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Abstract

We investigate the space of all protein sequences. We
combine the standard measures of similarity (SW,
FASTA, BLAST), to associate with each sequence an
exhaustive list of neighboring sequences. These lists
induce a (weighted directed) graph whose vertices are
the sequences. The weight of an edge connecting two
sequences represents their degree of similarity. This
graph encodes much of the fundamental properties of
the sequence space.

We look for clusters of related proteins in this graph.
These clusters correspond to strongly connected sets
of vertices. Two main ideas underlie our work: i) In-
teresting homologies among proteins can be deduced
by transitivity. 1i) Transitivity should be applied re-
strictively in order to prevent unrelated proteins from
clustering together.

Our analysis starts from a very conservative classifi-
cation, based on very significant similarities, that has
many classes. Subsequently, classes are merged to in-
clude less significant similarities. Merging is performed
via a novel two phase algorithm. First, the algorithm
identifies groups of possibly related clusters (based on
transitivity and strong connectivity) using local con-
siderations, and merges them. Then, a global test is
applied to identify nuclei of strong relationships within
these groups of clusters, and the classification is re-
fined accordingly. This process takes place at varying
thresholds of statistical significance, where at each step
the algorithm is applied on the classes of the previous
classification, to obtain the next one, at the more per-
missive threshold. Consequently, a hierarchical organi-
zation of all proteins is obtained.

The resulting classification splits the space of all pro-
tein sequences into well defined groups of proteins. The
results show that the automatically induced sets of pro-
teins are closely correlated with natural biological fam-
ilies and super families. The hierarchical organization
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reveals finer sub-families that make up known families
of proteins as well as many interesting relations be-
tween protein families. The hierarchical organization
proposed may be considered as the first map of the
space of all protein sequences.

An interactive web site including the results of our
analysis has been constructed, and is now accessible
through http://www.protomap.cs.huji.ac.il

Keywords: clustering, protein families, protein classi-
fication, sequence alignment, sequence homology.

Introduction

In recent years we have been witnessing a constant flow
of new biological data. Large-scale sequencing projects
throughout the world turn out new sequences, and cre-
ate new challenges for investigators. Many sequences
that are added to the databases are unannotated and
await analysis. Currently, 12 complete genomes {of
veast, E. coli, and other bacteria) are available. Be-
tween 35%-50% of their proteins have an unknown func-
tion {Pennisi 1997).

In the absence of structural data, analysis necessarily
starts by investigating the sequence proper. Sequence
analysis has many aspects: composition, hydrophobic-
ity, charge, secondary structure propensity and more.
The most effective analyses compare the sequence under
study with the whole database, in search for close rela-
tives. Properties of a new protein sequence are extrap-
olated from those of its neighbors. Since the early 70’s,
algorithms were developed for the purpose of comparing
protein sequences efficiently and reliably (Needleman
and Wunsch 1970; Smith and Waterman 1981; Lipman
and Pearson 1985; Altschul et al. 1990).
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Even with the best alignment of two protein se-
quences at hand, the basic question remains: Do they
share the same biological function or not. It is gener-
ally claimed that two sequences with over 30% identity
along much of the sequences, are very likely to have
the same fold (Sander and Schneider 1991; Flores et al.
1993; Hilbert et al. 1993). Proteins of the same fold
usually have similar biological functions. Nevertheless,
one encounters many cases of high similarity in fold,
despite a low sequence similarity (Murzin 1993; Pear-
son 1997). Such instances are, unfortunately, missed by
simple searches over the database.

Detecting homology may often help in determining
the function of new proteins. By definition, homologous
proteins evolved from the same ancestor protein. The
degree of conservation varies among protein families.
However, homologous proteins almost always have the
same fold (Pearson 1996). Homology is, by definition,
a transitive relation: If A is homologous to B, and B is
homologous to C, then A is homologous to C. This sim-
ple observation can be very effective in discovering ho-
mology. However, when applied simple-mindedly, this
observation may also lead to many pitfalls.

Though the common evolutionary origin of two pro-
teins is almost never directly observed, we can deduce
homology among proteins, with a high statistical confi-
dence, given that the sequence similarity is significant.
This is particularly useful in the so called “twilight
zone” (Doolittle 1992), where sequences are identical
to, say, 10-25%. Transitivity can be used to detect re-
lated proteins, beyond the power of a direct search.

The potential value of transitivity has been observed
before. In (Watanabe and Otsuka 1995) transitivity
and single linkage clustering are employed to extract
similarities among 2000 E. coli protein sequences. In
(Koonin et al. 1996) a similar analysis is performed on
75% of the proteins encoded in the E. coli genome. The
power of transitivity in inferring homology among dis-
tantly related proteins (e.g., Streptomyces griseus pro-
tease A and protease B) is demonstrated in (Pearson
1997). In (Neuwald et al. 1997) transitivity was com-
bined with a search through the database, for the pur-
pose of modeling a protein family, starting from a single
sequence. However, the full power of this idea has not
yet been exploited. On the other hand, the perils of
transitivity have not been thoroughly investigated ei-
ther. Here we address this problem as well.

It should be clear that similarity is not transitive, and
that it does not necessarily entail homology®!. There-
fore similarity should be carefully used in attempting
to deduce homology. The statistical significance level
of the similarity should take into account the level of
evolutionary divergence within the family, in order to

!Similarity may be quantified whereas homology is a re-
lation that either holds or does not hold. Significant simi-
larities can be used to infer homology, with a level of confi-
dence that depends on the statistical significance (see Pear-
son 1996).

deduce reliable homologies.

Multidomain proteins make the deduction of homol-
ogy particularly difficult: If protein 1 contains domains
A and B, protein 2 contains domains B and C, protein
3 contains domains C and D, then should proteins 1
and 3 be considered homologous? This simple example
indicates the difficulty with single-linkage clustering for
our purpose.

Expert biologists can distinguish significant from in-
significant similarities. However, the sheer size of cur-
rent databases rules out an exhaustive manual compu-
tation of homologies. This is why we developed an au-
tomatic method for this task. Our algorithm attempts
to discard chance similarities and indirect multiple-
domain-based connections.

Our starting point is very strict high resolution
classification that employs only connections of very
high statistical significance. Henceforth, clusters are
merged to form bigger and more diverse clusters. Our
algorithm automatically attempts to identify suspi-
cious/problematic connections and to eliminate as well
as possible false connections between unrelated pro-
teins. The algorithm operates hierarchically, each time
considering weaker connections. Its output is thus a hi-
erarchical organization of all protein sequences. The al-
gorithm incorporates no further biological information
and uses only the similarity scores that are provided by
standard methods.

This approach leads to the definition of a new met-
ric on the space of all protein sequences. We believe
that this emerging metric is more sensitive than exist-
ing measures. Such metrics are necessary in the quest
of a global self organization of all protein sequences, as
discussed in (Linial et al. 1997).

Methods

This section contains a description of our computational
procedure. The procedure was carried out on the SWIS-
SPROT database (Bairoch and Boeckman 1992) release
33, with total of 52205 proteins.

Defining the graph

We represent the space of all protein sequences as a di-
rected graph, whose vertices are the protein sequences.
Edges between the vertices are weighted with weights
that reflect the distance or dissimilarity between the
corresponding sequences, i.e. high similarity translates
to a small weight (or distance). To compute the weight
of the directed edge from A to B, one compares A
against all sequences in the SWISSPROT database, and
obtains a distribution of scores. The weight is taken
as the expectation value (Altschul et al. 1994) of the
similarity score between A and B, based on this distri-
bution. This is a statistical estimate for the number of
occurrences of the appropriate score at a random setup,
assuming the existing amino acid composition. A high
expectation value entails a weak connection. Edges of
statistically insignificant similarity scores, get discarded
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(details below). In other words, an edge in the graph
between sequence A and B indicates that the corre-
sponding proteins are likely to be related.

This graph has been constructed, using all cur-
rently known measures of similarity between protein
sequences; Smith Waterman dynamic programming
method (SW) (Smith and Waterman 1981), FASTA
(Lipman and Pearson 1985) and BLAST (Altschul et
al. 1990). These methods are in daily use by biolo-
gists, for comparing sequences against the databases.
Though SW tends to give the best results on average,
it i1s not uncommon that FASTA or BLAST are more
informative (Pearson 1995). Therefore we chose to in-
corporate all three methods into our graph, to achieve
maximum sensitivity 2.

An unusual amino acid composition of the query se-
quence may strongly bias the results of a search. A
case in point are the effects of low complexity segments
within sequences (Altschul et al. 1994). Therefore, we
also consulted the results of BLAST following a filtering
of the query sequence, to exclude low complexity seg-
ments, using the SEG program (Wooton and Federhen
1993).

The following sections contain a detailed description
of the procedure of assigning weights to edges. The
procedure starts by creating a list of neighbors for each
sequence, based on all the three methods. In order to
place all three methods on comparable numerical scales,
a numerical normalization i1s applied first to all meth-
ods. Then, only statistically significant similarities are
maintained in these lists. Finally, the weight of an edge
is defined as the minimum associated to it by any of
the three methods, to capture the apparently strongest
relation.

Placing all methods on a common
numerical scale

It is relatively easy to compare between scores that
a particular method assigns to different comparisons.
However, how does one compare between scores that
are assigned by different methods? We performed the
following calculation: Pick any protein, carry out an
exhaustive comparison against the whole database and
consider the highest scores in each of the methods. Now
plot these values and compare two methods at a time.
These scores show a remarkably strong linear relation
in log-log scale (not shown), therefore by introducing a

2FASTA is based on a restricted application of the rigor-
ous SW algorithm and is usually being viewed as an approxi-
mation of SW, whose main advantage is its speed. However,
with the goal of a better identification of remote homologies
in mind, we used FASTA with the BLOSUMS50 scoring ma-
trix (Henikoff and Henikoff 1992), whereas SW and BLAST
were used with the BLOSUMSG62 scoring matrix. Many sim-
ilarities were reported exclusively by only a single method -
in some cases as many as tens of hits per sequence, which
were not detected by the other methods. [n the future we
intend to incorporate several matrices in order to cover a
broader range of evolutionary distances.
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(usually small) correction factor, per each protein and
per method, the three methods get scaled to a single
reference line>.

Defining the list of neighbors

It is, of course, very difficult to set a clear dividing
line between true homologies and chance similarities.
Expectation values below 10=3 can be safely consid-
ered significant and those above 10 reflect almost pure
chance similarities. However, the midrange is difficult
to characterize, and truly related proteins may have
expectation values around 1. An overly strict thresh-
old will miss important similarities within the twilight
zone, whereas an excessively liberal criterion will create
many false connections. The exact threshold for each
method was set to best discriminate among related and
unrelated proteins. Qur choice is based on the overall
distribution of distances over the entire protein space,
as given by each of the three methods.

This is illustrated in Fig. 1, which shows the distribu-
tion of expectation values over the entire SWISSPROT
database, for SW, FASTA, and BLAST. The graphs in
Fig. 1 naturally suggest a threshold for each method.
The distribution drawn in a log-log scale is nearly linear
at low expectation values, but starts a rapid increase at
a certain value.

The slope may be viewed as a measure for the ge-
ometric entropy (2 dimensionality) of neighboring se-
quences (Pisier 1989). The mild slope at low expecta-
tion values indicates a low entropy at the short range
which seems fairly uniform throughout the space. The
steep slope indicates a rapid growth in the number of
sequences that are unrelated to the centering sequence
(high expectation values). As viewed from the center-
ing sequence, these sequences are essentially random,
that indeed reach the entropy of sequences drawn uni-
formly at random from the space (maximum entropy).
The entropy of the neighboring sequences does change
from one centering sequence to another. This results
in different slopes around each sequence, correspond-
ing to the characteristic evolutionary divergence in the
corresponding family.

In view of this discussion we set the threshold to the
value where the slope rapidly changes. The thresholds

3The differences between FASTA and SW are mostly due
to the different scoring matrices that are being used, and
can be corrected by multiplying the original score by the
relative entropy of the two matrices (Altschul 1991). The
differences between SW and BLAST may be due to approx-
imations in estimating the parameters A and K (Karlin and
Altschul 1990). The underlying assumption in calculating
these parameters is that the amino acid composition of the
query sequence is close to the overall distribution. This
assumption often fails, e.g. for low complexity segments.
Moreover, these parameters are based on first order statis-
tics of the sequence, the scoring matrix and the database.
The corrections that are required to match SW and BLAST
may be due to inaccurate approximations of the estimated
parameters, or to higher order statistics of the sequence.
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Figure 1: Overall distribution of e-values according
to the three main algorithms for sequence compar-
ison. a) BLAST b) FASTA ¢) SW. The distributions are
plotted in a log-log scale. Note that the deviation from
straight line starts earlier in BLAST, around 10~2, whereas
in FASTA and SW it starts only around 107!,

for SW, FASTA and BLAST are set at 0.1, 0.1 and
1073 respectively?. An edge from vertex A to vertex
B is maintained only if a significant score is obtained
on comparing the corresponding proteins. Namely, if
either SW or FASTA yield an expectation value < 0.1
or BLAST’s expectation value is < 1073,

A major difference between BLAST and SW/FASTA
is that BLAST does not allow gaps® and therefore tends

*While the self-normalized statistical estimates of
FASTA and SW (Pearson 1998) are quite reliable, the statis-
tical estimates of BLAST may be biased for low complexity
sequences (see previous footnote). Consequently, filtering
may significantly reduce the number of high scoring hits re-
ported by BLAST. If we acknowledge only sequences that
pass the filter, we may miss many relations of biological sig-
nificance. Instead, a more stringent threshold is set in this
case for BLAST at 1076,

5We haven’t yet tested the new version of BLAST which
does incorporate gaps in the alignment.

to overestimate the statistical significance of align-
ments. We counter this behavior of BLAST by the
above asymmetry in selecting the edges. While this
property may help BLAST reveal significant similarities
that the other methods miss (e.g. Pearson 1995), we
have to beware of highly fragmentary alignments that
cannot be considered biologically meaningful. There-
fore, we ignore those BLAST scores that come from a
large number of HSPs (high scoring pairs), whereas the
MSP (maximal segment pair) is insignificant®.

Finally, even if the comparisons between proteins A
and B fail to satisfy the previous criteria, the edge from
A to B is maintained when all three methods yield an
expectation value < 1.

Obviously, it may happen that some of the similar-
ities which lie around the thresholds are chance sim-
ilarities. Our goal in designing the algorithm that is
described next was to detect such similarities and elim-
inate them.

Exploring the connectivity

Having created this graph, we turn to explore it. We
seek clusters of related sequences which can be assigned
a characteristic biological function.

There are two major obstacles which should be con-
sidered: 1) Multidomain proteins can connect two or
more unrelated groups; ii) Overestimates of the sta-
tistical significance of the similarity scores. Naturally,
chance similarities become more abundant as signifi-
cance levels decrease.

Therefore, transitivity should be applied restrictively.
By analogy, if transitivity is to be viewed as a force
that attracts sequences, then it should be countered by
some “rejecting forces” so that unrelated clusters be
kept apart and prevent a collapse in the space of all
protein sequences.

Our approach

Our starting point is reached by eliminating all edges of
weight below a certain, very high, significance threshold
(i.e. low expectation value). This operation splits our
graph to many small components of strong connectiv-
ity. In biological terms, we split the set of all proteins
into small groups of closely related proteins, which cor-
respond to highly conserved subfamilies.

To proceed from this basic classification, we lower the
threshold, in a stepwise manner, and take into account
more relaxed statistical significant similarities. Doing
this, several clusters of a given threshold may merge
at a more permissive threshold. However, we closely

8Specifically, denote the number of HSPs and the MSP
score by Ngsp and Sysp respectively. The average and
the standard deviation of Nysp and Symsp are calculated
for high scoring sequences (pusp , onsp , pmsp and opsp
respectively). Those hits that are based on Npsp which
satisfy Nysp > pusp + ogsp, with MSP score Spyrsp <

uMsp — omsp, and are not significant according to SW and
FASTA, are ignored.
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monitor this process and allow a merge only in view of
strong statistical evidence for a true connection among
the proteins in the resulting set. We turn to a detailed
description of these two main steps:

Basic classification If all edges of weight below a
certain significance threshold are eliminated, the tran-
sitive closure of the similarity relation among proteins
splits the space of all protein sequences into connected
components or clusters. These are proper subsets of
the whole database wherein every two members are ei-
ther directly or transitively related. These sets are max-
imal in this respect and cannot be expanded. Thus
they offer a self-organized classification of all protein
sequences in the database. We set the threshold at
the very stringent significance level of 10710, Similar-
ities which are reported as significant above the level
of 10~1%% are very conserved and stretch along at least
150 aa. Thus, no chance similarities occur at this level.
We also do not encounter connections based on a chain
of distinct common domains in multi-domain proteins.
The resulting connected components can be safely ex-
pected to correlate with known conserved biological
subfamilies.

Note that this is a directed graph, and hence is not
necessarily symmetric. Specifically, it may (and does)
happen that there is an edge from protein A to protein
B, but none in the reverse direction. Furthermore, even
if both edges exist, their weights usually differ. There-
fore, our notion of a component is that of a strongly
connected component” . The partition into strongly con-
nected components is clearly more refined that the par-
tition into connected components.

The clustering algorithm Our procedure is recur-
sive. That is, given the classification at threshold T°, we
should give a method for deriving the classification at
the next more permissive level (71 = 10°T).

The algorithm runs in two phases. First we identify
and mark groups (“pools”) of clusters that are consid-
ered as candidates for merging (see Fig. 2a). A local
test is performed where each candidate cluster is tested
with respect to the cluster which “dragged” it to the
pool.

To quantify the similarity of two clusters P and @,
we calculate the geometric mean of all pairwise scores of
pairs one of which is in P and the other is in Q. Unre-
lated pairs are assigned the default evalue of 1. When
the geometrical mean of the evalues is below VT our
interpretation is that P and @ are indeed related and
that their connection does not reflect chance similari-
ties or chain of domain-based connections®. We define
the Quality of the P — Q) connection as the minus log of

"A directed graph is strongly connected if for every two
vertices there is a directed path from x to y as well as from
y to x.

8Other thresholds were investigated as well. The present
choice was supported by the logarithmic distribution of
scores (Fig. 1).
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Phase I

Phase II

Figure 2: The clustering algorithm. Phase 1) Iden-
tify pairs of clusters that are considered as candidates for
merging. Decisions are made based on the geometric mean
(“quality™) of the pairwise scores of the connections between
the two clusters. If this mean exceeds a specific threshold
then the cluster is accepted as a candidate, and enters into
the pool. Otherwise it is rejected (denoted by “X”). Phase
IT) Pairwise clustering is applied to identify groups of clus-
ters which are strongly connected. At each step the two
closest groups are chosen and merged provided that the
geometrical mean exceeds the threshold. Otherwise they
stay apart (denoted by dashed line). When merging group
of clusters s with group of clusters s’ we take into account
the weighted geometric mean between all clusters in s and
in s

the geometric mean. It ranges between 0 and 100, and
the higher it is the more significant is the connection.

At the second phase we carry out a variant of a
pairwise clustering algorithm. This algorithm succes-
sively merges only pairs of clusters that pass the above
test and are not suspected as representing chance or
domain-based similarities. A detailed description of
this algorithm appears in Fig. 2b.

This analysis is performed at different thresholds,
or confidence levels, to obtain an hierarchical or-
ganization. The analysis starts at the 1071%9 thresh-
old. Subsequent runs are carried out at levels
10-95,10~%0,10-85, ... 1079 = 1.

Results

Nearly all of the clusters we found are biologically
meaningful. Some of them correspond to well known
families, but many others represent less studied fami-
lies. Some clusters consist exclusively of unknown pro-
teins or hypothetical proteins.

Needless to say, this overwhelming body of in-
formation cannot be properly surveyed in a sin-
gle paper. We have constructed an interactive
web site that contains the results of our analysis
(http://www.protomap.cs.huji.ac.il), where users can
get acquainted with this new map of the protein space.
Here we- can only offer a glimpse of this new map.
Rather than discuss novel connections and relationships
through specific examples, we highlight the novel tools
and the main features of this map.



Confidence Cluster size Total no
level over 100 51-100 21-50 11-20 6-10 2-5 1 of clusters
10100 8 T 18 90 234 528 3727 29870 34475
1079 8 19 100 240 537 3806 29086 33796
107%¢ 8 20 111 256 545 3871 28224 33035
10785 8 23 119 262 563 4004 27189 32168
10780 8 25 133 264 594 4071 26140 31235
10°7® 9 31 132 275 623 4131 25051 30252
1077 10 34 138 203 653 4136 23943 29207
107%° 11 32 156 309 660 4180 22911 28259
1070 13 34 171 319 677 4170 21772 27156
107%° 15 40 178 334 676 4194 20646 26083
107%° 15 51 184 350 676 4188 19463 24927
10745 17 53 197 362 696 4181 18282 23788
10~*° 21 54 203 383 714 4109 17129 22613
1073 23 53 213 393 760 4101 15801 21344
10730 26 53 232 415 774 4014 14428 19942
1072 29 57 252 421 788 3897 13191 18635
10720 32 64 263 436 779 3775 11839 17188
10718 35 64 270 464 808 3645 10620 15906
10-10 38 76 293 457 802 3231 9112 14009
10~° 51 92 315 431 684 2655 7169 11397
107° 51 94 315 456 703 2816 6167 10602

Table 1. Distribution of clusters by their size at each confldence level.

General information

Table 1 shows the distribution of cluster sizes at var-
ious confidence levels. At each level, the universe of
all proteins splits into clusters, which merge to form
larger and coarser sets as the confidence level decreases.
Clearly, the number of isolated proteins (clusters of size
1) diminishes as well.

In contrast, an application of a single-linkage cluster-
ing algorithm resulted in an avalanche (not shown). Al-
ready at confidence level (1072%) most of the space is di-
vided by the single-linkage algorithm to a small number
of very large clusters. This is the result of chance sim-
ilarities and chains of domain-based connections that
lead unrelated families to merge into few giant clusters.
A major ingredient of our new algorithm is the choice
of rules for avoiding such undesirable connections and
preventing the collapse.

Table 2 shows the 40 largest clusters at the lowest
confidence level (107%) that we consider. The descrip-
tion of each cluster is based mainly on the SWISSPROT
annotations of its members °. This should be viewed
only as a sample. For further information the reader is
referred to our site.

®We do not have a fully automatic way for annotat-
ing all the clusters. The biological interpretation may re-
quire a substantial degree of biological insight. However,
a simple census of proteins based on SWISSPROT defini-
tion/characterization usually gives a good indication of the
cluster’s type.

Possibly related clusters

The clustering algorithm automatically rejects many
possible connections among clusters (see Fig. 2). Con-
nections with quality below the threshold get rejected.
However, many of these rejected connections are still
meaningful and reflect genuine though distant homolo-
gies. We refer to the rejected mergers as possibly related
clusters.

In examining a given cluster, much insight can be
gained by observing other clusters which are possibly
related to it. Even though some of these connections
are justifiably rejected, in particular at the lowest level
of confidence 10~%, many others suggest structural or
functional similarity, despite a weak sequence similarity.
At this stage it is hard to give exact rules for evaluat-
ing these relations, and one’s judgment must be used.
Such judgment can also take into account the pairwise
alignments of protein pairs, one from the cluster under
study and the other in the possibly related cluster. The
alignments can be found in the web site.

Table 3 is an illustrative example. It shows the
clusters which are possibly related to cluster 4 (Im-
munoglobulin V region), ordered by quality value.

Table 4 shows the clusters which are possibly related
to cluster 5 (Immunoglobulins and major histocompat-
ibility complex). Clusters which we suspect to be unre-
lated are marked (in italic). One can validate the sig-
nificance of “possibly related clusters” according their
quality and to the alignments, and insignificant con-
nections can be easily traced and ignored by a manual
examination of the given alignments.

The clusters which are possibly related to cluster
5 consist mostly of proteins that adopted the Im-
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326 | Immunoglobulins and major histocompatibility complex

315 | Ribulose bisphosphate carboxylase large chain

GTP-binding proteins - ras/ras-like family
Myosin heavy chain, tropomyosin, kinesins

Alcohol dehydrogenases (short-chain)

Bacterial regulatory components of signal transduction

GTP-binding, ADP-ribosylation factors family

Zinc-containing alcohol dehydrogenases

Cluster number | size | family
1 718 | Protein kinases
2 593 | Globins
3 514 | G-protein coupled receptors
4 330 | Immunoglobulin V region
5
6 318 | Homeobox
7
8 284 | ABC transporters
9 260 | Zinc-finger C2H2 type
10 256 | Calclum-binding proteins
11 252 | Serine proteases, trypsin family
12 229
13 221
14 208 | Collagens, structural proteins
15 206 | Cytochrome p450
16 198 | GTP-binding elongation factors
17 196 | Tubulins
18 190 | Cytochrome b/b6
19 187 | ATP synthases
20 172 | Heat shock proteins
21 171
22 171 | Snake toxins
23 152 | NADH-ubiquinone oxidoreductase
24 142
25 141 { DNA-binding proteins of HMG
26 140 | Nuclear hormones receptors
27 139 | Actins
28 139 | Intermediate filaments
29 138
30 136 | Neurotransmitter-gated ion-channels
31 133
32 133 | Cellular receptors, EGF-family
33 130 | Amylases
34 130 | Hemagglutinin
35 129 | RNA-directed DNA polymerase
36 125 | Chaperones, chaperonins
37 122 | Phospholipase A2
38 120 | Insulins
39 115 | Cytochrome ¢
40 115 | Ketoacyl synthase

Table 2: Largest clusters at the lowest confidence level (107°).

munoglobulin fold of the IG constant region. These
clusters are disjoint from the clusters possibly related
to cluster 4 that are involved in aspects of recognition
in the immune system (via the variable regions). Clus-
ter 1796, where both regions occur, is related to both.
However, different parts of the proteins account for the
different relationships. This information gives a view of
the geometry of the protein space in the vicinity of the
Immunoglobulin super-family (work in progress).

Possibly related clusters are also informative for the
study of domains. By navigating through these clus-
ters one finds many sequences which belong to different
families, all sharing this domain. The list of related
clusters can be viewed as a “soft clustering”, where the
same protein can participate in several different clus-
ters.

The above examples involve only related clusters at
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the lowest level of confidence. We should note, however,
that throughout the clustering process a pending pair
of related clusters may later join upon lowering the level
of confidence.

Tracing the formation of clusters

A major aspect of the hierarchical organization is that
clusters of a given threshold may merge at a more per-
missive threshold. This reflects the existence of sub-
families within a family, or families within a super-
family.

We thus obtain a subdivision of clusters into smaller
subsets as we proceed from one level to another. This
is illustrated in Fig. 3 for the 2Fe-2S ferredoxins fam-
ily. As we move from level 1075 to level 10710, this
cluster (consisting of 102 proteins) splits into flavin re-
ductases, ferredoxins, flavohemoproteins and other sub-



Cluster number | Size | Quality | Number of | Family
connections
1643 5 0.29 219 B-cell antigen receptor complex associated protein
927 10 0.11 193 T-cell surface glycoprotein CD4
2613 3 0.03 20 Polymeric-Immunoglobulin receptor
5 326 0.01 226 Immunoglobulins and major histocompatibility complex
1137 8 0.01 18 T-cell-specific surface glycoprotein CD28, cytotoxic T-lymphocyte protein
1189 8 0.01 9 Myelin PO protein precursor
1796 5 0.01 9 Poliovirus receptor precursor

Table 3: Clusters possibly related to cluster 4 (Level: 1e-0). Clusters are sorted by quality (i.e. the minus log of the
geometric average of connections). Note that all clusters belong to the super family of Immunoglobulins

Cluster number | Size | Quality | Number of | Family
connections
1831 5 0.38 248 T-cell receptor gamma chain c region
4 330 0.01 226 Immunoglobulin V region
104 66 0.01 64 Cell adhesion molecules, myelin-associated glycoprotein precursor
axonin-1 precursor, B-cell receptor CD22-beta precursor, and more
578 16 0.01 28 High affinity Immunoglobulin gamma FC receptor
596 16 0.01 33 Recombination activating proteins, zinc finger, c3hcf type
856 11 0.01 11 Cornifin (small proline-rich protein)
1262 7 0.01 21 T lymphocyte activation antigen
1636 5 0.01 8 Basigin precursor
1796 5 0.01 7 Poliovirus receptor precursor

Table 4: Clusters possibly related to cluster 5 (Level: 1le-0). Only clusters with more than one member are shown.
Clusters are sorted by quality as in table 3. Almost all clusters belong to the super family of Immunoglobulins. Probably

unrelated clusters are 596 and 856 (in italic).
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Figure 3: The Ferredoxins family (cluster 47 at level
107°%). Each circle stands for a cluster at threshold = 107*°.
Circles’ radii are proportionate to the cluster’s size. The
drawn edges appeared upon lowering the threshold to 1072,
Edge widths are proportionate to the number of connections
between the corresponding clusters.

families. Note that some clusters form cliques - where
each cluster is connected to each other, thus validat-
ing the connection between each pair of clusters. To
fully evaluate such subclassification, the graphical and
sequence alignments of sequence pairs within clusters
are available (at the web site).

Hierarchical organization within protein
families and super families

Our hierarchical organization suggests a refined clas-
sification within known families. This classification is
based on the information extracted while moving across

the different levels of the tree (Scanning the hierarchy
over all levels). This can be illustrated by the following
simple example.

The small G-protein/Ras super family The ras
gene is a member of a family of genes that have been
found in tumor virus genomes and are responsible
for the ability of the viruses to cause tumors in the
cells they infect. In most cases this viral oncogene is
closely related to a cellular counterpart (called proto-
oncogene). Infection by a retrovirus that carries a mu-
tant form of the ras gene (ras oncogene), or mutations,
can cause cell transformation. Indeed, mutations in ras
gene are linked to many human cancers.

The cellular ras protein binds guanine nucleotide and
exhibits a GTPase activity. It participates in the reg-
ulation of cellular metabolism, survival and differentia-
tion. In the last decade many additional proteins that
are related to ras were discovered. They all share the
guanine nucleotide binding site and are of 21-30 KDa
in length. They are referred to as the small-G-protein
super-family (Nuoffer and Balch 1994).

This family of proteins has several sub-families: ras,
rab, ran, rho, ral, and smaller sub-families. Like to
ras, these proteins participate in cell regulation pro-
cesses, such as vesicle trafficking (rab) and cytoskele-
ton organization (rho). In figure Fig. 4 we depict the
relations within this family, based on the hierarchical
organization obtained by our analysis. Total of 229
proteins, all from the small G-protein super-family, are
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presented. Small clusters, which correspond to subfam-
ilies, are formed at the high levels of confidences, and
fuse to larger clusters when the threshold is lowered.
Clusters which are detected as related to this family
are the ADP-ribosylation factors family and guanine
nucleotide-binding proteins (total of 138 proteins) and
GTP-binding protein ERA and thiophene and furan ox-
idation proteins (total of 14 proteins), all of which are
GTP-binding proteins.

Discussion

This paper addresses the problem of identifying high
order features within the sequence space. We aim at
an exhaustive “charting” of all proteins and at sketch-
ing the map of the proteins space, based on pairwise
similarities. This is a daunting task and many difficul-
ties are encountered. One must begin from well estab-
lished statistical measures, in order to identify signifi-
cant similarities. Great caution and biological expertise
are needed to eliminate connections which are unac-
ceptable or misleading. The main culprits are chance
similarities and multi-domain-based connections. The
sheer volume of data makes it inevitable to seek auto-
matic identification methods.

We tried to address these major obstacles, and ob-
tain a hierarchical organization. This organization cor-
responds to a functional partitioning of all proteins. It
reveals interesting relations between and within protein
families, and provides a global view ("map”) of the uni-
verse of all proteins.

Clustering proteins into functional groups would
greatly benefit the understanding of protein function,
structure and evolution. It would serve as a key tool
for the analysis of new sequences, and the relation-
ships among known proteins. When currently available
means of comparison fail to give satisfactory informa-
tion about the features of a protein, a global view may
provide the missing clues.

How can a project such as this one be evaluated? Un-
fortunately, this area has no standard benchmarks on
which to try one’s algorithm. We suspect that other
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Figure 4: The small G-protein fam-
ily. This family is composed of several
sub-families. A total of 229 proteins,
combined in cluster 12 (table 2), were
grouped together into isolated sets at dif-
ferent levels of confidence, to form a nat-
ural sub-classification within the family.
This hierarchical organization is much en-
riched by combining possibly related clus-
ters. Clusters which are detected as re-
lated to this family are the cluster of the
ADP-ribosylation factors family and gua-
nine nucleotide-binding proteins and the
cluster of the ERA proteins and thiophene
and furan oxidation proteins.

groups investigating this field would benefit from such
a benchmark. Our results may be useful in this respect
as well, in that we offer well-defined groups which can
be used in testing and refining new algorithms and soft-
ware tools.

For a comprehensive view of this project the reader
is again encouraged to visit our site
(http://www.protomap.cs.huji.ac.il).
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