altman, 1995; Chen et al, 1996). The atomic coordinates
of the molecule are represented by an n-dimensional state
vector

X=X, Y502 oo X0 ¥, 2,), (1

where p = n/3 is the number of atoms. In addition, we
maintain the state covariance matrix, C, which contains the
variances of each atomic coordinate along the diagonal and
covariances between atomic coordinates in the off-diagonal
entries. The covariances are a linearized summary of the
manner in which changes in one coordinate affect another.
An observation or constraint on the molecule is modeled by
a deterministic function h of the state vector and a
Gaussian noise term v, with zero mean and a variance
which reflects the uncertainty in the value of the constraint
z:

z=h(x)+v. (2]

A common type of experimental data is near-neighbor
distances from NMR measurements. Such a constraint
may be modeled in the following form,

z; =h(x)+v =\/(X; —x)+ -y, Pz - v 3]

The left-hand side, Z, is the observed value of the distance
between atoms i and j; A, is a function which computes the
distance between two points and therefore relates the
observation to the underlying state of the system; and
v~ N(O,R) denotes the uncertainty in the measurement.
The uncertainty usually depends on the source of the
distance information. For NMR measurements, the
variance of v may be 1—2 A’, while for cross-linking

Schmidt 149




measurements, the variance may be 4—20 A’. In general,
an observation z may be vector-valued, and the functional
dependency of h on the state vector x may be sparse (as in
a distance constraint, which involves 6 coordinates) or
dense (such as in the overall volume of a molecule, which
involves the coordinates of all the atoms).

The probabilistic least squares algorithm used in these
experiments transforms a collection of noisy observations
into optimal (in the least squares sense) mean atomic
positions and associated uncertainties. The least squares
criteria measures the difference between the target mean
value (z in equation 2) and the computed value, h(x), and
divides this distance by the standard deviation of the noise
term, thus producing an error measure that is sensitive to
the variance in the measurement. Starting with an initial
guess x;, and uncertainty estimates C;, (usually an
uncorrelated covariance  matrix), this  algorithm
sequentially processes the observations on the molecule,
producing a series of improved structures and uncertainty
estimates until the constraint set is exhausted. For each
constraint or vector of constraints, both the state-vector, x,
and the covariance matrix C(x) are updated using a
Bayesian update formula borrowed from the optimal
filtering literature (e.g. the Kalman Filter, Gelb, 1984).
Because of the nonlinearities in h, the cycle of constraint
application needs to be iterated. In particular, the updated
value of x and C(x), based on a new measurement, z, with
variance, R, is given by:

x_ = x,,+ K(z-h(x)) [4]
C(x,,) =C(x,) -KHC 5]

Where
K=C(x )HMHCH +R)" [6]

is the equivalent of the Kalman gain matrix, and balances
the uncertainty in the measurement with the uncertainty in
the current state-vector in order to provide a weight to the
update term. The matrix, H, is the matrix of partial
derivatives of h(x), with respect to the state-vector, and is
given by:

H = Sh(x)/6x. (71

Thus, the H vector (or matrix, if h(x) is vector-valued)
allows the method to search along the gradient of the
function describing the constraint. In general, h(x) is
nonlinear in x, and so H is evaluated at the current x to
provide a linearized summary of the gradient. The update
equations given above are optimal when h(x) is linear, but
when it is not, they produce an improved, but imperfect
updated value of x. In practice, we iterate the application
of constraints to the improved estimates of x until it
converges to a value that satisfies all (or most) of the
constraints by the least squares criterion.  Detailed
discussions of the theoretical basis of the algorithm have
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been published (Gelb, 1984; Stengel,1994) as have
empirical demonstrations of its performance (Altman,
1996; Liu et al 1992; Pachter et al, 1990). The method is
not absolutely immune to local minima, but the use of the
covariance matrix during search ensures that atoms move
in a concerted fashion (based on their covariance), and
some strategies analogous to simulated annealing have been
used to allow the search space to be explored more robustly
(Altman, 1996). The update equations in equations 4
through 7 are quite general, and can be used for any
constraint represented as a function of the vector of
coordinates, x. The task of adding a new type of constraint,
such as the maximal conic view, therefore, entails encoding
the new constraint as a new function h__(x), and providing
its partial derivative for the computation of H. The task of
using a new constraint requires that the program be
provided target mean values and variances.

Maximal Conic View

Our measure for quantifying the degree to which a
particular point is on the surface of a collection of points is
based on the intuition that a point that is on the surface
should have a wide view of the surrounding media, while a
point that is buried will have only small angles of view
towards the surrounding (the outside of the structure).
Figure 1 illustrates in two-dimensions the notion of
measuring the size of the maximal “cone” of view to assess
the degree to which an object is on the surface. In two
dimensions, if we think of a collection of points as houses
on an island, we are looking for the widest, unobstructed
“ocean view” from each house. In some cases, there may
be an unobstructed “bay view”, and so we include a cutoff
radius that defines the maximum distance for a point to be
considered obstructing another.

The computation of the MCV function is quite simple and
differs somewhat for cones with positive and cones with
negative MCV values. We observe that the largest cone for
atom X remains unchanged when all neighboring points are
projected onto a unit sphere centered at X. At this point, it
suffices to consider finite cones whose apex is X and whose
limiting circles lie on the unit sphere. A cut along this
limiting circle would remove a section of the sphere which
does not contain any points. Computing the largest such
cone is therefore tantamount to determining the largest
section that can be removed from the sphere in a single cut
without removing any of the points. The computation for a
point of interest X proceeds as follows:

1. All points within the cutoff radius are projected onto the
unit sphere centered at X.
2. The convex hull of the projected points is computed.

If X is inside the convex hull (the removable section is
less than half the sphere and the cone is a "real cone”)
then
The cut along the limiting circle of the cone is always
along a facet of the convex hull.



The distance from X to each facet of the convex hull is
computed and the facet with minimum distance reported.
This distance corresponds to cos(Q), (where O is the
angle between the axis of the cone and a segment from
the apex to the limiting circle of the cone.)

Else if X is not inside the convex hull (the removable
section is greater than half the sphere and the cone is an
"inverted cone")

then
The best cut does not necessarily go along a facet of the
convex hull but might go along a circle determined by
only two points on the same facet. In either case the
limiting circle is readily determined by examining all the
hull facets, and our measure is  again
cos(t), corresponding to the negative distance from X to
the cut surface.

Note that although the computation of the MCV function
examines all points within the cutoff range of X, the actual
value of the function is eventually determined by four
points; the point X and the three points which determine the
closest facet of the convex hull (with the following three
exceptions: the closest facet contains more than 3 points;
there are equidistant closest facets to X; the limiting circle
of the cone is supported by two projected points only). The
partial derivatives of the MCV are readily expressed
analytically and their computation very efficient. The
derivative is zero for any atom other than X that is not in
the closest facet(s). For the central atom X, and for the
atoms that form the closest facet on the convex hull, the
derivative can be computed analytically, and is basically
the derivative of the cosine of the conic angle in the three
Cartesian directions. Due to symmetry considerations these
derivatives can be computed by a single procedure. These
derivatives guide the procedure for updating the positions
of a set of points using constraints on the surface or buried
status of some or all of the points.

Preliminary Evaluation of Maximal Conic View

The goal of our first set of experiments was to ensure that
our measure correlated roughly with known measures of
surface. We computed the MCV for a set of atoms from a
myoglobin crystal structure (PDB entry 1lmba), and
compared these with a well established solvent accessibility
surface algorithm, used by the DSSP program (Kabsch &
Sander, 1983). Surface accessibility is defined for each
amino acid in the structure, while our measure is defined
for each atom. To obtain a meaningful comparison we
computed, for each amino acid in the structure, both the
average value as well as the minimum value of our MCV
function over the atoms within the amino acid. (Note that
the minimum MCYV value corresponds to the widest cone.)
We compared both values to the solvent accessibility
measures provided by DSSP.

Using Maximal Conic View for Structure
Computations

The primary aim of our second set of experiments was to
gauge the utility of our surface measure as a constraint on
the position of atoms during a structure computation,. We
start with a series of small sets of short-range distances, not
enough to uniquely determine a 3D structure. The goal of
the experiments was to compare the quality of structures
produced from these distances alone, with the quality of
structures produced using these distances augmented with
information about the surface proximity of some of the
atoms. For our test case, we used the CO. atoms backbone
of a myoglobin (PDB entry Imbd, 153 residues), and
extracted sets of between 20% and 55% of all short-range
(up to 10 A) distances within the Co, skeleton. We
examined the effectiveness of adding surface constraints
along two independent directions: abundance and accuracy.
We chose 38 atoms with the most extreme DSSP surface
accessibilities (<10 or >170) for the small data set. The
large data set contained the most extreme 75 DSSP ACC
values (<40 or >140). For each set of data, we created two
versions: one set with exact MCV values of the targeted
atoms, and another set with an estimation of the MCV
values based on the linear correlation with the DSSP
measures. The data sets with the exact values were
designed to evaluate the ability of our algorithm to use the
MCV constraints to produce improved structures (as
compared to structures computed based on distances alone).
For an unknown structure, of course, exact surface values
would not be known, but would be estimated by
experimental methods. The data sets with predicted values
were therefore designed to evaluate the sensitivity of the
method to noisy data. We first computed structures based
on the distance data sets alone and then computed
structures based on these distances with each of the four
surface constraint data sets.

Results

Figure 2 shows the relationship between solvent
accessibility as used in the DSSP program and both the
average as well as the minimum MCV value from atoms
within each amino acid. For the comparison with solvent
accessibility, the correlation coefficient using the average
MCYV value was -0.83, and the correlation when using the
minimum MCV value was -0.91. Solvent accessibility
correlates better with the minimum value of MCV among
the atoms within an amino acid. This is not surprising: for
an amino acid near the surface of the molecule, several
atoms in a large side chain might not have a very large
unobstructed view of the surrounding media, due to the
interspersion of its side chain atoms. Some of the side
chain atoms, however, will have such views. Conversely,
amino acids in the hydrophobic core of a protein will
generally all be packed into the molecule, and none of them
will have an unobstructed view.
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FIGURE 1

The Maximal Conic View (MCV) measure of surface. A set of points is shown, along with

the maximum cone that can be drawn representing a "clear view" of the surrounding media. Buried points have a
small maximal cone for viewing the media. Points on the surface have a large cone, or even an inverted cone.
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FIGURE 2

A scatter plot of our conic view function versus surface accessibility for the amino acids in myoglobin. Our MCV
function for each amino acid was computed as the minimum value of all MCV values and as the average value of
the MCV values for the atoms in the amino acid. The cutoff parameter around each atom was set to 6 A.

152 ISMB-98



—=@— Baseline
O Small Set

—QO— Large Set

Average RMS from solution A

T T
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

Fraction of Short Range Distances

—@— Baseline
—O—  Predicted Small Set

—O— Predicted Large Set

Average RMS from solution (A)

0 T T T T T T -
0.2 0.25 0.3 0.35 04 045 05 0.55 0.6

Fraction of Short Range Distances

FIGURE 3

(A) The RMSD of computed structures from the gold standard myoglobin structure is shown as a function of the
number of distances provided in a series of synethetic data sets. The baseline calculation includes only the
distances. The Small Set and Large Set plots refer to sets of surface and buried constraints provided to the
probabilistic least squares algorithm with exact values. (B) The RMSD from gold standard results are shown
for baseline and surface data sets that are predicted based on linear regression from the observed solvent
accessibility values (in order to simulate noisy data).
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The results of our structure computations are summarized
in Figure 3. Baseline performance refers to the mean
deviation from the gold standard of the structure computed
from the distance subsets only. SmallSet refers to the
distances augmented with the 38 most extreme surface
values, and LargeSet refers to the distances augmented with
the 75 most extreme values. The results for providing both
exact surface constraints (ideal conditions) and inexact
surface constraints (simulating data that could be obtained
experimentally) are shown. For low data abundance (less
than 30% of distances), the surface constraints do not have
sufficient information to assist in the computation of the
structure. However from 30% to 50% of distances, the
surface constraints show significant improvement. In the
case of 40% of data, 75 exact surface measurements
improve the mean deviation from the gold standard by
almost 2 A (compared with baseline computation, from 4.5
to 2.7 A), while the smaller data sets or inexact data sets
have a 1 A improvement. At 50% of the possible short-
range distances, all the surface data sets produce
approximately a 1 A improvement, almost getting the
structure exactly right. With 55% or more of the possible
distances, all data sets have sufficient information to get the
structure right, and so the surface measurements add little
information. ’

Discussion

The computational complexity of our conic view measure
is mostly dependent on the convex hull computation. The
average complexity of the randomized algorithm that we
used for computing the convex hull of n atoms is O(n log
n). Interestingly, decreasing the cutoff radius allows for the
detection of pockets on the outer surface and also decreases
the computational complexity dramatically. Pockets can be
detected with the MCV function by looking for sharp
decreases in the value of the MCV as the cutoff is gradually
decreased. For truly buried points, varying the cutoff has
almost no effect on the MCV function. The gain in
computational complexity is achieved because the number
of atoms within a small sphere around a point X is constant.
The hull is hence computed for only O(1) points and the
complexity of the computation reduced to O(l). This
assumes that the points within cutoff range can be
identified in O() time. This is true in an amortized sense.
The points can be preprocessed in O(n) time to enable the
quick determination of the neighbor points around each
atom X; the convex hull computations (one per atom in a
chosen data set of size O(n)) will hence take a total of O(n)
time,

The computational complexity of the entire structure
estimation process depends on several parameters. The
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evaluation of a distance constraint is achieved in constant
time, while the conic view function for O(N) atoms is
computable in O(/) (amortized) time per atom, as
explained above. Therefore, provided that the cutoff radius
is sufficiently small, for a molecule of size O(N), one cycle
of application of O(D) distance constraints and O(S)
surface proximity constraints takes O(D+S+N)=0(N) time,
in the evaluation of the constraint functions alone.
Associated with each constraint application is a covariance
matrix update, which takes O(N’) time and is the bottleneck
of the computation. One cycle of O(C) constraint
applications is thus O(CN’), (or O(N°) for C=O(N)). The
number of cycles of constraint application until
convergence is usually small, typically 30—200.

The comparison with solvent accessibility shows that MCV
correlates roughly with other commonly used measures of
surface proximity (Figure 2). Previous methods for
determining the degree to which an atom is on the surface
have relied on different insights. The accessible surface is
computed by tracing the center of a sphere probe as it rolls
over the atoms of the molecule (Connolly, 1996).
Molecular surface is similar to accessible surface, but
removes sharp discontinuities that occur with accessible
surfaces. A comprehensive review of such methods was
recently given by Connolly, (Connolly, 1996). As pointed
out earlier surface area measures do not provide a
continuous scale of buried to exposed status, as does MCV,
and have difficulty distinguishing between somewhat
buried and deeply buried. They are also computationally
more expensive. In the case of surface area measures, if an
atom is below the surface, the functional dependency of the
surface area on that atom vanishes, and the partial
derivatives with respect to that atom is zero. A gradient-
based optimization procedure will be unable to use the
surface area measure to nudge a buried atom to the surface,
although movement in the opposite direction is possible.
Surface information has nevertheless been used
successfully in several instances. In particular, the MC-
SYM program for modeling RNA structure does include a
constraint-type called “accessibility”, but this constraint is
not based on a surface measure but simply on the number
of neighbors (Major, 1991). In addition, MC-SYM uses a
“generate and test” approach to satisfying surface
constraints, and this can be very expensive. We are quite
encouraged that our measure of surface can be used as a
direct constraint within the objective function of our
structure estimation method.

The real test of our measure is its utility in computing
structure. In the case of perfect surface/buried information,
the results are as expected. The quality of the structure
when a set of exact surface measurements is provided is
markedly better (for all abundances of distance data tested)
than when no surface information is provided. The results
show that a large set of exact measures provides the most
information, and leads to improvement in the mean
deviation of the computed structure from the gold standard



of almost 2A in the case of 40% of distances, a 40%
increase in accuracy. It leads to a 1A improvement in the
setting of 47% of distances, which is an 80% increase in
accuracy compared to baseline. The smaller set of exact
surface measures produces an increase in the quality to the
solution that is as high as 1 A. In the (more realistic) case
of inexact measures, the large and the small data sets also
produce clear improvements over the distances alone, but
there is no marked difference between using a large or a
small data set of surface measures. The small data set was
chosen to represent the most extreme surface/buried values
in the molecule, while the large data set includes these
measures plus some more moderate values. It appears,
therefore, that inexact measures for moderate conic view
values do not provide a significant amount of information
and thus the large and small inexact data sets basically
contain the same information. The errors introduced in the
inexact small data set however do not seem to affect the
information content of this set. This is encouraging since
surface constraints are most relevant for atoms that are
either clearly buried or clearly exposed.

If we have access to experimental measurements of surface
proximity, then it is clear that an accurate estimate of the
uncertainty in these measurements will be useful. The
probabilistic least squares method that we use requires that
every constraint be represented as a mean value and a
variance. When the variance is low, the algorithm will try
to match the value with greater precision than when the
variance is high. If the variance is over-estimated, then the
information content of the measures can be lost. On the
other hand, if the variance is under-estimated, then the
information contained in the measures can be over-
emphasized by the program and lead to incorrect structures.
This work is motivated by our ongoing efforts to model the
structure of large macromolecule ensembles such as the
30S subunit of the ribosome (Fink et al, 1996). In this
biological structure, many measurements of surface
accessibility are provided experimentally (e.g., Moazed et
al, 1986). The published data are very similar to the
simulated data produced here: there is a range of values
associated with different parts of the molecule, and these
correspond to different degrees of surface accessibility.
Our results indicate that MCV will allow us to represent
these experimental data and use them to complement the
distance information that is also available.
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