
Genetic Algorithms For Protein Threading

Jacqueline Yadgari#, Amihood Amir #, Ron Unger**

#Department of Mathematics and Computer Science
*Department of Life Sciences

Bar-Ilan University
Ramat-Gan, 52900, Israel
*ron@biocom1.ls.biu.ac.il

Abstract
Despite many years of efforts, a direct prediction of
protein structure from sequence is still not possible. As a
result, in the last few years researchers have started to
address the “inverse folding problem":  Identifying and
aligning a  sequence to the fold with which it is most
compatible, a process known as “threading”. In two
meetings  in which protein folding predictions were
objectively evaluated, it became clear that threading as a
concept promises a real breakthrough, but that much
improvement is still needed in the technique itself.
Threading is a NP-hard problem, and thus no general
polynomial solution can be expected. Still a practical
approach with demonstrated ability to find optimal
solutions in many cases, and acceptable solutions in other
cases, is needed.  We applied the technique of Genetic
Algorithms in order to significantly improve the ability of
threading algorithms to find the optimal alignment of a
sequence to a structure, i.e. the alignment with the
minimum free energy. A major progress reported here is
the design of a  representation of the threading alignment
as a string of fixed length. With this representation
validation of alignments and genetic operators are
effectively  implemented. Appropriate data structure and
parameters have been selected. It is shown that Genetic
Algorithm threading is effective and is able to find the
optimal alignment in a few test cases. Furthermore, the
described algorithm is shown to perform well even
without pre-definition of core elements. Existing
threading methods  are dependent on such constraints to
make their calculations feasible. But the concept of core
elements is inherently arbitrary and  should be avoided  if
possible. While a rigorous proof is hard to submit yet an,
we present indications that indeed Genetic Algorithm
threading is capable of finding consistently good solutions
of  full alignments in search spaces of  size up to 1070.

Introduction   

The protein folding problem is to correctly compute the
three-dimensional structure of a protein from its amino
acid sequence. The structure of proteins is the key to gain
insight into their function. Since proteins are involved in
                                                       
Copyright © 1998, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

all biological processes, an accurate prediction of protein
structure will change dramatically modern biology,
biotechnology and medicine.
The “alphabet” from which proteins are made is a set of
20 amino acids, every protein being a sequence of amino
acids with typical size range between 100 and 300, drawn
from this alphabet. The chemical and physical properties
of a protein molecule depend on its three-dimensional
structure which depends inherently on the amino acid
sequence. It is widely assumed that proteins fold up in a
way that minimizes their free energy, so the chain ends up
with the “most comfortable” configuration available to it.

Today the structure of proteins is discovered by using X-
Ray Crystallography and NMR spectroscopy. Up to now
the three-dimensional structures of only about 5000
proteins have been solved, compared with about 90,000
known sequences.
A direct calculation of protein structure from its sequence
is  not possible since it requires minimization of a
function of thousands of variables, with constants that
have not accurately determined. Threading  represents
another approach  to predicting the three dimensional fold
of a protein sequence  by recognizing a known structure
with which the sequence might be compatible. A given
sequence is threaded through a given  target structure by
searching for a sequence-structure alignment that places
sequence residues into energetically  preferred structural
positions. Since amino acids that are located far away in
the sequence might interact closely in the three
dimensional space imposed by  the structure, the standard
sequence matching algorithms are not applicable  here.
Currently, approximations based on dynamic
programming  variants or Monte Carlo search algorithms
are used to find the best sequence-structure alignment.
Here we propose the use of Genetic Algorithms to search
for sequence-structure alignment. We present a
representation of the problem and a data structure to
support it, and we show evidence that the procedure is
effective. The focus of this report is to demonstrate the
feasibility of the design, further work is underway to
prove its effectiveness in an actual prediction setting.

From: ISMB-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



Methods

Threading
Threading is one of the recognition methods for protein
structure prediction (Inverse Protein Folding)[Lemer et
al., 1995]. This algorithm “threads” the sequence of one
protein through the known structure of another, looking
for a reliable alignment with the lowest free energy value.
Thus, given a library of  folds, one can decide by
comparing (after proper statistical normalization) these
best alignments, which fold is most likely to be adopted
by the sequence. Based on the observation that the
number of folds exist in Nature seems to be limited, about
1000 different families [Chotia, 1992], it is quite likely
that the unknown structure will be similar to a known
structure. This method has proved itself in recognizing
similarity of a sequence to a protein of known structure in
the absence of detectable sequence similarity [e.g. Bryant,
1996, Lemer et al., 1995].

In designing  a threading procedure one needs an
algorithm to align the residues of the sequence with a
structure, and a score function to evaluate the quality of
the alignment. This study suggests a novel  algorithm for
alignments, we use here a standard score function for the
evaluation.

Many threading algorithms divide each structure into
“core” and “non-core” regions.  This classification is
based usually on considering the secondary structure
elements of alpha helices and beta sheets as cores and the
loop regions connecting them as non-cores. No insertions
and deletions are allowed in the core regions, and the
score function is  usually calculated only based on
residues assigned to core elements.  This make the
calculation much simpler, no gap penalties are needed to
be included, and since the total size of core elements is
significantly smaller than the size of the full structure, the
search space becomes considerably smaller. While it is
true that secondary structure elements are more conserved
than loop regions,  it is clear that loop regions also carry
structural signal, and thus threading methods that can
handle  full alignments might have an important
advantage. Note that in full threading, gap penalties for
creating insertions/deletions must be part of the score
function, and as a first approximation residues that are
inserted or deleted are not considered in the energy
calculation.

Current threading algorithms are based on: enumeration in
very small systems [Bryant and Lawrence, 1993], frozen
dynamic programming approximations [Taylor and
Orengo, 1989], Monte Carlo variants like Gibbs sampling
[Bryant and Altschul, 1995], Branch and bound search
[Lathrop and Smith, 1996]. Threading is a statistical
method, and thus a good prediction is based on detecting
many favorable interactions. Even in the cases where the
correct fold is predicted, the actual alignments, which are
crucial to gain biological insight, are often incorrect

[Lemer at. al., 1995]. Thus, we think that  better
algorithms are needed to  find the best threading.

Problem size. There are many ways for threading one
sequence on a given structure. Consider the following
parameters:

Sequence length =   k  ; Structure length =   n

Since the problem is similar to the  combinatorial problem
of finding the number of combinations  to distribute k
identical objects into n different cells, the number of
possible combinations is:

( )
( )
n k

n k

− +
−
1

1

!

! !
(eq. 1.)

This number is actually the size of our search space. By
using core elements, i.e. restricting the possibilities for
insertions and deletions  only to loop regions, the search
space size is reduced  significantly.

Sequence length =   k

Structure length =   n

Total  core length =   c

Total loop length  =   k - c

Total number of core elements =   l

Total number of loop elements =   l +1 = m

The number of possible combinations will be:

( )
( )
m k c

m k c

− + −
− −
1

1

( ) !

!( )!
(eq. 2.)

The sequence-structure threading problem is NP-
complete. Protein folding is known to be a hard problem
and formal models of the problems were shown to be NP-
complete [e.g. Unger and Moult, 1993]. There was a hope
that by inverting the folding problem and formulating it as
a threading problem, its formal complexity will be lower.
Unfortunately, this is not the case.

The search for the optimal alignment of a sequence to a
known structure is proved to be hard [Lathrop, 1994],
even in the case where core elements are used and the
degrees of freedom are as described above (eq. 2.). The
decision protein threading problem is NP-complete and
the corresponding problem of finding the globally optimal
protein threading is NP-hard.

Score function using protein core segments. Knowledge
based potentials and energy functions are extracted from a
database of known protein structures. These are based on
the analysis of known  three-dimensional structures of
proteins using statistical procedures whose roots are in
statistical physics [Sippl, 1995]. Most  energy functions
for threading are based on counts of frequency of contacts
in the database of known structures. The assumption is
that if a contact is frequent, it is energetically favorable.

In this work we used residue contact potential [Bryant and
Lawerence, 1993] which gives contact energies as a
function of residue type and distance interval, plus a



singleton potential that reflects the tendency of each
residue to be buried below the surface of the molecule
(hydrophobicity). In this potential only close contacts in
three-dimension, that are non-local in the sequence, are
considered.

This energy function is based on core segment elements,
see  fig. 1.

Fig. 1 Crambin core segments

Protein atomic coordinates were taken from the Protein
Data Bank (PDB) [Bernstein et al., 1977].

Genetic Algorithms

Genetic Algorithms are a parallel computational approach
based on the observation that natural processes adapt
optimally to their environment in response to natural
selection. Solutions are  represented as strings. These
strings are maintained as a population and allowed to
interact. The interactions are via “genetic operators" such
as: Replication, Mutation, and Crossover.

replication  1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1

mutation    1 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1

crossover   1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1

         1 0 1 1 1 1 0 1 1 0 1 1 1 0 1 1
An evaluation function attaches “fitness" value to a
solution as an indicator to its performance. Strings which
represent solutions with higher values have a higher
chance to participate in genetic operations.

Performing this process for many generations leads, in
most cases, to the emergence of solutions with very high
fitness [Goldberg, 1989, Holland, 1975]. In recent years
several applications of genetic algorithms have been
developed for several protein folding related problems.
For example Unger and Moult (1993) have demonstrated

the effectiveness of GA in a simple lattice model of
protein folding. Recently Pedersen and Moult (1997) used
GA to fold small fragments of real proteins. It seems as if
structural biology problems in which the overall structure
is composed of correctly predicted smaller sub-structures
are especially suitable  for GA applications.

In order to follow the algorithm developed in this paper,
the following basic steps of Genetic Algorithms are
sketched in Fig. 2.

Fig. 2. Basic structure of the genetic algorithm

Representing threading as a Genetic Algorithm string.
One of the most important steps in using Genetic
Algorithms is the representation of the solutions as
strings. This is usually done by binary strings using the
alphabet of {0,1}. Since we have chosen to use fixed
length strings to represent the individual solutions, we
used an alphabet of numbers {0,1,2,3,...,K} to represent
the solutions (K is the sequence length).

Each “1” in the string represents a residue from the
sequence aligned consecutively to a position in the
structure. Each “0” represents that no residue is aligned to
that position in the structure (structure deletion). Number
N greater than “1” represents  the number of residues that
are not aligned to any structure position (N-1 sequence
residues are skipped). An example is shown in fig. 3.

In this form of representation it is convenient to perform
genetic operations like mutations and cross-over and to
validate the generated solutions. The total sum of the
numbers that appear in the representation string has to be
equal to the threaded sequence length, while the length of
the string is equal to the length of the structure. This fact
can be used to validate the solution strings.

The fitness function is a normalized energy value, such
that solutions with lower energy have higher fitness value
and are more likely to be chosen for the genetic
operations.

population
of

 solutions

crossover

mutation

selection

random
generation

criteria
evaluation

replicatio



Mutations are performed by increasing randomly the
value of a number and offsetting it by decreasing the
same amount in other positions. Cross-overs are
performed by choosing randomly a position and building
two new offsprings by concatenation of the prefix of one,
up to the chosen position, to the suffix of the other one.
Each offspring is validated and if its sum does not match
the sequence length anymore, then a random position is
chosen near the crossover point and its value is changed
accordingly.

Preventing early convergence. One of  the common
problems in using Genetic Algorithms is the early
convergence of the population to one high fitness
individual, which makes it meaningless to continue  the
genetic process. Since most of the time the population
converges to a local minima, it is desirable to maintain
high diversity in the population. One possible way of
doing it is by creating new solutions with high mutation
rates. Another possible solution is, not to allow  creation

of a solution if it already appears too many times in the
population.

Our proposal is to use tree techniques to avoid early
convergence of population of Genetic Algorithms. By
using the trie data structure  to store the solution strings
it is possible to make efficient string comparisons and
thus to quickly eliminate  redundant solutions. In
addition, the information stored in the trie can be used
later as a convergence indicator of the population.

The Trie Data Structure. A trie is a set of strings to be
stored and updated, and allows membership queries
[Sedgewick, 1988]. Naively, comparison to detected
redundant solutions might need N*N string comparisons
of length M, where M is the string length (total N2M
operations). But if we store the strings in a trie data
structure there is only a need for N*M string
comparisons for fixed size alphabet and O(N(M+K)) for
our case where the size of the alphabet can reach the
length  K  of the sequence.

APRVIGTCGNKVFG

1 1 1 1 1 0 0 1 1 1 1 3 1 1

A
P R V I

N

F
G

G GC
TK

V

Fig 3. Representing threading as a GA string. Fitting a sequence on a structure to form the threading in the bottom. This
particular fit is based on deleting two structure positions and “looping out” two sequence residues. This fit is represented

by the string in the bottom, where 0’s represent structure deletions, and numbers greater than 1 represent sequence
deletions.



Results

We first present data from running the algorithm with the
standard core elements definitions, and than present data
for full, constraint-free, alignments. The energy potential
of  Bryant and Lawerence was used throughout this study
[Bryant and Lawerence, 1993].

GA compared with enumeration
It is possible to calculate the optimal solution for small
search spaces. Here we compare  the performance of
Genetic Algorithm with full enumeration of all possible
threads.
We show here (Table 1) the alignment of the sequence
2mhr (of length 118) and the sequence of 2hmg (of
length 175) with the structure of 2hmq (of length 113 ).

In both cases the same solution was found by the GA and
the full enumeration. In the case of 2mhr, full
enumeration required 169,911 evaluations of energy

function to find the global minimum energy, where the
GA required only 20,000 evaluations to find the same
result.
For all small examples in which we could run full
enumeration, the GA came up with the same optimal
solution. We also ran one larger example, 2hmg
sequence on 2hmq structure (table 1), in which full
enumeration required about 40,000,000 evaluations
compared with the same solution found in less than 1%
of the time by the GA.

GA results for self threading
We used self threading as another preleminary test of the
method. We tested the energy function [Bryant and
Lawerence, 1993] to see whether it can detect the native
fold when a sequence is threaded onto its own structure.
In each starting solution the loop lengths were chosen
randomly and the question was, is it possible to get the
native loop lengths.
The results for self threading of 1mcp and 2hmq are
shown in table 2.a, 2.b. There was no pre-defined limit
for loop lengths.

Enumeration 2mhr 2hmg
structure length (n) 113 113
sequence length (k) 118 175
total core length (c) 92 92
total loop length (k-c) 118 - 92 =26 175 - 92 = 83
number of loops (m) 6 6

search space =  
( )
( )
m k c

m k c

− + −
− −
1

1

( ) !

!( )!
 (eq.2.) 169,911 39,175,752

Genetic Algorithms 2mhr 2hmg
number of generations (g) 200 2000
population size (p) 100 100
string length = structure length 113 113
number of evaluations for GA = p * g 100 * 200 =

20,000
100 * 2000 =
200,000

Enumeration / GA ~ 10 ~ 100
Table 1. GA performance compared with enumeration



1mcp     220
core definition 3-6 10-13 18-25 38-44 49-5558-60 68-73 76-81 89-96 102-112
self threading 1 10 18 37 49 57 68 76 88 98
error -2 0 0 -1 0 -1 0 0 -1 -4

Table 2.a
2hmq    113
core definition 2-14 18-37 41-61 69-86 90-109
self threading 2 18 41 69 90
error 0 0 0 0 0

Table 2.b

These two tables show self threading of 1mcp (2.a) and 2hmq (2.b). The first line indicates the native position of the core
elements. The second line indicates where the first residue of each core element was positioned by the GA. The “error”
line shows the difference between the native and computed positions. For 2hmq we found the native structure by finding

the optimal threading. For 1mcp the native structure was not found, but actually the energy of the optimal threading found
by GA was lower than the native one.

mutation  % population size number  of
generations

# evaluations
performed

success %

25 50 240 240*50=12000 80
25 100 120 120*100=12000 100
25 200 60  60*200=12000 80
25 300 40  40*300=12000 90
25 400 30  30*400=12000 70

Table 3. Population size vs. number of generations for a fixed mutation rate. Results are averaged over 10 runs.

These two cases were examined by Bryant and
Lawerence (1993). For 2hmq they found the same result.
For 1mcp they got different threading result, since they
had to fix some of the loop lengths because of
computational limitations. The current GA threading has
lower energy than the previously reported one. Note the
(well known) conclusion that the current status of score
functions is not good enough since threading
experiments find easily alignments that yield “better”
threading than the native.

Choosing the best parameters for GA
Usually Genetic Algorithms  are sensitive to parameters
like mutation rate, population size, number of
generations, etc. Here these parameters were examined
using the example of threading the sequence of 2hmr on
the structure of 2hmq.
The trade-off between population size and number of
generation was tested and the results are shown in  Table
3. The advantage of using  large populations  is clear but
this trend has a limit. Increasing  the size of the
population further is counter productive.

mutation % population
size

number  of
generations

# evaluations
performed

success % # evaluations
needed to find
the optimum

05 300 40 12000 20 38*300 = 11400
10 300 40 12000 60 31*300 =   9300
15 300 40 12000 80 31*300 =   9300
25 300 40 12000 90 22*300 =   6600
30 300 40 12000 100 20*300 =   6000
35 300 40 12000 80 27*300 =   8100

Table 4. Changing mutation rates, mutation rate refers to the percent of solutions that have been changed. The number of
bits changed in each mutation is small. The results were averaged  over 10 runs.



  
  

mutation % without trie using trie
# optimal
solution
found

# second
best
solution
found

# other
solutions
found

# optimal
solution
found

# second best
solution
found

# other
solutions
found

25 2 16 6 7 13 4
15 2 12 10 2 10 12
3 0 6 18 2 6 16

Table 5. Results of 24 threading of 2hmg sequence on 2hmq structure with different mutation rates with and without trie.
The number of times (out of 24) the best , second best and other solutions were found is recorded. Other parameters:

population size = 200, number of generations = 600.

  
  
  
Next, the optimal mutation rate was tested. The results
(Table 4) show that it is better to use higher rate of
mutations to achieve good results, but not to use too high
mutation rates. (The peak is around 30%.) This is
reasonable since a low mutation rate  “freezes” the
system while a high  rate  might not  provide enough
stability in the population  to promote good solutions.

Using trie to speed up the GA ( getting results in
fewer generations)
As described before early convergence is a real problem
in GA. In our application we allowed dynamic control of
mutation rates: When the solution strings became too
similar we increased the mutation rate temporarily. After
few generations the mutation rate was changed back to
its original value. The second method for preventing
early convergence is a reproduction control method. To
implement reproduction control we used the trie data-
structure which enables comparing strings with minimal
number of operations. Thus we can check efficiently that
a new solution does not appear more than a limited
number of times in the new generation.
Table 5 shows the results of threading the sequence of
2hmg (of length 175) on the structure of 2hmq (of length
113).
This table shows that using a trie to prevent early
convergence of the population is useful. Here we limited
the size of each group in the population to be 10% of the
population size. A solution that appears already more
than 10% in the new generation is rejected and a new
solution is selected instead. A limit of 150 trials to find
an acceptable solution was set. It was found that the

procedure was always able to find an acceptable solution
within this limit.

Threading without using core elements
When core segments constraints  are not used in the
threading process, insertions and deletions are allowed in
the whole protein structure. Thus the search spaces
becomes much bigger than before and enumeration
becomes unfeasible. This creates a significant  problem
in evaluating the performance of the algorithm, since the
optimal solution can not be known. Remember that due
to limitations of score functions, the native structure can
not be considered  as the optimal result.
 Table 6  shows that without core constraints the benefit
of using GA is dramatic. There is a need to show  that
indeed optimal or near optimal results can be found in
such a huge search space. As discussed above, no proof
can be given here, but we present the following
indications: Table 7 shows the best  final  strings of
different runs for 1crn self threading with their energy
value.  Even in this huge search space, some of the best
results have been found more than once. These solutions
are very similar  to each other, although each run started
with very different initial populations, which indicates
that they are in the neighborhood of the optimal
minimum.
Table 8  shows the final  strings of the four best runs for
2mhr-2hmq threading with their energy value. Here each
one of the top solutions appears only once, but again the
fact that these solutions are  so close to each other
although each run started with totally random population
suggest that  they are around the optimal minimum.



Enumeration 1crn 2mhr
structure length (n) 46 (1crn itself) 113 (2hmq)
sequence length (k) 46 118

search space = 
( )
( )
m k c

m k c

− + −
− −
1

1

( ) !

!( )!
 (eq.2) 2.056 * 1026 ~ 2 * 1069

Genetic Algorithms 1crn 2mhr
number of generations (g) 3000 3000
population size (p) 1000 1000
string length = structure length 46 113
number of evaluations for GA = p * g 1000 * 3000 =

3.0 * 106
1000 * 3000 =
3.0 * 106

Enumeration / GA ~ 1020 ~ 1063

Table 6. GA performance without core constraints.

string energy # occurrences
1113111310111101101111100112311111001111111120 -117.14 2
1113111310111101100111011112311111001111111120 -117.22 1
1113111121111101000011211112311110011111111120 -117.44 5
2131111210111101000011211112311111100111111102 -122.18 1
2131111210111102111110100111311131100001111102 -122.24 1

Table 7. The five best  solutions, represented as strings, for 1crn self threading without core constraints. Parameters:
mutation rate = 25%, population size = 1000,  generations = 3000, gap penalty = 1,  20 runs were performed.

string energy

10022111111111111111112011112112101121101111111010112123111112110110211112111111112101112111131011011111210121101 -181.08

11102111111111111111112012012112101111111111011110112123111112101110211112111111011211112111131011011111210110121 -181.31

10022111111111111111112012012112101011011031111110112123111111111110211112111111011211112111111111111111210110121 -182.10

10022111111111111111112012012112101111111101111110112111411112101110211112111113112101111011111111111111210110121 -183.18

Table 8. The four best  solution represented as  strings for 2mhr-2hmq threading without core constraints. The same
parameter set as in table 7 was used.



Discussion

As far as we know this is the first reported attempt to use
Genetic Algorithms for the challenge of threading. The
search for the optimal thread is a difficult computational
problem, which is one of the bottlenecks in using
threading as a structure prediction method. Because of
computational limitations most of the current threading
algorithms have to compromise and solve only a limited
version of the actual problem. Pre-defining core
elements and allowing insertions and deletions only in
loop regions outside these core elements is the most
common such compromise. Failures  in finding good
alignments are often related to such rigid limitations.
In contrast to other methods, our GA threader does not
have to use core element definitions. The representation
presented here was designed to enable full freedom in
choosing positions for insertion and deletions.
It is difficult to prove the usefulness of a threading
alignment procedure without building a full threading
package that includes threading potential, library of
folds, normalization procedure etc. Thus, we consider
the work presented here as a first indication that
threading by Genetic Algorithm is possible, the next step
would  be indeed building a full package around this
alignment “engine”.
Since the energy function we used was defined for
residues of core elements only, it may not be suitable for
threading without core limitations. This may be the
reason why self threading without core segments give
results with lower energy than native. Threading needs
“gap penalty” definition for deletions and insertions,
which is one of the less studied subjects in threading.
The algorithm we used here has a problem of local
convergence. It can find the area  of the optimal solution
(as indicated by the similarity of solutions in tables 6 and
7) but an identical solution is not found in each run.  For
example in Table 7, one can notice that the third  best
solution is found more frequently than the best solution.
A local optimization to find the minimum energy could
be suggested as an additional final step of the process.
The preleminary results presenrted here are encouraging,
more experiments are underway  to prove the ability of
Genetic Algorithms to improve  the performance of
threading procedures.

References

Bernstein, F. C.; Koetzle, T. F.; Williams, G. J. B.;
Meyer, E. F.; Brice, M. D.; Rodgers, J. R.; Kennard, O.;
Shimanouchi, T. and Tasumi, M. 1977. The protein data
bank, a computer-based archival file for macromolecular
structures. J Mol Biol  112:535-542.

Bryant, S. H. and Lawrence, C. E. 1993. An empirical
Energy function for threading protein sequence through
folding motif. Proteins  16:92-112.

Bryant, S. H.; Madej, T. and Gilbert J. 1995. Threading a
database of protein cores. Proteins  23:356-369.

Bryant, S. H. and Altschul S. F. 1995. Statistics of
sequence-structure threading. Curr opin struct biol
5:236-244.

Bryant, S. H. 1996. Evaluation of threading specificity
and Accuracy. Proteins 26:172-185.

Chothia, C. 1992. One thousand families for the
molecular biologist. Nature 357:543-544.

Goldberg, D. E. 1989. Genetic Algorithms in search,
optimization and machine learning. Reading, Mass:
Addison-Wesley.

Holland, J. 1975. Adaptation in natural and artificial
systems. Ann Arbor, MI: University of Michigan Press.

Jones, D. T.; Taylor, W. R. and Thornton, J. M. 1992. A
new approach to protein fold recognition. Nature
358:86-89.

Lathrop, R. H. 1994. The protein threading problem with
sequence amino acid interaction preferences is NP-
complete. Protein Eng 7:1059-1068.

Lathrop, R. H.; Smith T. F. 1996. Global optimum
protein threading with gapped alignment and empirical
pair score functions. J Mol Biol 255:641-665.

Lemer, M. R.; Rooman, M. J.; Wodak, S. J. 1995.
Protein structure prediction by threading methods:
evaluation of current techniques. Proteins 23:337-355.

Pedersen, T. and Moult, J. 1997. Protein folding
simulations with genetic algorithms and a detailed
molecular description. J Mol Biol 269:240-259.

Sedgewick, R. 1988. Algorithms. Reading, Mass:
Addison-Wesley.



Sippl, M. J. 1995. Knowledge-based potentials for
proteins. Curr Opin Struct Biol 5:229-235.

Sippl, M. J. 1993. Boltzmann’s principle, knowledge
based mean fields and protein folding. An approach to
the computational determination  of protein structures. J
Comput Aided Mol Des 7:473-501.

Sippl, M. J. 1990. Calculation of conformational
ensembles from potentials of mean force. an approach to
the knowledge-based prediction of local structures in
globular proteins. J Mol Biol 213:859-883.

Taylor, W. R. and Orengo, C. A. 1989. Protein structure
alignment. J Mol Biol 208:1-22.

Unger, R. and Moult, J. 1993. Genetic algorithms for
protein folding simulations. J Mol Biol 231:75-81.

Unger, R. and Moult, J. 1993. Finding the lowest free
energy conformation of a protein is an NP-hard problem:
Proof and implications. Bulletin of Mathematical Biol
55:1183-1198.




