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Abstract

This paper presents a framework called Parallel Ex-
periment Planning (PEP) that is based on an ab-
straction of how experiments are performed in the
domain of macromolecular crystallization. The goal
in this domain is to obtain a good quality crystal of
a protein or other macromolecule that can be X-ray
diffracted to determine three-dimensional structure.
This domain presents problems encountered in real-
world situations, such as a parallel and dynamic en-
vironment, insufficient resources and expensive tasks.
The PEP framework comprises of two types of com-
ponents: (1) an information management system for
keeping track of sets of experiments, resources and
costs; and (2) knowledge-based methods for providing
intelligent assistance to decision-making. The signifi-
cance of the developed PEP framework is three-fold -
(a) the framework can be used for PEP even without
one of its major intelligent aids that simulates exper-
iments, simply by collecting real experimental data;
(b) the framework with a simulator can provide in-
telligent assistance for experiment design by utilizing
existing domain theories; and (c) the framework can
help provide strategic assessment of different types of
parallel experimentation plans that involve different
tradeofls.
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Introduction

In some experimental science, a very large parameter
space needs to be searched to find one or more sets
of conditions that define a satisfactory solution. Such
searches have to be performed taking into account re-
source limitations, which exist in almost all real-world
problems. We have focussed our research on one such
problem, namely, that of experiment design in macro-
molecular crystallization. In this domain, the goal of

* Most often in Al, the term domain expert is used to
describe a person with significant experience in the domain.
We see the necessity to integrate rather than separate the
varying domains, mainly due to the constant dialogue and
transfer of knowledge between the parties involved. Hence,
the use of we in this paper includes the people with signif-
icant experience in the domain.
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experimentation is to obtain a good quality (X-ray
diffractible) crystal of a macromolecule (protein, DNA,
or protein-DNA complexes). Such a crystal can be
obtained only under certain specific conditions, which
vary from macromolecule to macromolecule, that arise
due to the mixing of different chemical compounds un-
der varying conditions of physical factors such as tem-
perature, pressure and gravity. There are some specific
features related to growing crystals of macromolecules
that make this problem particularly interesting. These
include:

1. effects of actions changing over time, that is, partial
results of experiments vary over time. For example,
we could observe a crystal in an experimental ap-
paratus on one day, but a week later it could have
dissolved completely.

2. imprecise evaluation of partial results. There exists
only a crude local evaluation function (based on vi-
sual inspection) for partial result determination of
each experiment.

3. a large degree of interdependence among the vari-
ables, with the relationships of their interaction
largely unknown.

4. the tedious nature of experimentation. Long hours
are spent in repeatedly pipetting solutions into ex-
perimental apparatus since typically several (200 to
300) experiments are performed in parallel.

Tradeoffs are necessary in order to successfully search
a large multi-dimensional parameter space to find a
small region that yields a good quality crystal of a
macromolecule.

Given these problem characteristics, one central
question is the following: Can we infer global strate-
gies for designing several experiments in parallel that
can lead to a satisficing solution, given (a) limited re-
sources with costs associated with use of each resource,
(b) effort involved in performing each experiment,(c)
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partial results that vary over time and (d) only a crude
local evaluation function (that provides partial result
for an experiment at any given time of observation)?
To rephrase the question from a crystallization view-
point — what is a good strategy for crystallizing an
unknown protein? Do we spend almost all of the pro-
tein we have on initial screening experiments, or use
a small sample initially? The only “real” way to find
out is to repeat the entire process using different ap-
proaches. That is not possible with real proteins due
to unavailability of large amounts of protein and/or
the costs involved with protein purification. Hence,
there arises a need for the PEP systemn and simulator
of hypothetical protein crystallization behavior, that
are described in this paper.

This research describes a framework, called the PEP
(Parallel Experiment Planning) framework, within
which global strategies can be tried by a human de-
signer. The framework includes a predictive model
that can be used for simulating an experimental out-
come at a particular time, and provides reflective sta-
tistical summaries of the choices made for experimen-
tation. Different scenarios that are representative of
the difference in response behavior of hypothetical pro-
teins in various physico-chemical environments over
time can be produced using simulation. The frame-
work is general enough for use without a simulator -
actual observations can be noted instead. The useful-
ness of the framework is greatly increased, however,
with the use of simulation, since the implementation
can be used as an intelligent decision-making aid and
as a tool for training novice crystallographers to de-
vise strategies for parallel experimentation for different
types of macromolecules.

Background and Motivation

Crystallization is an essential first step in macromolec-
ular 3-D structure determination by X-ray crystallog-
raphy. This is the only method capable of revealing
high resolution structures for most proteins, protein-
DNA complexes, viruses etc. The high resolution
structural information is critical for modern molecular
biological methods which rely on knowledge of the ge-
ometrical interrelationships of the various components
that comprise the overall structure. (Multidimensional
NMR can also determine macromolecular structures,
but it is limited to molecules whose molecular weight
is under 20,000; most proteins are larger than that).
The rate limiting step in X-ray structure determi-
nation is the crystallization itself. It takes anywhere
between a few weeks to several years! to obtain macro-

'In fact , the question of how long to wait for crystals or
precipitate to appear in a cell is not easy to answer. Anec-
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molecular crystals that yield good diffraction patterns.
The theory of forces that promote and maintain crystal
growth is preliminary, and crystallographers systemat-
ically search a large parameter space of experimental
settings to grow good crystals.

A set of about twenty-two parameters (such as
temperature, pH, pressure, etc) that determine suc-
cess in crystal formation have been empirically iden-
tified (Bergfors 1990). Crystallization attempts be-
gin with the design of an initial screening experi-
ment that coarsely samples the parameter space with
a small number of parallel probes (typically between
200 and 300). The initial experiments usually incor-
porate only general information about crystallization
combined with some specific details regarding the in-
dividual molecule under consideration (stability data,
solubility data, isoelectric point, etc). One approach
begins with a very coarse, uniform grid that spans
the variables of interest (Weber 1991). Another be-
gins with an incomplete factorial design that randomly
samples the variables such that all pairwise combina-
tions are tested (Carter & Carter 1979). The results
from the initial screens are used to design finer sam-
pling strategies for subsequent rounds of crystallization
trials.

Rational parameter sampling in the iterated exper-
imental protocol is made difficult by the need to run
experiments over several months as well as by the non-
linear behavior of macromolecules with respect to the
different parameters. The length of time between itera-
tions makes it a challenge for humans to remember con-
textual information. Crystallographers presently rely
on paper logs of experiments for this purpose; however
the types of access they support are very limited. In
order to facilitate the capture of experimental infor-
mation electronically, an effort has been made to build
an electronic laboratory notebook (Gopalakrishnan ef
al. 1994b; Hennessy et al. 1994). Even though the
software XtalGrow is currently being used by about
10 laboratories in the United States, we are still faced
with the problem of insufficient data for purposes of
analysis. Also, the software is still evolving.

The main source for data about successful crys-
tallizations is the Biological Macromolecule Crystal-
lization Database (BMCD) (Gilliland 1987). This
database captures information about successful ex-
periments only. Several attempts have been made
to exploit the available data in order to design ini-
tial crystallization trials for unknown macromolecules.
Samudzi et al. (Samudzi, Fivash, & Rosenberg 1992)
performed a cluster analysis on version 1.0 of the

dotes abound on experimenters finding crystals in plates
abandoned for a year or more in the laboratory.



Labile Region - Stable nucleii
spontaneously form and grow

Metastable Region - N
Stable nucleii grow ~
but do not initiate

PROTEIN CONCENTRATION

UNSATURATED REGION -
SOLID PHASE DISSOLVES

PRECIPITANT CONCENTRATION

Figure 1: Two important dimensions of phase diagram
for protein crystallization (from (Feigelson 1988))

BMCD and suggested a set of screening conditions spe-
cific to a major class of macromolecules. In Gopalakr-
ishnan et al. (Gopalakrishnan et al. 1994a), prelimi-
nary attempts were made to recreate the clusters ob-
tained in Samudzi et al. using two kinds of methods
~ statistical analysis (same as Samudzi’s) and COB-
WEB (Michalski & Stepp 1983) (a machine learning
and discovery program). The results from the cluster-
ing analysis were then used as input to the RL (Provost
& Buchanan 1992) inductive rule-learning program, re-
sulting in verification and expansion of Samudzi’s re-
sults. Hennessy et al. (Hennessy et al. 1999) aug-
mented the BMCD with a hierarchical classification of
the macromolecules contained therein, as well as data
on the additives used with them, and performed a sta-
tistical analysis that has led to a Bayesian technique
for postulating the degree of success of a set of experi-
mental conditions for a new macromolecule belonging
to some known class.

An Experiment in Macromolecular
Crystallization

The basic crystallization experiment is to slowly reduce
the solubility of a sample solution of the macromolecule
by one of several established methods(Ducruix &
Geige 1992). The solubility is determined by all the
environmental parameters, one of which is usually
the concentration of a “precipitating agent”, such as
polyethylene glycol (PEG), a commonly used precipi-
tant. The “crystallization method”, such as vapor dif-
fusion, slowly raises the concentration of the precipi-
tating agent (and almost everything else). If all the
conditions are favorable, a point is reached where a

crystal nucleates and grows. Figure 1 shows the inter-
action between two influential parameters for macro-
molecular crystal nucleation and growth, namely the
concentrations of protein and precipitant. The super-
saturation required for nucleii to form is much higher
than that needed for growth. Thus, the ideal con-
ditions for growing good quality crystals are gener-
ally considered to be along the boundary between the
metastable and labile regions. Nucleii that form far
into the supersaturated region are most likely to pre-
cipitate due to the fast rate of growth. The unsatu-
rated regions indicate the unlikelihood of crystals form-
ing and correspond to clear experimental results.

The basic experiment is repeated with different pa-
rameters until the experimenter succeeds, abandons
the effort entirely, or decides to work on crystallizing
a mutant or variation of the original macromolecule.
Typically, many experiments (between 200 and 300)
are started simultaneously and allowed to run for sev-
eral weeks to several months. During this time, the
experimenter attends to other projects. Then, the re-
sults are evaluated and a new series begun (to run con-
currently with the older ones). Thus, large volumes of
data accumulate over long periods of time. A slow rate
of change is very often essential for crystal growth, thus
there may be no other way to speed the process than
to find good environmental parameters quickly.

An experiment can be described as containing val-
ues for three sets of variables, givens, controllables and
observables. Givens represent the known information
about a protein such as its identity, molecular weight,
and isoelectric point. Controllables represent the val-
ues for the control parameters such as the concentra-
tions of protein and precipitant, pH, and temperature.
The term observables is used to denote the vector of
partial results that are observed at different times. The
givens determine the observable effects of the choice of
controllables. As the observables change over time,
they are referred to as partial results at any particular
time of observation. This classification of the variables
into givens, controllables and observables helps us un-
derstand the manner in which the different types of
variables influence one another.

Figure 2 gives a pictorial description of how experi-
ments and trials are done by hand. Each experiment is
shown as a circle within a tray that can be used to set
up a maximum of 24 experiments. Several trays are
set up as the initial trial or set of parallel experiments.
Each experiment includes some measures for control
variables such as protein, precipitant and salt concen-
trations. Each well or experiment is examined under a
microscope to yield observables over time. Depending
on partial results observed, new trials are started and
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Figure 2: Parallel experimentation in macromolecular
crystallization. After each trial is set up: success =
good crystal, partial success = precipitate or unusable
crystal, and failure = clear or no change in solution

examined, until a good quality crystal is obtained.

Motivation for the Framework

The above description of how experiments are actu-
ally designed and performed in parallel forms the ba-
sis for the abstracted PEP framework. Because there
are insufficient data regarding both successful and un-
successful experiments (and the degree to which they
are successful/unsuccessful), we needed a framework
within which we could study the feasibility and re-
quirements for capturing and analyzing experimental
data. One commeonly adopted method for such a study
is modeling and simulation. This research includes
the construction of an approximate physico-chemical
model of crystal nucleation and growth. Most of the
validation for the performance of the model was sub-
jective, with the satisfaction of the domain experts as
the major goal.

Figure 3 depicts the ideas that form the basic mo-
tivation for this research. When a crystallographer is
faced with an unknown protein with only a few given
information, such as its molecular weight and its iso-
electric point or pI?, the goal is to obtain at least one
crystal that is good for X-ray diffraction as soon as
possible and without running out of protein material.

2At its isoelectric point, a macromolecule carries an

equal number of positive and negative charges, and is there-
fore electrostatically neutral or balanced.
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Figure 3: The general idea for providing intelligent
assistance

A good quality crystal is usually one that has a resolu-
tion limit of diffraction (difflim) less than 3 A. In spe-
cial cases, there exists only a limited amount of protein
(such as when a patient is dead, and is the only source
of a particular protein). Also, protein isolation and pu-
rification is an expensive process. The major factors
that limit the number of experiments that could be
performed in the laboratory therefore are the amount
of protein and the tedious nature of experimentation.
Thus, any mechanism or method that would be able
to help in cutting down the the number of experiments
that we would try before getting at least one hit (good
crystal), would be most helpful to crystallographers.
The research undertaken herein attempts to lead us
toward such methodology.

The method shown in Figure 3 attempts to use pre-
liminary solubility data available for an unknown pro-
tein that needs to be crystallized, as input for a model
that could be used to simulate experimental outcomes
over time. The space of experiments defined within the
simulator model consists of a reduced set of factors that
could possibly influence the outcomes. If the assump-
tions that are made in the model hold in the real-world,
we would then be able to predict which (sets of) experi-
ments within this reduced space are more likely to yield
a good quality crystal. These identified experimental
conditions could then be further manipulated in the
laboratory, if necessary, by varying parameters that
are outside the scope of the simulator model. Thereby,
using existing theory and a model based on such the-
ory to predict the likelihoods of success for experiments



along some dimensions of the search space, we could
reduce the total number of experiments that need to
be performed in the laboratory before a single good
crystal of any given protein is obtained.

In this research, we have constructed a fairly so-
phisticated simulator based on a predictive model of
macromolecular crystallization. Given such a predic-
tive model, we can try out a large number of experi-
ments in virtual space to understand the characteris-
tics of the boundary that separate the successful exper-
imental conditions from the unsuccessful ones. Iden-
tification of the boundary between the classes of ob-
servable results is an important aspect of being able
to come up with some internal model of how the given
protein seems to be responding under different exper-
imental controls. This gives some insight into possible
rates of change of various hidden variables that influ-
ence crystal nucleation and growth such as the satu-
ration level of protein in solution. A generalization
program (called C4.5 (Quinlan 1993)) is used within
the framework to provide a human-understandable de-
scription of the boundary based on all the experiments
and partial results observed so far. By using the frame-
work with the simulator and generalization program to
learn such protein-specific strategies to try out in the
laboratory, we hope that we will be able to reduce the
number of actual experiments tried before obtaining a
good quality crystal. Using this method we would be
able to save time, effort and material involved in the
crystallization of an unknown protein.

The PEP Framework

The framework for designing parallel experiments as
concurrent trials is shown in Figures 4 and 5. The
framework has been developed to facilitate the setting
up of parallel experiments as a defined region of the
vast search space that is being searched at some level of
granularity. Parallel experiment planning is therefore
viewed as heuristic search with the human experiment
designer as the heuristic control element. The control
exercised by the human user is both appropriate and
necessary in this domain.

The framework uses terms that have the following
definitions:

1. Ezperiment: A combination of conditions (values for
control parameters) that result in a series of out-
comes at different times and consume some set of
resources.

2. Trial: A group or population of experiments that
are performed in parallel.

3. Project: the problem (e.g. the protein to be crystal-
lized).
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Figure 4: Framework for designing parallel experi-
ments as concurrent trials
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4. Global Information: Information about the con-

pr

stants and variables for a project, as well as exper-
imental record. This record consists of statistical
summaries, and boundary information that repre-
sents the evolving boundary between classes of ob-
servable partial results.

. Local policy® (or search heuristic): the basis for

defining a new trial after observing partial results.

. Global strategy (or search protocol): the abstract de-

scription of a series of trials leading to the goal (such
as a good quality crystal).

If we were to try to represent the crystallization
oblem as an Al planning problem, it would have to

be cast as a reactive planning problem, as the environ-
ment is dynamically changing. The biggest challenge
would arise in how to (re)plan based on evaluation of

partial results.

Thus, we would need an evaluation

function that can assign probabilities to different re-
gions of the search space of experiments based on ob-
servation and evaluation of partial results over a period

of

time. These factors make this problem very differ-

ent from traditional Al planning problems(Russell &
Norvig 1995).

K

ey Ideas

The main ideas that are represented in the framework

in

1.

Figure 4 can be stated as follows:

Economic variables are important in strategic deci-
sion making, and hence must be included as part of
every data gathering and data analysis project.

3 A complete mapping from states to actions describes a
policy. A policy therefore represents a simple reflex agent
that knows what action to perform based on what state it
is in.
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2. The nature of the real-world is such that multiple

actions are taken in parallel, and the effects of some
critical actions/decisions are visible only in the long-
term, the evaluation is not precise as it is often based
on visual information, and resources such as time
and money are constrained.

. In order for parallel experiments to be designed, it
is necessary to design variables/data structures that
can manage the information in an aggregate man-
ner. Figure 6 depicts an overview of the PEP infor-
mation management system that keeps track of ex-
periments performed, resources consumed and costs
incurred. The system maintains information that
pertain to experiment, trial and global information
summaries. Experiment summaries include informa-
tion about the best partial result observed so far for
each experiment, and the time of observation of the
best result.

. In order to provide intelligent assistance for decision-
making, it is necessary to implement first the PEP
information management system that can main-
tain the information about experiments in electronic
form. Intelligent assistance can then be provided by
building partial or approximate models, and using
them to simulate experimental data for input to a
generalization program. The generalization program
can help identify the boundary characteristics that
separate the successful and unsuccessful experiments
given the model.



Figure 7 depicts an overview of the search involved
in the PEP framework. An initial population of ex-
periments represents the first trial. These experiments
are observed and evaluated, and based on evaluation
of these partial results, a decision-making agent applies
operators to generate a new trial and close (or reopen)
one or more experiments for observation. The initial
set of experiments are still running concurrently. The
simulator returns an observation for any experiment
after a specified period of time (a real number rep-
resenting number of weeks). The generalization pro-
gram represents intelligent evaluation of experiments
and their results over time, and provides a represen-
tation for boundary characteristics between observed
classes of results in terms of rules containing a conjunc-
tion of control values on the left-hand side and the ob-
servable class (such as crystal) on the right-hand side.
An example of a set of simple rules is shown below:

Rule 2:
protconc > 1 -> class 1 (CRYSTAL)
Rule 1:

protconc <= 1 -> class 3 (CLEAR)

The rules indicate that protein concentration was the
most influential variable in providing the distinction
between classes 3 (clear) and 1 (good crystal). Thus,
using these rules, the experiment designer can carry
out future trials, wherein protein concentrations less
than or equal to 1 mg/ml are not used. For details
regarding the representation and data structures used
by the information management system of the PEP
framework, see (Gopalakrishnan 1999).

Descriptions of Main Parts

The main components of the framework that supports

parallel experiment planning in this domain are dis-
cussed below.

Design Trial This is the first step or task that needs
to be undertaken by an agent. Initially, only resource
constraints (and maybe time constraints) are specified.
The agent or experiment designer has knowledge of all
the givens (including costs of reagents) for the protein
that needs to be crystallized. The task of the designer
is then to decide how many experiments to perform in
parallel, and what the actual values of the controllable
parameters are for each experiment.

If this same task needs to be repeated in light of par-
tial outcomes that have been observed and evaluated,
the type of decision-making involved changes slightly.
The designer now needs to make a choice among several
possible actions, basically involving whether to begin
a new trial or not. These include:

1. Do not start a new trial, but observe some or all
existing experiments after a certain period of time,
when new evaluation can take place.

2. Close none, some or all of the existing experiments

for observation and start a new trial, which requires
further decision-making as to how many experiments
to setup and what controllable parameter values to
use for each.

The decision-making process is thus complex and in-
volves tradeoffs along several dimensions, two of them
being cost and time. If the decision made is to design
a new trial, then the user must enter information re-
garding the number of experiments to perform in par-
allel, the number of values for each control parameter
that she would like to vary across the experiments, and
specify the values. In this prototype implementation of
the PEP framework, we include only one type of search
or manner in which the specified sets of values for each
control parameter are spread over the set of parallel
experiments. This is essentially based on a factorial
grid where each possible combination of values that
could be generated from the specified sets of values for
control parameters is used to represent a single exper-
iment. Thus, the grid or factorial search generates a
set of parallel experiments that comprise a single trial.

There are several types of initial search methods that
could be included as part of the framework in the fu-
ture. These represent different types of initial screen
designs from prior research. A well known incomplete
factorial approach (Carter & Carter 1979) assumed
that all points in the parameter space of crystallization
conditions are equally probable, which has been proven
to be an incorrect assumption (Hennessy et al. 1999).
Jancarik and Kim (Jancarik & Kim 1991) employed a
semi-automated sparse matrix sampling of published
crystallization conditions that has led to the design of
commercially available crystallization kits that contain
several initial experiments that have proven to be fairly
successful. Grid screens (Weber 1991) are factorial de-
signs and constitute a popular method for systematic
screening of crystallization conditions.

Generate Partial Result Generation of partial re-
sults refers to the task of observing and reporting (elec-
tronically) the partial result observed for each exper-
iment. An assumption is made herein that since the
process is slow, the exact time at which an experi-
ment is observed could be slightly different than the
time noted, since a whole bunch of experiments are
typically observed sequentially by a single agent. (If
there were multiple agents, then true parallel effects
can be achieved.) If we want to get very sophisti-
cated in terms of modeling time, then we could in-
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crement current time after each observation, and after
each setup. For our purposes, it is sufficient to assume
that the same time-lag for setting up each subsequent
experiment, balances the time difference in observa-
tion of the experiments in a sequential manner. So, we
can assume that each trial starts at a particular time,
and all experiments within that trial start at that same
time, that is simultaneously.

In the laboratory typically, experiments are checked
on a daily basis, though sometimes, they can be left un-
observed for a week or so, depending on what is known
a priori about both the protein being crystallized, as
well as the experimental conditions themselves. The
types of partial results that are observed can be cat-
egorized broadly into one of three types - clear (i.e.,
no change}, crystal, or precipitate. Precipitates and
crystals have further categorizations.

We have chosen the parameters of the simulation
model such as to produce quantitative output describ-
ing partial result quality that resembles the actual reso-
lution limits of diffraction (difflims) used for describing
crystal quality in the laboratory. Precipitates are de-
scribed as large numbers. Good crystals have difflims
less than 3A.

Domain Knowledge:
Solubility Tables, etc

Given

e
Parameters Observable
Experiment EQUATIONS —~——f———pm- Partial Result
Controls (real number)

+
PROCESSING

Time of —
Observation

Figure 8: Overview of simulator model

This model is a major component for providing in-
telligent assistance and hence has been described in
detail in another paper (Gopalakrishnan, Buchanan,
& Rosenberg 2000). The model contains functional
definitions and procedural descriptions of the overall
process of protein crystallization. Figure 8 presents an
overview of the model used to generate different hypo-
thetical protein crystallization behaviors. By simply
varying the controllable parameters that are input to
the simulator, it is possible to simulate large numbers
of virtual experiments and their outcomes over time,
for a particular set of given parameters and domain
knowledge. By varying the given parameters and some
critical parameters that are included in the description
of the equations and processing that drive the simula-
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tion, we can produce the effects of different classes of
hypothetical protein responses in different crystalliza-
tion environments. Thus the model offers both flex-
ibility and power with respect to simulating protein
crystallization behaviors.

Evaluate Partial Result and Generate Experi-
ment Summary The partial result of an experiment
is usually observed visually, under a microscope. The
result is a description of the observable(s), i.e., whether
a crystal or precipitate is seen, and whether it looks like
a needle, plate, or is amorphous, and so on. For the
purposes of our initial evaluation, we classify the sim-
ulated partial result broadly into three classes: clear,
precipitate and crystal. It should be pointed out at this
time, that the model that describes protein response
behavior in different physico-chemical settings is flex-
ible and sophisticated enough to be able to describe
and produce different types of solid phases of a pro-
tein, each with varying description in terms of shape
and size. For purposes of our analysis, we will use just
the simple classification, and produce simulations mod-
eling mainly two types of solid phases, i.e., crystalline
and amorphous. The amorphous solid phase is labeled
as precipitate. The crystalline solid phase is labeled as
crystal. The liquid phase is labeled as clear.

1. Update the number of observations performed for experiment E
2. If first observation, compute direct costs (trial T, experiment E)
3. Generate summary of observables at current time for E:
Time _of_Observation ~<—— current_time - start_time(T)
Diffraction Limit —~——  Partial Result
Result Class —~=—  Assign Class
4. Update material consumed (protein mainly)
5. Update observation costs
6. Update best result statistics (best diflim, time obtained)
7. Calculate experiment utility

Figure 9: Evaluate result and generate experiment
sumrary

The procedure used to evaluate the result and gen-
erate a summary of an experiment over time is shown
in Figure 9. The data structures that comprise a sum-
mary of an experiment can be found in (Gopalakrish-
nan 1999). The utility of an experiment is calculated
as follows:

If the experiment is being observed for the first time,
we simply assign a number to utility that is one greater
than the difference between the largest result class (i.e.
3) and the observed result class. Otherwise, we add to
the current utility of the experiment, a quantity pro-
portional to the difference between the result class of
current and previous observation and subtract a quan-
tity proportional to current time. The last quantity is



a penalty for delay in obtaining a good quality result.
Thus, the first time experiment e is observed, the
following equation is applied:

Ut = 4.0 — Rey (1)

where U, ; is the utility of experiment e at time t of
observation, and R, ; is the result class of experiment e
at time t. During subsequent observations, the follow-
ing equation is used to calculate utility of experiment
e:

Ue,t = Ue,z—l + Re,t—-l - Re,t - (k x t) (2)

where & is a small constant such as 0.1, and t is current
time.

Generate Trial Summary Figure 10 shows the
simple procedure used to evaluate trial results. Tables
showing the data structures used to describe a sum-
mary of a trial and a trial definition can be found in

(Gopalakrishnan 1999).

1. Calculate the percentage of observables belonging to each class

2. Calculate the amount of material consumed and percentage of
initially available protein consumed

3. Compute total costs as sum of direct, intangible and observation costs

4. Assess utility if desired

Figure 10: Evaluate trial results and generate trial
summary

Generate Global Information Summary The
data structures that describe the global summary are
shown in (Gopalakrishnan 1999). This in essence con-
stitutes a summary of the global state in terms of paral-
lel actions taken and their observed effects. The global
information over time summarizes the feedback from
the complex environment from multiple probes over
time. Part of the global information includes the out-
put from the C4.5 program that takes as input the de-
scription of all experiments so far and outputs a model
description or theory consisting of a disjunction of con-
junctive rules that is consistent with the data seen so
far. The features that represent any experiment and
its partial result are encoded as a string of comma sep-
arated values for each of its control parameters, as well
as time of observation of partial result, and finally the
class of the partial result (Class 1 means good quality
crystal, class 2 refers to poor quality crystal or pre-

cipitate, and class 3 means no observable change was
found).

Agent Architecture One of the key aspects of this
PEP framework is that it includes an agent who is
the experiment designer in the loop. At the present
time, the agent is a human. We will now explain the
characteristics of an agent that resides within the loop
in terms of the types of inputs (percepts) that will be
received and the types of actions that the agent will
perform through its effectors (such as hands that can
enter information into a computer from a keyboard, or
set up new experiments in the lab).
Agent Function

The inputs to the human agent involve the percepts
from the environment -

1. Raw observation labels for each experiment at time of
observation,

2. Summaries for each experiment, trial, and global state,
which contain costs as a sum of setup and observation
costs for each experiment, trial and global state infor-
mation, as well as the amount of resources consumed,
and

3. A representation of the evolving boundary in the form of
a disjunction of conjunctive rules that describe a model
of overall protein response behavior over different times
of observation over all experiments performed so far until
current observation time.

Assume that the agent has knowledge of its percep-
tual history and uses some policy* for deciding its next
action. We also assume that the human agent is able
to ascertain whether the goal has been achieved based
on the feedback from the environment, that is the per-
cepts.

The outputs or actions that the human agent within
the PEP framework performs upon its simulated envi-
ronment are:

1. Exit (that is, say no to all possible actions) OR

2. Re-open or close experiments or trials for next observa-

tion (optional) AND

3. Design a new trial AND/OR observe experiments after
some time period.

Figure 11 depicts a commonly used policy by crys-
tallographers for deciding the next set of experiments
to perform based on partial result examination. This
policy was determined after several long discussions
with crystallographers who perform laboratory work
on a day-to-day basis. The challenging aspect of the
decision-making involves heuristic 3, where the bound-
ary between partial results can help identify regions
that have a higher probability of success. The reason

See Figure 11 for a commonly used policy elicited from
discussions with several crystallographers.
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Heuristic
Strategy 1 YES NO
L Any Precipitates?
Choose those points
where crystal seen
and experimént around
those conditions
Heurlistic
Strategy 4
Raise the precipitant
YES NO concentration and/or raise
the protein concentration or
change precipitant
Heurlstic tic
Strategy 2 Strategy 3
. Extract features from partial results
Lower the precipitant data to give clues as to where the boundary
conccmuon and/or lower between clesr and precipitate lics along the
the protein concentration jons of ipi jon and
protein concentration. Use extracted features
to assign probabilities 1o experiments lying
between the boundaries

<4 Points in the parameter space, that is, cxperiments

Figure 11: Binary decision tree for experiment design

that boundary identification is very useful in this prob-
lem domain is evident from the characteristics of the
solution as shown in Figure 1. Intelligent assistance
with respect to boundary identification and descrip-
tion is therefore highly desirable. In our experiments
with the PEP system using the simulator, we found the
policy in Figure 11 to hold for most cases of hypothet-
ical protein givens. This appears to validate both the
simulator model as well as the policy, as they were both
constructed independent of one another and involved
different sets of crystallographers.

Summary of PEP Framework
Implementation

The types of goals for which this framework was de-
signed are:

G1: Identify and label experiments as belonging to particular
classes (1, 2 or 3) at time of observation based on partial
results.

G2: If crystals are found, identify and report the experimen-
tal conditions that seem favorable.

G3: Identify the boundary between the classes along the
most influential variables. The most influential variables
themselves will need to be identified.

G4: Calculate the costs involved for setup and observations of
each experiment and the various trials, and use them for
deciding what types of tradeoffs to make at each decision-
step.
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G5: Keep track of resources that are being consumed, partic-

ularly that of protein. This will directly influence strat-
egy.

(G6: Store summaries of effects of parallel actions in a data

structure (such as the global summary), for analysis of
strategies.

Goal 1 (G1) is achieved based on the final quality
outcome that is obtained from one run of the simulator.
Usually class 1 or good crystals are outcomes of 3.0 or
less. Class 2 refers to either bad crystals or precipitates
that are outcomes between 3 and 100. Class 3 refers
to an outcome that indicates a clear result - 1000.

Goal 3 (G3) reflects the identification of the bound-
ary between the classes of observed outcomes. This
goal is achieved using inductive machine learning pro-
grams such as C4.5 and RL, that provide a human-
understandable description of the boundary based on
all the experiments and outcome labels seen so far.
Identification of boundary is an important aspect of
being able to come up with some internal model of
how the given protein seems to be responding under
different experimental controls. This gives some in-
sight into possible rates of change of various hidden
variables that influence crystal nucleation and growth
such as the saturation level. Human agents do not nec-
essarily think about the process in terms of the kind
of influence some input controls might have on hidden
variables. They focus on the kinds of boundary sep-
arations they observe, and based on their knowledge
of the process based on experience, they tend to make
reasonable hypotheses that influence their search to-
ward more profitable areas.

The methods used for achieving G1 and G3 provide
the intelligent assistance for designing crystallization
experiments. The remaining goals are met by the PEP
information management system.

Evaluation of the PEP Framework

The central claim is that the PEP framework is suf-
ficient for parallel experiment planning. Sufficiency
of this framework is demonstrated by constructing a
working program called the PEP system that allows
such an evaluation. For purposes of discussion, we will
view the framework as consisting of an environment
and an agent. The entire framework then supports
parallel experiment planning. The design of the envi-
ronment is based on its utility with respect to the agent
that is included in the framework. In the current PEP
system, the environment serves as a tool using which
a human agent could explore and learn by observing
effects of actions. It is immediately obvious that the
nature of the feedback from the environment affects the



kinds of reasoning tasks that the human agent would
need to perform.

The sufficiency of the PEP framework has been
shown by constructing an experiment simulator and
embedding it within the model that represents the par-
allel experiment planning environment. This simulated
environment interacts with a human agent, the ex-
periment designer, by asking questions. The human
agent interacts with the environment by answering the
questions and typing in his/her choices for parallel ac-
tions. The environment simulates partial results at
user-defined observation times and provides the user
with experiment summaries, parallel action or trial
summaries, and a summary of the state of the world
or global summary after each observation action is per-
formed by the user.

The reason that this implementation of the PEP
framework works is because:
(a) the main components have been identified and rep-
resented adequately,
(b) the instruments for manipulation and interpre-
tation include computational procedures and book-
keeping as well as a human designer,
(c) the environment is controlled and hence, errors such
as incorrect recording of observed outcomes do not oc-
cur,
(d) the interaction between environment and agent is
facilitated smoothly and easily in a question-answer
fashion that most humans are used to and seem to
like, and
(€) even though the experiment simulator developed in
this research is fairly sophisticated, it is possible to find
a solution if one exists within a reasonable amount of
time expended by a human-agent — the average time
taken to learn to use and find one hit for a medium-
difficulty simulated protein is about 1.5 hours of real
time.

The PEP framework allows for the representation of
any number of parallel experiments, that can be rep-
resented by data structures that describe:

1. the number of experiments N to be performed in
parallel,

2. a set of constant values for all the experiments, that
represents the givens of a protein or problem,

3. a set of values for control parameters of each exper-
iment, that vary across the N parallel experiments,

4. a search type that represents a program or algo-
rithm used for deciding how to vary the control values
across the N experiments,

5. a variable cost function that depends on N that rep-
resents the difficulty associated with performing large
numbers of experiments in the laboratory, and

6. constraints on material resources, such as amount of

protein available. Future resources can also be repre-
sented if necessary. Thus, the constraints on resources
could change dynamically.

The simulation model is used to generate the partial
result observed for each individual experiment. The
PEP system with the experiment simulator has been
specifically tuned to reflect very closely the way ex-
perimentation is actually carried out in the laboratory
(that is, the types of commonly used values for many
of the major variables in an experiment). A simple
evaluation function can convert the quantitative out-
come of the simulated partial result into one of three
commonly observed classes of results, namely clear (or
no result), precipitate, or crystal.

Summaries are provided at all levels of detail, start-
ing with the partial results of an experiment over the
observations so far. The most important aspect of the
PEP framework is the flexibility with respect to being
able to utilize different policies for acting given an in-
telligent analysis of all partial results observed so far.
Thus, it is possible to employ different tradeoffs at any
step in the decision path, and observe the outcome of
such an action (parallel action) and be able to adjust
the weight of possibly performing such an action from
the given state. In essence, this PEP framework can
be used to effectively learn policy (or policies) that es-
sentially enables the agent (or designer) to decide on
the action that is more likely to take him/her closer
to the goal. Interestingly, the machine learning com-
ponent plays a big role in enabling the agent to form
a representation of this policy by generating rules that
help discriminate effects of actions.

The local policy for choosing next moves changes ac-
cording to the partial results seen and past experience
of the experimenter. It is difficult to automate entirely
the analysis of partial results, and hence the need for
a human in the loop. The main assumption behind
this inclusion is that humans tend to employ different
tradeoffs at different stages in the decision making pro-
cess, which are difficult to enumerate and encode due
to the enormous branching factor of related actions and
the tacit knowledge of past experience.

Demonstration of Sufficiency using
Prototype

The prototype PEP system has been evaluated by in-
cluding humans in the loop. The subjects included 2
novice crystallographers, who were introduced to the
PEP system for the first time. They were asked to
assign a quality number between 1 and 10 for certain
evaluation criteria. The summary is shown in table be-
low and clearly indicates that the PEP system is suf-
ficient as an information management tool, and pos-
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sibly as an intelligent aid to decisions. The subjects
found the rules from the machine learning program to
be a very simple and easy-to-understand description of
the boundary between the classes of observable results.
This description was influential in guiding the crystal-
lographers toward the more likely regions for success-
ful crystallization of a particular hypothetical protein.
The subjects were also able to detect differences be-
tween types of hypothetical protein behaviors, as was
visible from the effects produced by the simulator.

Comments Score

(1-10)
9

Question

Interesting? Yes, makes life easter
Summaries are especially
helpful at all levels.
Useful? Very useful because 9
it is easy to use.
Easy to follow -
clear and concise.
Interactive - 9
do not need a graphic -

easy to understand already
Rules are very helpful -
limit your choices and

help you get a crystal faster.
Overall Score? | Sufficient for PEP 9

Interface?

Table 1: Overall evaluation of PEP prototype by the
human subjects

Future Work

The PEP system developed in this paper could be used
an educational tool for novice crystallographers. The
time complexity analysis of the algorithm that under-
lies the environment of parallel experiment planning
with intelligent decision-making is O(#tobservations)
at each decision step, if we assume a parallel imple-
mentation. The current implementation is serial and
will need to scale up.

The PEP framework could also be applied to other
domains, such as clinical trial design for testing drug ef-
ficacy and safety, where the goal is to minimize dosage
and maximize benefits while trying to distinguish be-
tween toxic and therapeutic effects of a drug.
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