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Abstract

We present in this paper a pragmatic strategy to perform
information extraction from biologic texts. Since the
emergence of the information extraction field, techniques
have evolved, become more robust and proved their
efficiency on specific domains. We are using a combination
of existing linguistic and knowledge processing tools to
automatically extract information about gene interactions in
the literature. Our ultimate goal is to build a network of gene
interactions.  The methodologies used and the current results
are discussed in this paper.

Introduction

The current electronic revolution taking place via Internet
and other networked resources giving an easy on-line
access to large collections of texts and data to researchers
offers lots of new challenges in the field of automatic
information extraction and information synthesis (Appelt
1999). In the past several projects have aimed at providing
full automatic systems performing information extraction
from free texts. The first prototypes were designed to work
on military corpora, attempting to detect intelligence data
in newspaper articles or military reports (c.f. Message
Understanding Conferences).  Nowadays the techniques
developed for that purpose can be applied on other
domains. In genomics, electronic databases are increasing
rapidly, but a vast amount of knowledge still resides in
large collections of scientific papers such as Medline.
These data remain to be exploited. Several research
projects are working in that direction. Ohta et al. (Ohta  et
al. 1997) describe the IFBP  (Information Finding from
Biological Papers) system and its application to the
construction of the Transcription Factor DataBase (TFDB).
Thomas et al. (Thomas et al. 2000) adapt the SRI FASTUS
system to gather data on protein interactions from Medline
abstracts. Different approaches are in competition, based
on statistics or linguistics, using deep or shallow parsing,

applying simple pattern matching or complex knowledge
processing tools (Zweigenbaum et al. 1994). Attempts to
use learning mechanisms are also tested to reach that goal
(Craven and Kumlien 1999).

In the context of a research project in the domain of
genomics that involves biology and computer science
laboratories, we are developing an information extraction
system using a linguistic and a knowledge processing
approach. The ultimate goal of the project is to feed an
object-oriented knowledge base on molecular interactions
with data on several organisms. The objective is thus to
automatically build a network of gene or protein interactions
using information extracted from scientific papers. One
interesting specificity in genomics is the redundancy of
information in texts. As a matter of fact, some topics are
actively studied and a same piece of information often
appears in various forms in a large number of texts. The
redundancy increases the chances of detection by an
automated system and is taken into account by our
information extraction strategy.

In the following sections we describe the architecture we
have adopted combining a linguistic and a knowledge
processing approach. The strategy is based on pragmatic
considerations and gives priority to robustness and
efficiency over large corpora. Finally we present the
validation process we have engaged and discuss the results
obtained.

Overall architecture and resources

Our reference corpus is a set of 1200 sentences coming from
Flybase the database on Drosophila Melanogaster. These
sentences contain two gene names and have been checked
by experts to determine whether they contain gene
interactions. Our architecture, however, does not rely on any
domain specific feature.

We have decided to deal with the information extraction
problem using a pragmatic approach based on a
combination of robust technologies that have proved their
efficiency. Our system has adopted a two levels
architecture. The first level relies on a linguistic analysis
and the second one on a knowledge-based processing of the
extracted sentence structures.
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The linguistic components are mainly based on the
Finite State Transducer technology  known to be efficient
in high speed text parsing (Koskenniemi 1997). The
syntactic analysis of sentences appears to be one of the
most time consuming task in the information extraction
process. It consists of a Part of Speech tagger that has been
slightly customized for our domain specific corpus, and a
Shallow Parser (Ait-Mokhtar and Chanod 1997).

On the knowledge processing side of the system we
have chosen to adopt an architecture based on conceptual
graphs (Sowa 1984). An information extraction system can
be effective without using such a sophisticated
architecture, but our objective is not only to be able to
extract some very specific data but also to get a more
global understanding of what is extracted. The ultimate
goal is to generate a synthesis of the facts described in the
corpus. This kind of architecture (see fig. 1) combined with
a domain specific ontology gives the system the ability to
subsume related concepts to synthesize facts and get an
abstracted view of information.

In a sense this approach can be compared to the one
adopted by Rassinoux et al. (Rassinoux et al. 1994) for the
HELIOS project. However our work put more emphasis on
the robustness and the efficiency of the linguistic analysis
based on new developments in parsing techniques.

These tools and the necessary adaptation we made are
described in the following paragraphs.

Figure 1: Overall architecture of the system displaying the
information extraction process.

Linguistic analysis

The linguistic analysis of a text for information extraction

purposes is a rather complex operation generally
decomposed into a cascade of treatments. The first one is to
get an accurate Part Of Speech (POS) tagging of every
meaningful element of a sentence, which means giving a
unique and reliable grammatical category to each word. In
domain specific corpora this operation is complicated by the
need to detect entity names, such as protein or gene names.
This task has to be performed for two reasons. First of all to
assign a correct POS tag to these entities (generally a proper
noun), and then to help the information extraction system to
establish semantic connections between these entities. As
far as we are concerned we have chosen to take advantage
of previous work done in POS tagging based on Finite State
Transducers (FST).

The tagger we have designed operates using the following
ordered process: tokenization, morphological analysis to
provide possible POS tags (Schiller 1996), disambiguation
using an HMM technique (Kupiec 1992), error corrections
using specific modules adapted to domain specific corpora
and vocabularies, and then a contextual lookup to identify
gene names (Proux et al. 1998). The error recovery modules
used at this level consist in a cascade of processes relying on
domain specific dictionaries and on a morphologic analysis
(prefix and suffix recognition). Protein names are handled in
the same way. The following example (fig. 2) shows a
sentence as it appears after the tagging phase.

Input: “Scr is required to activate fkh expression.”

Output: #GENE# Scr + PROP_NOUN
                 is + BE_VERB_PRES
                 required + VERB_PAST_PART
                 to + TO
                 activate + VERB_INF
                 #GENE# fkh + PROP_NOUN
                 expression + NOUN

Figure 2: Part of Speech tags generated for each token of a
sentence.

 This system has been tested on the Flybase corpus where
we have reached the following results (see fig. 3).

Results on automatic detection of gene names
Recall  94.4 %
Precision  91.4 %

Figure 3: Results obtained by our POS tagger for
identification and tagging of gene names. These results have
been obtained on a corpus of 750 sentences containing two
gene names.

Once this first step is performed the output is processed to
extract syntactic dependencies. Several strategies have been
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proposed to perform efficient syntactic analysis. However,
the inherent complexity of natural language processing
makes it almost impossible to obtain a fully accurate
extraction of all these syntactic dependencies. The amount
of processing needed to reach a very high level of accuracy
is too heavy to be operational on very large corpora,
without giving assurance of fully satisfactory results. As a
consequence we opted for a shallow parsing strategy
because of its robustness and its speed. The strength of
Shallow Parsing is its ability to extract basic relationships
such as subject-verb or verb-direct object very quickly and
with high precision (see fig. 4). Its relative weakness in
proper detection of prepositional phrase attachments is
balanced in our system through the use of specific
algorithms assigning a lower rate of confidence to the links
between entities if these entities are related by a
prepositional phrase connection. This kind of weak links
are handled by the extraction mechanism based on the
conceptual graph architecture.

Sentence: "ems directly regulates sc function."

Subject    ( ems, regulate)
Direct-Object    ( regulate,  function)
Adverb    ( directly, regulate )
Nominal Noun  ( sc,  function )

Figure 4: Syntactic dependencies extracted by the Shallow
Parser using Part Of Speech tags generated at the first step
of the linguistic analysis.

Knowledge Processing

Once sentences have been parsed the syntactic
dependencies extracted at the linguistic level are used to
build the semantic representation. This task is handled by
the knowledge-processing module. The core of the system
has been designed around a conceptual graph management
tool.  So far several solutions for semantic processing have
been proposed to tackle this problem. Our approach with
such an architecture was guided by the need for a global
understanding of what is extracted. We wanted to give the
system the ability to synthesize the information using the
power of subsumption on concepts and unification on sub-
graphs. The syntactic dependencies extracted from
sentences are used to build the dependency graph. Since
prepositional phrase attachments are considered less
reliable, the relations between entities connected by such
links are considered as weaker. This fact is taken into
account by the extraction mechanism using a weighting
system that assigns a quality rating to each detected
relation.

The construction of the semantic representation of
sentences matches the following assumptions: The verb is
considered as a key element in a sentence as it generally
indicates the kind of action described. Therefore it is

placed at the top of the conceptual graph structure
symbolizing the sentence. Nouns appearing in subject or
object groups, are connected to this verb through links
representing their syntactic relation (see fig. 4). The user
requests are stored in the system using exactly the same
structure. It provides the user the opportunity to create
request scenarios in natural language to search the corpus.
This feature facilitates the task of building the request
scenarios giving the opportunity to query a textual database
without any previous knowledge engineering background as
it is the case for classical information retrieval search engine
based on key words. The creation of these request scenarios
is made through the definition of information patterns as
they can be found in the literature. At that point this method
of preliminary identification of linguistic patterns can be
compared to the one used by Blaschke et al. for their system
of automatic extraction of protein-protein interactions
(Blaschke et al. 1999). The following example (fig. 5)
shows some request samples for gene interaction detections.
The patterns have been abstracted from sentences found in
the literature by replacing specific nouns or verbs with more
generic terms that are likely to cover a larger spectrum of
linguistic expressions.

Request scenarios:
gene interacts with gene.
gene induces the expression of  gene product.
gene display a strong interaction on  gene.
gene product exerts an effect on gene.
gene product acts as a modifier of gene.

Which can cover a sentence like:
“Egl protein acts as a repressor of BicD.”

Figure 5: Gene interaction patterns used as request
scenarios.

In this example, it is the fourth request pattern that
matches with the sentence. “Egl” matches with “gene”,
“protein” with “product”, “repressor” with “modifier”
and “BicD” with “gene” (according to the specification
links indicated inside the hierarchy of concepts).

The inner specificity of a conceptual graph system gives
the possibility to formulate very general requests involving
concepts located at the top of the lattice, or more specific
ones using very specific concepts. Generic requests will
cover a large scope of information and specific ones only
strictly selected information. The extraction mechanism tries
then to establish a projection between user request graphs
and the semantic representation of sentences to detect
matching patterns. According to the request graph that
matches, the corresponding information are then extracted.
Projection mechanism in classical conceptual graph theory
generally works in a unique way. It accepts a projection
between two graphs if and only if one of them contains
concepts and relations that are all more abstracted than those



of the second graph. It appears that this kind of projection
is too restrictive for the information extraction task. We
use a more adaptive tool accepting projections between
heterogeneous graphs.

Sentence: "ems directly regulates sc function."

Figure 6: Conceptual graph generated using the syntactic
dependencies extracted by the Shallow Parser (fig. 4).
Expressions within brackets are semantic relations between
concepts.

As for the results returned by the extraction mechanism,
the quality of these results can be customized. The system
may return only information matching strictly with terms
of the user scenarios, or try to enlarge the requests to
capture information that might also have some interest.
This customization is made possible by the inherent
capabilities of our conceptual graph management system
and to several mechanisms that degrade requests when they
failed to match. These mechanisms can extend the
vocabulary, using reverse morphology, to provide from a
single word other related words generated from its root
(e.g. from “repressor”, we can generate “repress”,
“repressive”, …). Applying such linguistic techniques can
significantly broaden the request coverage. Other
functionalities automatically capture the semantic of
multiple word expressions, or accept projection on
concepts linked together by a common ancestor in the
hierarchy (e.g. “protein” and “gene” can be seen as
related by a common ancestor “biological entity”).

Conceptual graph theory presents an inherent problem
for real life application, which is the creation and the
maintenance of a hierarchy of concepts. This difficulty is
addressed on our system by the ability to work with a two
level ontology. The first one is limited and very domain
specific in order to increase the quality of information
detection and to reduce the cost of design. The second one

is more general such as Wordnet and is used only to provide
a more global vision of the text if needed.

First experiment

A first evaluation of the extraction mechanism has been
conducted on a small set of 200 sentences from the Flybase
corpus. The sentences have been divided in three categories:
one containing gene interaction descriptions, a set of
sentences containing no interactions (but at least two gene
names in it) and a smaller set with sentences where experts
have not been able to determine whether there were
interactions or not. The average length was 18 words per
sentence. The search engine was asked to extract
information when two gene entities were connected to an
interaction class verb.

On the set of sentences containing interactions, the
system has been able to correctly detect it in 34% of the
cases (fig. 7). This first result appears to be low in recall but
according to the state of development of the system at the
time this test was performed it was perfectly aligned with
our expectations. As for the sentences where no interactions
have been detected, we can classified them in the following
categories.

In 32% of the cases (fig. 7), the main verb was too
general to be classified as an interaction verb (e.g. “Kr is a
strong repressor of gt in the embryo”). For this test the
request scenarios were not designed to consider a "be" verb
with a qualifier such as “repressor” or “activator” as
relevant. Therefore the extraction mechanism was not
supposed to retrieve it. This fact conducted us to design and
implement for the new version a sentence simplification
mechanism that automatically transform sentence like “Kr is
a strong repressor of gt …” into “Kr strongly represses
gt…” which  modify a general verb into a specific verb
using its qualifier to perform this operation. The goal of this
functionality is to reduce the complexity of the request
scenarios, decreasing the number of linguistic
configurations needed to cover the different expressions of a
same fact (e.g. “is a repressor”, “represses”, “has a
repressive impact”, …).

In 6% of the cases, a Part of Speech tagging error has
occurred on a critical word of the sentence, such as a verb
(fig. 7). This error induced an incorrect syntactic
dependency extraction and therefore bad semantic
connections between entities. The POS tagger has therefore
been modified to better take into account the specificity of
the corpus to correct those problems.

In 17% of the cases, interaction descriptions were not
clear enough for a non-specialist (fig. 7). Sentences like
“Lethality of three doses of Tpl can be rescued by dosage of
the Is locus.” are not easy to handle by an automatic system.
Those cases are problematic to solve, as it is even hard for a
human being to decide.

The remaining 6% was due to misspellings, or unknown
words, or miscellaneous problems (fig. 7).

regulate

(Modifier) (Subject) (Object)

directly ems function

(Related-To)

sc



Sentences with Interactions
34  % Good detection
32  % Main verb too general
6    % POS tag error
17  % Ambiguous formulation
6    % Miscellaneous

Figure 7: Results obtained from the set of sentences with
interaction descriptions.

As for the sentences with no interaction in it (fig. 8), the
system has extracted nothing in 80% of the cases, and
detected something, for the remaining 20%. These wrong
extractions were due in part to the specificity of the corpus.
All these sentences have been selected because they
contain two gene names. This unusual configuration
increases the probability that the information displayed
inside sentences look like one of the interaction scenarios
provided to the search engine. The precision would rise
with sentences taken blindly from a full text.

For the last set where the experts were not able to
confirm an interaction, the system has detected nothing.
Those cases can be combined to the set of sentences with
no interaction, raising therefore the level of accuracy.

Sentences without Interactions
80 % No detection
20 % Detection of something

Figure 8: Results obtained from the set of sentences
without interaction descriptions.

Second experiment and validation

After this first experiment rich in learning, two major
improvements were done to the system. The first one has
been to increase the performance of the POS tagger to
avoid cascading errors, and the second one to introduce a
sentence simplification mechanism.  A new series of tests
has then been conducted on the Flybase corpus with the
new system. It has been performed on 294 sentences with
interactions, 288 sentences without interaction (but with
two gene names in it), and 52 ambiguous sentences (with
two gene names in it).

For the first set (fig. 9), the extraction engine has been
able to detect a strong interaction (which means two gene
entities related explicitly with an interaction class verb) in
44% of these sentences. A weak interaction (which means
only a link between one gene entity and an interaction class
verb, but without the other link to the second gene entity)
in 26%, and nothing in 30%.

In the set of sentences with no interaction (fig. 9), the
extraction engine has detected nothing (which was the
objective) in 81% of the cases. For the remaining sentences
it has detected a strong interaction in 7% of them, and a
weak interaction in 12%.  This level of errors can appears a

little high but one should remember that these sentences
have been selected because they contain two gene names
which increases the risk of incorrect detection. The
precision can be raised or decreased by rejecting or
accepting the weak interaction detection.

As for the remaining set of ambiguous sentences (fig. 9),
the results for no detection, and  for a detection of a strong
and a weak interaction are respectively, 83%, 13% and 4%.

Sentence sets Detection Results
Strong  44  %
Weak  26  %With

interaction Nothing  30  %
Strong    7  %
Weak  12  %Without

interaction Nothing  81  %
Strong  13  %
Weak    4  %Ambiguous
Nothing  83  %

Figure 9: Results obtained with the new version of the
system on sentences from the Flybase corpus

The next figure (fig. 10) display an example of results
obtained by the system on a sentence from the Flybase
corpus. This sentence has been identified by experts as
“containing an interaction”. The request made to the system
was to detect gene entities connected by interaction class
verbs.  The orientation of the interaction is obtained thanks
to the recognition of subject-verb and verb-object
dependencies.

The user can adjust the quality of recall and precision by
allowing the capture of weak and strong detection
increasing therefore recall, or just strong detection
increasing then precision. Extraction of information in
specific domains like genomics can also be helped by the
redundancy of information in texts. Therefore the recall can
be addressed by the following assumption: if a specific
information occurs once in a document it is likely to appear
again elsewhere in the document. So if the system did not
detect it the first time because of an unusual formulation, we
can consider that it might detect it in another sentence or at
in another document (according to the information
redundancy assumption). Based on that strategy we can
assume that if a specific information is detected a great
number of times, it is likely to be valid, at the information
extraction level.

A new series of tests is planned on Medline abstracts to
validate both the quality of results of the extraction
mechanism and the assumption that recall can be improved
using the redundancy of information.   

“ There is a distinct signaling pathway activated by
egfr  that interacts with ras85D signal transduction



cascade to induce crossvein formation  in the wing
that might be used for signaling processes elsewhere
in the developing fly . ”

Creation of the information scenario:
Key Entities wanted: gene
Key Verbs wanted: interact

Information extracted:

Figure 10: Information extracted on a real life example.
The sub-graph detected in the sentence matches a graph
generated according to the user request specifications.

Result analysis

According to the results produced by the second
experiment it appears that in 30 % of the sentences
expressing an interaction this one has not been properly
detected. After close examination it appears that these
sentences are often complex or ambiguous. The key
entities were detected but the system was unable to identify
the semantic links between these entities. This fact
confirms the assumption we have that it is important to
reduce the complexity of sentences before attempting to
extract the semantic relations. The other possibility to
reduce this percentage is to increase the number of
linguistic formulae introduced in the request scenarios, but
this would also increase the pain of building these
scenarios. So an automatic way of reducing the complexity
of sentences seems to be a much better approach. Next
figure (fig. 11) shows two sample sentences where no
detection has been performed.

 “abd-A has no effect on the ability of scr to direct the
formation of salivary glands .”

“DNA sequence analysis reveals four E box binding
site, for the binding of hetero-oligomeric complexes
composed of da or AS-C proteins, in the first 877bp of
the ac upstream region.”

Figure 11: Sentences with interaction that has not been
detected by the system.

The second experiment results also showed that the
system has incorrectly detected an interaction in 7 % of the
sentences where no interaction was expressed This can be
explained by the fact that all these sentences contained at
least two gene names. This linguistic configuration
combined with the use of an interaction class vocabulary
and with a possible bad syntactic dependency recognition
can lead the system to extract wrong semantic relations.
This consequence is often related to a complex sentence
construction. The following samples shows two sentences
where wrong interactions were detected.

 “ubx and abd-A are required for the expression of the
abdominal variant of the NB1-1 lineage.”

“In the embryo, ac and sc are expressed
coincidentally, at reproducible anterior-posterior and
dorso-ventral coordinates, in clusters from which
neuroblasts will arise.”

Figure 12: Sentences without interaction but where the
system has detected something between  “ubx” and  “abd-
A” in the first one, and between  “ac” and  “sc” in the
second one.

The weakness of the system is therefore related to the
complexity of the input sentences. This is due to the
linguistic approach chosen for the system. Speed and
robustness are obtained at the expense of a deep syntactic
analysis. A way to help the system is to reduce the
complexity of these input sentences. An alternative is to
focus on the precision, assuming that the redundancy of
information throughout the literature will lead the system to
reach a satisfactory recall value through the analysis of not
one sentence but a full document or corpus.

Conclusions

We presented an information extraction system currently
under development and evaluation that relies on a linguistic
and on a knowledge processing approach. The linguistic
tools in use are based on the Finite State Transducer
technology, combining a Part Of Speech tagger and a
Shallow Parser. The extraction mechanism is build around a
conceptual graph architecture, adopting a domain specific
ontology to improve its efficiency. This system embeds
features such as automatic capture of semantics for
compound nouns, customization of the level of relevance of
extracted information using request graph degradations or
automatic enlargement of the relevant vocabulary. Our
information extraction strategy put the emphasis on the
precision of extracted data, relying on the number of
occurrences for a same data description in various papers to

interact

(Actor) (Target)

egfr ?

(Related-To)

Ras85

Synthesis:

Egfr interacts
with Ras85D



increase the recall.
We have started a first validation process on sentences

from the Flybase corpus describing gene interactions. The
first results were encouraging and gave us useful lessons
for system improvements. Two main lines of modifications
have therefore been implemented in the new version of the
extraction system. These modifications intend to increase
the Part Of Speech tagger accuracy on domain specific
corpus as it remains one of the critical step of the analysis
process.  The other big improvement introduces an
automatic sentence simplification mechanism using reverse
morphology to help handling very general verbs such as
“be”, or “have”, therefore transforming expressions like “is
a repressor” into “repress”.

A new series of tests have confirmed our expectations
on the system performance and new tests are planned on
abstracts from Medline to validate the approach on a much
larger scale.

Referencing to our initial goal, our gene interaction
detection system is still under development.  The kernel
and information extraction core functionalities are
operational even if some necessary improvements are still
needed. The module generating extracted networks is still
under development.

Although the system is currently evaluated on genomics,
it can be tuned to perform analysis on other domains
provided that the domain specific ontology and the
corresponding request scenarios are made available.
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