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Abstract

A novel description of protein structure in terms of the
generalized secondary structure elements (GSSE) is
proposed. GSSE’s are defined as fragments of the protein
structure where the chain doesn’t radically change its
direction. In this new language, global protein topology
becomes a particular arrangement of the relatively small
number of large, rod like GSSE’s. Protein topology can be
described by an adjacency matrix giving information, which
GSSE’s are close in space to each other and defining a graph,
where GSSE’s are equivalent to vertices and interactions
between them to edges. The information about the local
structure is translated into the local density of pseudo-Ca
atoms along the chain and the curvature of the chain. This
new description has a number of interesting and useful
features. For instance, enumeration theorems of graph theory
can be used to estimate a number of possible topologies for a
protein built from a given number of elements. Different
topologies, including novel ones, can be generated from the
known by various permutations of elements. Many new
regularities in protein structures become suddenly visible in a
new description. A new local structure description is more
amenable to predictions and easier to use in fold predictions.

Introduction

The single most important decision in protein structure
analysis is a choice of language used for protein structure
description. Such choices define what we see as similar or
different, and even on how we calculate energy. Helices or
beta strands, usually used to depict protein structures, are
based on local structural regularities, but at the same time
they make a protein structure easier to analyze by defining
a relatively small number of structural blocks. Other
choices are focusing on interaction maps of proteins in
form of contact maps (Godzik, Skolnick and Kolinski
1993), or their surfaces. Beautiful cartoon diagrams of
proteins based on local secondary structure introduced by
J.Richardson are by far the most popular way of depicting
protein structures, to a very large extent shaping the way
we think about proteins.

For instance, based on this representation, a complete
classification of all known protein structures was attempted
by several groups, and constantly updated lists of known

protein folds are available over the Internet (CATH 1995,
SCOP 1995). At the same time, defining blocks forming
the global protein topology on the basis of local regularity
and effectively mixing up two perspectives, one local, one
global, has many drawbacks. For instance, various
definitions of secondary structure, as well as local
irregularities may lead to assigning various positions (or
even various numbers) of secondary structure elements to
otherwise very similar protein structures. Also, there are
many proteins with only small amounts of secondary
structure, that in cartoon diagrams come across as
irregular, almost random structures.

In this contribution we attempt to solve these problems
by completely separating the two perspectives (local and
global). A new description of a global protein topology
will be based only on the direction of the chain, and a local
description only on the density of packing of amino acids
close in sequence. Details of this approach will be
explained in the Methods section of the paper, with several
applications of the new description presented in the Results
section, with even more suggested in the Discussion and
Conclusions. In short, complete separation of the local and
global structural information allows the global regularities
to be easier to find and classify and local regularities easier
to predict. For instance, it becomes obvious that
constraints of packing together a relatively small number of
rod-like objects play a fundamental role in limiting the
number of possible protein topologies.

Methods

The crucial question which must be addressed before one
attempts to build a simplified description of protein
structures is a definition of an elementary building block
used in the description, which preferably should be as large
as possible. A continuous fragment of regular local
secondary structure (SSE) seems to be an obvious choice
here and indeed, it is used as a basis of most descriptions.
There is however an important problem in using fragments
of secondary structure, defined on the basis of the local
regularities in secondary structure in a global fold
description. There are many examples of locally regular
structures, separated by a short elements of irregular



structure, at least as classified their hydrogen bonded
pattern (Kabsch and Sander 1983), but without any
changes general direction. Should they count as one, or as
two elements? Another potential problem is presented by
stretches of irregular structure. These fragment, while
devoid of any local regularity, often “connect” one side of
the molecule with the other side, and, as such, in a global
topology structure have a role similar to other regular a
helices. Using secondary structure assignments, such as
produced by the DSSP program (Kabsch and Sander 1983)
about 50% of all protein residues are classified in states
other than helix or extended. For some proteins, this
percentage is much lower and their description in a
standard ribbon diagram is difficult. These problems with
the ambiguity of the local regularities as used in defining
elements of protein structure can be solved by focusing on
a global, instead of a local description of a protein chain.

Figure 1. The ribbon diagram (left) and a smoothed
backbone of flavodoxin (PDB code 1fla).

The process of averaging out the local characteristics
of the protein chain is illustrated in Figure 1, where the
backbone is “smoothed” out by using an averaging
procedure, where a Ca position is replaced by an average
calculated in a 5-residue window. After the smoothing the
protein chain looses all its local “wiggles”, all that remains
is the information about the global topology of a chain. We
would call such a chain a “smoothed backbone” and the
positions of Ca atoms after the smoothing procedure will
be called pseudo-Ca atoms.

Now, a natural definition of a building block would be
a fragment of a protein chain that is approximately straight,
i.e. continues from one turn, where the protein chain
changes its direction, to another. We would call such
elements “generalized secondary structure elements” or
GSSE. This definition includes all standard SSE’s, and at
the same time solves many ambiguities: one GSSE might
be built from several SSE’s (such as the first two helices in
endonuclease) or from fragments devoid of any regular
secondary structure (such as the first, third and a sixth
element in endonuclease).

We propose a simple definition of a GSSE based on
the straightforward application of the previous “naive”
definition. We define an angular correlation matrix, with

its [i,j] element equal to the angle between vectors
[Ca;,Caisq] and [Ca;, Cajiqg]. An example of such a matrix
is presented graphically in Figure 2 for myoglobin.
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Figure 2a. The “angle map” of myoglobin : angles between
two consecutive Ca atoms are shown in colors, from black
(parallel) to red (anti-parallel).

In Figures 2a and 2b, the angle between two Ca (or
pseudo-Ca) atoms is denoted by color, from black for 180
deg (parallel), to blue for 90 deg (perpendicular) to red for
0 deg (anti-parallel). For the native backbone structure
(Figure 2a), the angular correlation matrix doesn’t reveal
much regularity. But using a “smoothed” protein backbone
(lower part of the Figure 2), such as illustrated in the
Figure 1, presents a very different picture with very clear
regularity, visible as well defined black boxes of angles
close to 180 degrees along the diagonal.
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Figure 2b. The “angle map” of a smoothed backbone of
myoglobin (see the text for details): angles between two
consecutive pseudo-Ca atoms are shown in colors, from black
(parallel) to red (anti-parallel).

These boxes are used to define GSSE boundaries, and
this definition is surprisingly robust in respect to the
number of smoothing procedures and threshold values for



the segment definition. Three smoothing cycles and a
threshold of 120 degrees for the lowest vector-vector angle
within the segment were chosen arbitrarily and used
throughout this paper. This is equivalent to a “smoothed”
protein backbone, such as shown in Figure 1. A similar
definition of a structural segment was used previously in a
“block and U-turn” model of protein structure (Kolinski et
al. 1997).

As seen in Figure 1, the pseudo-Ca chain obtained
with a smoothing procedure described above can have
different linear density of pseudo-Ca atoms along the
chain. Helical segments correspond to a high linear density
of about 0.7 pseudo-Ca atom per angstrom (1.5 A between
pseudo-Ca atoms), segments with extended (B) local
conformation have a local density of about 0.3 (i.e. 3A
between atoms). Interestingly there are a lot of dense
fragments that are not classified as helical by standard
secondary structure classification programs. The links
between GSSE can be characterized both by the linear
density of pseudo-Ca atoms along the chain and by an
angle between consecutive pseudo-Ca atoms.

Results:

Global description: protein topology as a graph

To complete a construction of a simplified description
of protein topology, we now have to characterize a mutual
orientation of segments in space. One of several
possibilities is to provide a list of segments adjacent in
space, another, a list of local angles describing how the
chain turns. Within the former definition, there is a wide
choice of possible definitions of “adjacency”. We have
decided to use the definition based on distance in space
between central fragments of segments, identified
according to the procedure above. This is cross-correlated
with the information of inter-residue interactions between

segments.

Figure 3. Ribbon diagrams of tenascin (1ten) and
phosphotransferase (1poh) — proteins used in examples in the
text.

Both steps are combined to create a completely
automated procedure of assigning segments and deciding
about the information about the segments proximity in
space. This procedure provides a description in the form
of an adjacency matrix, such as illustrated in Table | for
examples of phosphotransferase (PDB code of 1pof) and
tenascin (PDB code of 1ten). The same proteins will be
also used in several examples later in the paper, their
structures are shown in Figure 3 as ribbon diagrams and
their smoothed backbones are shown in Figure 4.
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Table 1. Phosphotransferase (1pof) and tenascin (1ten) adjacency
tables

The protein segments adjacency table resembles an
adjacency table of a graph (Wilson and Watkins 1990), and
can be treated as such. Following this analogy segments
become equivalent to vertices of a graph and interactions
between segments as edges of a graph. Because protein
segments have a specified order, this is a labeled graph,
with consecutive numbers of segments as vertices labels.

The idea of representing a protein structure as a graph
is not new, and was used for identification of tertiary
similarities between proteins (Mitchell et al. 1990;
Grindley et al. 1993) and automated identification of
certain motifs (Arteca and Metzey 1990; Koch, Kaden, and
Selbig 1992; Flower 1994). However here we use a slightly
different definition of the vertex (GSSE) and of the edge
(interaction between segments), but more importantly we
are going to use the graph representation of protein
structures for much more general purposes.

The adjacency matrix, as shown in Table I is a two
dimensional matrix, but it could be described as a vector,
build from adjacency matrix cells according to the
numbering scheme from Table 1l. Because the adjacency
matrix is symmetric, this vector is completely equivalent to
the whole matrix. On the other hand, this vector can be
treated as a binary number (the index), which in turn can be
represented as a decimal number. Thus the tenascin
topology as described by its adjacency matrix can be
represented as a binary number 110011101111110100101.
This represents a unique (for a given segment and segment
interaction definitions) representation of an arbitrary
protein topology by a numerical index.
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Table I1. Cell numbering Table I11. Rearranged 1poh

adjacency for the index
calculation matrix

Now imagine a process, where we reconnect existing
segments in a new order, by cutting some loops and
introducing new ones, at the same time keeping constant
the mutual arrangements of segments. For a labeled graph
this is called a permutation of vertices, and on the level of
the adjacency matrix it is equivalent to a simultaneous
exchange of some columns and rows. For instance, by
exchanging the first and the seventh row (and appropriate
columns) the adjacency matrix of phosphotransferase from
Table | becomes equivalent to that of Table I11.

At the same time, the index of this new topology
would change as well: from 100011111011111100101 it
would become equal to 110011111011110100101.
Coincidentally, permuted index of phosphotransferase
would become very similar (with two differences) to that of
tenascin.  Indeed, analysis of the mutual positions of
GSSE’s 2-6 in both proteins reveals that both have a Greek
key motif, even that one is a o/ protein, and the other an
all beta protein. This similarity is illustrated below in
Figure 4, where smoothed chains of corresponding
fragments from both molecules are displayed. This
similarity is almost impossible to notice in Figure 3, where
both proteins are displayed as ribbon diagrams.

Figure 4. The structures of tenascin (1ten) and
phosphotransferase (1poh), shown here as smoothed backbones
(only equivalent elements are shown). The ribbon diagrams for
both proteins were shown in Figure 3. Note the similarity
between positions of GSSE’s in both proteins.

Each of all possible permutations of vertices of a
graph would have a different index. The one with the
largest (in a numerical sense) index is called the canonical
graph. It can be used to represent the group of graphs,
which can be changed into each other by changing labels
for various segments. In graph theory such graphs are

called isomorphous and on the level of protein topology it
represents identical arrangements of segments having
different topology. Such an arrangement, which we will
call a scaffold, is equivalent to an unlabeled graph.

At this point our analogy between protein topologies
and graphs is complete. Every protein topology can be
represented as a labeled graph, identified by its index.
Groups of proteins sharing the same scaffold, i.e. proteins
that differ only by different connectivity of segments can
be represented as unlabelled graphs. Such groups can be
identified by calculating canonical indices for each
topology; topologies with the same canonical index are
build on the same scaffold.

Treating a protein topology as a graph has many
interesting consequences. Among them is the possibility of
enumerating all existing labeled and unlabelled graphs with
a given number of vertices (i.e. segments) and edges (i.e.
interaction regions) (Harary and Palmer 1973).

Table 1V

2 1 1
3 5 5 4 2 1 1
6 13 19 22 20 14 9 5
11 33 67 107 132 138 126
23 89 236 486 1169

o0 ~No o

Table 1V. Enumeration of the number of possible unlabelled
graphs with x number of interaction regions and y number of
segments

A complete enumeration for graph with 8 vertices and
10 edges lists over 700,000 different graphs divided into
236  significantly  different  (i.e.  non-isomorphic)
arrangements of linkers, which could be represented for
instance by their canonical representation. Total number of
graphs having up to 10 vertices is well over 3*10".

The number of possible protein topologies is
obviously much smaller. For instance, while we can build
a graph for every protein topology, the reverse is not
always true. There are also many empirical rules followed
by protein topologies. For instance a single vertex (GSSE)
must have at least 2 and no more than five edges
(interactions). Accounting for these two factors lowers an
upper estimate for possible protein topologies at around
3*10°.

This number is still significantly larger than estimates
based on extrapolations of new folds appearing in newly
determined protein structures. One factor not included in
the analysis above, is that many structural families could be
represented by graphs sharing a large common subgraph,
but classified here as being different. Additional empirical
rules, which if implemented could lower the estimate even
further are currently under development.



Results

Local structure as a density of pseudo-Ca atoms

The type of secondary structure in GSSE can be
identified by a density of pseudo-Ca atoms, or its inverse,
a distance between consecutive pseudo-Ca atoms. In this
description, helices correspond to short distances and
strands to larger distances. Many irregular structures, that
in the standard description are put together into a huge
“unclassified” category, can be now differentiated and put
into “helical-like” or extended-like category. This
addresses an important problem in protein local structure
description. The standard secondary structure definitions
used to identify elements such as alpha helices or beta
strands are based on arbitrary thresholds. After smoothing,
these thresholds are almost eliminated, with distances
falling smoothly into two distinct categories. Because of
that, the distances between pseudo-Ca atoms in a
smoothed trace are easier to predict than secondary
structure. Figure 6 presents a correlation between a
predicted and real secondary structure for a factor H
protein (1hfi), as classified in a DSSP three state model
(H,E,C) used in most secondary structure prediction
programs. Prediction was performed with a nearest
neighbor method developed in our group (Rychlewski and
Godzik 1997) and the PHD algorithm (Rost and Sander
1993). Both methods achieve secondary structure
prediction accuracy of over 70% in the three state
prediction. On the latest CASP3 prediction contest our
nearest neighbor method achieved accuracy of 76% on a
large set of over 20 prediction targets (Orengo 1999). In
this particular case, it is clear that both methods completely
miss the series of beta strands at the N-terminal of the
molecule
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Figure 5a. Secondary structure in a DSSP classification for
factor H protein (PDB code 1hfi) compared to two predictions
(DSSP and NN methods).

It is difficult to compare secondary structure
predictions if the prediction is done for a different type of
secondary structure description. Also program such as
neural network based PHD program would have to be
retrained for a different description. However, the nearest
neighbor method is based on a simple averaging procedure
among fragments chosen for their sequence similarity to
the prediction target (Rychlewski and Godzik 1997).
Therefore it is simple to change the local structure
description — one has to change in the database of the
known protein structures and the modified structure
description for the prediction target would automatically

follow. We have prepared database of GSSE descriptions
for all proteins from the PDB and applied the NN
algorithm, exactly like described in (Rychlewski and
Godzik 1997) and used to obtain data in Figure 5b. Figure
5b presents the comparison of predicted and real distances
between pseudo-Ca atoms for a simplified model of 1hfi. It
is interesting to compare the prediction in Figure 5b to the
prediction in the lower line of Figure 5a. Both predictions
being made using the same nearest neighbor method
algorithm (only different properties were being averaged
among neighboring fragments). Note a completely wrong
discrete secondary structure prediction in the N-terminal
half of the molecule.
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Figure 5b. An example of a prediction of distances between
pseudo-Ca atoms for factor H protein (PDB code 1hfi). The
predicted structure (red line) is compared to the native secondary
structure (solid black line).

At the same time, the continuous description
prediction correctly captured the pattern of beta/turn
preferences, even if it exaggerated the level of departure
from an ideal extended structure.
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Figure 6. Comparison of accuracy of secondary structure
predictions in the three state model (y-axis) and the pseudo-
Ca distances model (x-axis).

Using the same nearest neighbor secondary structure
prediction algorithm, the correlation for predicted and real
pseudo-Ca atom distances is 0.8, as compared to 0.64 for
H,E,C prediction over a large database of proteins.

This systematic difference is illustrated in Figure 6,
which shows the correlation between the real and predicted



pseudo-Ca atom distances vs. the same correlation for the
standard three state (H,E,C) prediction. Almost all data
points lay below the diagonal, i.e. suggesting that GSSE
definition of secondary structure can be predicted more
accurately for almost all proteins in the database.

At the same time the pseudo-Ca distances are much
better description of a local structure. When both
prediction target and the templates are described by their
correct secondary structure in the H,E,C representation,
only half of proteins in the benchmark (the UCLA 68
residue benchmark) can be correctly identified by their
secondary structure alone (data not shown). This number
increases by about 50% when the pseudo-Ca distances are
used in a similar experiment. The important point here is
that even exactly the same information (local protein
structure) is being processed, the predictions are easier to
make and the information is more useful, when alternative
description of the local structure is being used. Application
of such descriptions to protein fold recognition remains to
be tested.

Discussion and Conclusions

A novel description of protein structure was
introduced, based on a naive picture of identifying
fragments of protein chain where the chain doesn’t change
its direction. The new description allows separating the
details of the local structure from the information about a
global topology of the protein chain. With such separation
it was possible to focus on new regularities on the global
level, such as unexpected structural similarities between
protein of different structural classes. At the same time,
the new description of the local structure in terms of
average distance between pseudo-Ca atoms after the
smoothing procedure is much more amenable to local
structure prediction and carries more information as judged
by the fold prediction accuracy.

This new type of description remains to be tested in
other applications, which could include:

1. Automated classification of protein structures

2. Very fast determination of structural similarities.

3. Conformational searches by complete

enumeration of possible topologies. For smaller
number of linkers it is possible to limit the search
to 100-200 conformations.

4. Fold predictions based on the library of all

possible topologies.

5. Fold predictions based on the new definition of

secondary structure

The new definition of secondary structure has been
recently tested in the context of the analysis of structure-
structure alignments (Shindyalov and Bourne 1998). With
the new definition, about 75% of an average protein can be
classified as belonging to GSSEs, in contrast to only about

50% that can be assigned to secondary structure elements,
as defined by a local secondary structure. Despite that,
about 80% of all gaps in the alignments still fall between
GSSEs, which is close to the similar percentage for
standard secondary structure elements. This result strongly
suggests that the locally irregular structural segments
included in the GSSE definitions have many features
previously associated with secondary structure elements.

Tests in specific applications such as mentioned above
would eventually prove if this particular language for the
description of protein structure is more useful that the
traditional one. However, it is clear that to achieve
progress in fields such as fold prediction and modeling,
new ideas about how to describe a protein structure are
necessary.

Acknowledgments
This research was supported by NIH grant GM60049.

References

Arteca, G. A., and Metzey P.G. 1990. A method for the
characterization of foldings in protein ribbon models.
J. Mol. Graph. 8:66-80.

CATH 1995. Protein Structure Classification. London, UC
BSM. wwww.biochem.ucl.ac.uk/bsm/cath

Flower, D. R. 1994. Automating the identification and
analysis of protein beta-barrels. Prot. Engineering.
7:1305-1310.

Godzik, A.; Skolnick, J.; and Kolinski, A. 1993.
Regularities in interaction patterns of globular proteins.
Prot. Engineering 6:801-810.

Grindley, H. M., et al. 1993. Identification of tertiary
structure resemblance in proteins using a maximal common
subgraph  isomorphism algorithm. J.  Mol.  Biol.
229:707-721.

Harary, F., and Palmer E. M. 1973. Graphical
Enumeration. New York, Academic Press.

Kabsch, W., and Sander, C. 1983. Dictionary of protein
secondary structure: Pattern recognition of hydrogen-
bonded and geometrical features.  Biopolymers
22:2577-2637.

Koch, I., F.; Kaden F.; and Selbig J. 1992. Analysis of
protein sheet topologies by graph-theoretical techniques.
Proteins 12:314-323.

Kolinski, A., et al. 1997. A method for the prediction of
surface U-turns and transglobular connections in small
proteins. Proteins 27:290-308.

Mitchell, E. M., et al. 1990. Use of techniques derived
from graph theory to compare secondary structure motifs in
proteins. J.Mol.Biol. 212:151-166.

Orengo, C. A.et al. 1999. Analysis and assessment of ab
initio three-dimensional prediction, secondary structure
and contacts prediction. Proteins 37 (S3):149-170.



Rost, B. and Sander C. 1993. Prediction of secondary
structure at better than 70% accuracy. J. Mol. Biol.
232:584-599.

Rychlewski, L., and Godzik, A. 1997. Secondary structure
prediction using segment similarity. Prot. Engineering.
10:1143-1153.

Shindyalov, I. N., and Bourne, P.E. 1998. Protein structure
alignment by incremental combinatorial extension (CE) of
the optimal path. Prot. Engineering Sep;11:739-47

SCOP (1995). Structural classification of proteins. Oxford,
MRC Cambridge. scop.mrc-Imb.cam.ac.uk/scop/

Wilson, R. J., and Watkins, J. J. 1990. Graphs.
An introductory approach.: Wiley.



