
A Statistical Method for Finding
Transcription Factor Binding Sites *

Abstract

Understanding the mechanisms that determine the
regulation of gene expression is an important and
challenging problem. A fundamental subproblem
is to identify DNA-binding sites for unknown reg-
ulatory factors, given a collection of genes believed
to be coregulated, and given the noncoding DNA
sequences near those genes. We present an enu-
merative statistical method for identifying good
candidates for such transcription factor binding
sites. Unlike local search techniques such as Ex-
pectation Maximization and Gibbs samplers that
may not reach a global optimum, the method pro-
posed here is guaranteed to produce the motifs
with greatest z-scores. We discuss the results of
experiments in which this algorithm was used to
locate candidate binding sites in several well stud-
ied pathways of S. cerevisiae, as well as gene clus-
ters from some of the hybridization microarray ex-
periments.
Keywords: sequence analysis, motif, transcrip-
tion factor, binding site, promoter, spacer, z-score.

1. Transcription Factor Binding
Sites

1.1. Identifying Eukaryotic Regulatory
Sequences

One of the major challenges facing biologists is to
understand the mechanisms for the regulation of
gene expression. In particular, for any given bio-
chemical pathway, there axe often complex interac-
tions among its set of genes and their products.

There have been a number of recent studies that
used DNA microaxrays to identify the sets of genes
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involved in certain pathways of the yeast S. cere-
visiae (DeRisi et al. (1997), Chu et al. (1998),
Spellman et al. (1998)). These studies divided 
set of genes into subsets whose expression patterns
suggest that they may be coregulated.

The next step in unraveling the regulatory inter-
actions is to identify common binding sites in the
regulatory regions of these coregulated genes and,
from these binding sites, identify the regulatory fac-
tor that binds there (Chu et al. (1998), Roth 
al. (1998), Spellman et al. (1998), Tavazoie et aL
(1999)). It is precisely this problem of identifying
unknown transcription factor binding sites that we
address.

The analysis of noncoding regions in eukaryotic
genomes in order to identify regulatory sequences
is a difficult problem, and one that is by no means
well understood. There are several reasons for this
difficulty:

1. The regulatory sequences may be located quite
far from the corresponding coding region, either
upstream or downstream or in the introns.

2. The regulatory sequences need not be in the same
orientation as the coding sequence or each other.

3. There may be multiple binding sites for a single
factor in a single gene’s regulatory region.

4. There can be great variability in the binding sites
of a single factor, and the nature of the allowable
variations is not well understood.

In S. cerevisiae, the first of these problems is not
severe: nearly all transcription factor binding sites
are believed to lie within 800 bp upstream of the
translation start site (Zhu and Zhang (1999)). 
three remaining confounding problems are, how-
ever, present.

1.2. Previous Methods for Finding
Regulatory Motifs

A number of algorithms to find general motifs have
been proposed previously. (See, for example, Bai-
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ley and Elkan (1995), Fraenkel et al. (1995), Galas
et al. (1985), Hertz and Stormo (1999), Lawrence
et al. (1993), Lawrence and Reilly (1990), Rigout-
sos and Floratos (1998), Rocke and Tompa (1998),
and Staden (1989).) Many of these algorithms 
designed to find longer and more general motifs
than are required for identifying transcription fac-
tor binding sites. The types of general motif used in
the cited references include weight matrices, align-
ments, and gapped alignments. The price paid for
this generality is that many of the cited algorithms
axe not guaranteed to find globally optimal solu-
tions, since they employ some form of local search,
such as Gibbs sampling, expectation maximization,
and greedy algorithms, that may end in a local op-
timum. There have been a few studies that have
applied these local search techniques specifically
to the problem of identifying transcription factor
binding sites in S. cerevisiae (Chu et al. (1998),
Roth et al. (1998), Spellman et al. (1998), Tava-
zoie et al. (1999)), with some success.

The number of well conserved bases in the collec-
tion of binding sites of a single S. cerevisiae tran-
scription factor is typically six to ten (Wingender et
al. (1996), Zhu and Zhang (1999)). This number 
small enough that, for this particular problem, one
need not rely on such general local search heuris-
tics. Instead, one can afford to use enumerative
methods that guarantee global optimality. This is
the approach taken by the current paper, whose
method is most closely allied to that of van Helden
et aL (1998) and Tompa (1999).

Van Helden et al. (1998) used an enumerative
statistical method to tackle the same problem of
finding transcription factor binding sites in S. cere-
visiae. Their method proved reasonably success-
ful at finding short, contiguous transcription factor
binding sites. However, their method suffers from
some drawbacks that we rectify:

1. They consider only exact matches, disallowing
variations in the binding site instances of a given
transcription factor.

2. Their motifs do not include "spacers", which
precludes their algorithm from finding such well
known binding sites as that of Gal4p, whose con-
sensus is CGGNNNNNNNNNNNCCG (Wingender et al.
1996; Zhu & Zhang 1999).

3. In their statistical model, they assume that oc-
currences of a motif at distinct sequence posi-
tions axe probabilistically independent, whereas
in reality overlapping occurrences (in both ori-
entations) have rather complex dependencies
(Nicod~me et al. (1999)).

4. Their measure of statistical significance of a motif
s is based on the frequency of occurrence of s
over all regulatory regions of the genome. This

is problematic for those motifs that appear rarely,
because there may be insufficient data to support
reliable statistics. (See Salzberg et al. (1998)
for a discussion.) The more standard Maxkov
chain model that we employ can be based on the
frequencies of shorter (and hence more frequent)
oligonucleotides.

Brgzma et aL (1998) employed a similar tech-
nique for identifying binding sites. They did allow
their motifs to contain up to three occurrences of
the N character.

Tompa (1999) used an enumerative method simi-
lax to that of van Helden et al. (1998), but for find-
ing ribosome binding sites in prokaryotic genomes.
We adopt some of that work’s statistical consid-
erations here, in particular, the use of a Maxkov
chain to model the background genomic distribu-
tion, the use of z-score as the measure of statistical
significance, and attention to the autocorrelation
of overlapping motif instances. However, Tompa’s
algorithm also suffers some shortcomings for the
present application:

1. Tompa’s algorithm also did not allow for spacers
in the motifs, since they seemed irrelevant in the
prokaxyotic ribosome binding site problem.

2. The allowable variability among binding site in-
stances that proved sufficient for the prokaxyotic
ribosome binding site problem, namely zero or
one substitution from some consensus sequence,
proved insufficient in the present application.

3. The possibility of multiple binding sites for a sin-
gle factor in a single gene’s regulatory region does
not arise in the prokaxyotic ribosome binding site
problem. This complicates the motif autocorre-
lation computation.

2. Motifs and Their Significance

2.1. Variability Among Binding Site
Instances

The first question that must be addressed is "What
constitutes a motif?" for the application of tran-
scription factor binding sites in S. cerevisiae. An
inspection of transcription factor databases (such
as TRANSFAC (Wingender et al. 1996) or SCPD
(Zhu & Zhang 1999)), or of the relevant literature
(paxticulaxly Jones et al. (1992), which is rich 
examples, and also Blalseau et al. (1997), Mal and
Breeden (1997), McInerny et al. (1997), Nurrish
and Treisman (1995), Oshima et aL (1996), and
Wemmie et al. (1994)) reveals that there is sig-
nificant variation among the binding sites of any
single transcription factor, so that it is overly rigid
to insist on exact matches among motif instances.
Moreover, the nature of the variability itself varies
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from factor to factor, so that the "correct" motif
model is far from clear.

Certain trends that must be incorporated in the
motif model do, however, emerge:

1. Like the Gal4p binding site consensus mentioned
in Section 1.2, many of the motifs have spacers
varying in length from 1 to 11 bp. The spacer
usually occurs at the middle of the motif, often
because the factors bind as dimers.

2. The number of well conserved bases (not includ-
ing spacers, of course) is usually in the range 6-
10.

3. When there is variation in a conserved motif po-
sition, it is often a transition (that is, the substi-
tution of a purine for a purine, or a pyrimidine for
a pyrimidine) rather than a transversion. This is
because of the similarity in nucleotide size neces-
sary to fit the transcription factor’s fixed DNA-
binding domain. Somewhat less often, the vari-
ation in a given position may be between a pair
of complementary bases. Other positional varia-
tions axe rarer.

4. Insertions and deletions among binding sites are
uncommon, again because of the fixed structure
of the factor’s DNA-binding domain.

Based on these observations, a motif for our
application will be a string over the alphabet
{A, C, G, T, R, ¥, S, W, lt), with 0-11 consecutive li’s at
the center, and a limited number of R’s (purine),
Y’s (pyrimidine), S’s (strong), and W’s (weak). 
choose such a consensus model rather than (say)
a weight matrix in order to be able to enumerate
motifs. Note that there is little need to allow fur-
ther variation in motif instances, since the variation
is already incorporated in the motif’s allowance of
l~, Y, S, W, N. An examination of 50 binding site con-
sensi included in SCPD (Zhu & Zhang 1999) re-
vealed that the number of consensi that exactly fit
this characterization is 31 (62%). About 10 more fit
the characterization if very slight differences from
the exact consensus are tolerated.

2.2. Measure of Statistical Significance

Given some set of (presumably coregulated) S. cere-
visiae genes, the input to our problem is the cor-
responding set of upstream sequences, each having
length 800 bp and having its 3~ end at the gene’s
translation start site.

A good measure for comparing motifs must take
into account both the absolute number of occur-
rences of the motif in the input sequences, and
the background genomic distribution. (See Tompa
(1999) for a detailed discussion.) For each motif
s, let Ns be the number of occurrences of s in the

input sequences, allovcing an arbitrary number of
occurrences per upstream sequence. A reasonable
measure of s as a motif, then, would reflect how
unlikely it would be to have N8 occurrences, if the
sequences were instead drawn at random according
to the background distribution.

More specifically, let X be a set of random
DNA sequences of the same number and lengths
as the input sequences, but generated by a Markov
chain of order m, whose transition probabilities
are determined by the (m + 1)-mer frequencies 
the full complement of 6000+ upstream regions
(each of length 800 bp) in S. cerevisiae. (In our
experiments, we chose m = 3 in order for the
background model to include the TATA, AAAA, and
TTTT sequences that are ubiquitous throughout the
genome’s upstream regions (van Helden, Andr@, 
Collado-Vides 1998).) Let the random variable 
be the number of occurrences of the motif s in X,
and let E(Xs) and ~(Xs) be its mean and standard
deviation, respectively. Then the z-score associated
with s is

Ns - E(XDz, - (1)

The measure zs is the number of standard devia-
tions by which the observed value N8 exceeds its
expectation, and is sometimes called the "normal
deviate" or "deviation in standard units". See Le-
ung et al. (1996) for a detailed discussion of this
statistic. The z-score z, obeys, in the asymptotic
limit, a normal distribution. This is known to be
the case when X is a singleton set: see Nicod~me
et al. (1999, Theorem 2). The result extends to 
arbitrary finite set X (with equal sized regions) 
a Central Limit Theorem due to Lindeberg (Feller
1993, Section X.1, Formula 1.4). The measure z, is
normalized to have mean 0 and standard deviation
1, making it suitable for comparing different motifs

8.

What remains to discuss, then, is how to compute
the mean E(Xs) and standard deviation ~(X,).
The former is straightforward but the latter, be-
cause of the possibility of overlap of a motif with
itself (in either orientation), is not. Fortunately,
this problem of pattern autocorrelation has been
well studied, beginning with its introduction by
Guibas and Odlyzko (1981). (See the excellent
overview by Nicodhme et al. (1999).) In particu-
lar, a method for computing the standard deviation
a(X,) that is more efficient than using the general
recurrence formulae of Nicod~me et al. (1999) was
presented by Kleffe and Borodovsky (1992) for first-
order Markov chains and the case in which the motif
s is a single string. We have generalized their for-
mulae to our case, in which s represents a finite set
of strings. (See also R@gnier (1998).) Note that, 
this case, one must take into account all possibilities
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of one string in the set overlapping with any other.
Our extension allows higher order Markov chains,
spacers to be handled at no extra run-time cost,
and the possibility of a motif occurring in either
orientation, none of which were relevant considera-
tions for Kleffe and Borodovsky. All these changes
taken together result in a substantial modification
of the formulae of Kleffe and Borodovsky: see the
Appendix for details.

2.3. Algorithm Summary

The complete algorithm is summarized as follows.
The inputs to the algorithm are

I. a set of upstream sequences,

2. the number of nonspacer characters in the motifs
to be enumerated, and

3. the transition matrix for an order m Markov
chain constructed from the full complement of
upstream sequences of S. cerevisiae.

The algorithm first makes a pass over the input
sequences, tabulating the number N8 of occurrences
of each motif 8 in either orientation. For each mo-
tif 8 for which N8 > 0, it then uses the method
described in the Appendix to compute E(Xs) and
a(Xs), and uses Equation (1) to compute the 
score zs. It outputs the motifs sorted by z-score.

For a single motif s, the running time to compute
z, is 0(c2k2), where k is the number of nonspacer
characters in s, and c is the number of possible
instantiations of R, Y, S, and W symbols in s. Be-
cause the number of motifs is exponential in k, we
can afford this enumerative method only for mod-
est values of k. Note, however, that the dependence
on genome size is linear, so that the method scales
very well to large genomes.

Moreover, the O(c2k2) time z-score computation
does not need to be computed for most of the mo-
tifs. A very significant reduction in running time
is achieved by the following optimization: We note
that the dominant part of a motif’s z-score com-
putation is the variance calculation. We also note
that z8 can be bounded by the expression

N8 - E(X~)
z8 < (2)-  /E(xs) E(Xs)2

since a(X,)2 >_ E(X,)-E(X,) 2. (See Equation (4)
in the Appendix.) Hence, before computing a(Xs),
we compute E(Xs) and use Inequality (2) to exam-
ine if it may be worthwhile to go into the variance
computation. (We compare this expression to the
lowest z-score among the top ranking motifs dis-
covered so far.) If not, the variance computation
for s is aborted, and the next motif is examined.

A similar bounding technique is used to opti-
mize the variance computation itself. Noting that
the dominant part of the variance computation is
computing the overlap term ~,IC_WI E(X~CW)) (see
Equation (5) in the Appendix)~which is nonnega-
tive, we compute the remaining terms of the vari-
ance first, and compute the overlap term only if
there is a possibility of getting a high enough z-
score. (The overlap term contributes to the de-
nominator of the expression in Equation (1), so the
z-score is maximized when the overlap term is 0.)
Our experiments showed that these two optimiza-
tions reduce the running time of the algorithm dras-
tically.

3. Experimental Results

3.1. Known Regulons

We implemented and ran the program described in
Section 2.3 on seventeen well studied coregulated
sets of genes in S. cerevisiae. For each of these sev-
enteen sets of upstream sequences, there is a known
transcription factor with a known binding site con-
sensus, so that the success of the experiments can
be assessed.

In all but two of these experiments, our algorithm
succeeded in determining the known consensus, in
the following sense: In nine of them, the known con-
sensus was one of the three highest scoring motifs;
and in six others a very similar looking motif was in
the top three. Tables 1 - 8 give examples of some of
these successes. In each table, the known consen-
sus is given in the caption, and its instances in the
program’s output are itMicized. As can be seen, of-
ten the known consensus and its close relatives are
prominent in the five highest-scoring motifs. (We
chose the number of nonspacer characters in order
to make the comparison with the known consensus
easier. Choosing a slightly different number pro-
duces similar results.)

Note the unusually high z-scores in many of these
tables; one would not expect scores so many stan-
dard deviations above the mean in random data.
To verify this assertion, for each family we ran the
program on several independent sets of simulated
data generated by the 3rd order Markov chain de-
scribed for the random variable X in Section 2.2.
For each such simulated input, we computed the
maximum z-score, and then the mean of these max-
ima. We call this the mean max z-score for the
family, and include it in the caption of each table.
Note the disparity between this mean max z-score
and the actual z-scores of the top motifs in most of
the tables.

In the remaining two experiments (ACE2 and
ADR1, both being families with very few genes in
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s N~ z~
TCANNNNNNACG27 9.67
TCRNNNNNNACG34 9.36
YCANNNNNNA CG 34 8.58
TCANNNNNNWCG37 8.39
YCANNNNNNWCG52 8.31

Table 1: Five highest scoring motifs for the 19-
gene family ABF1, whose known consensus is
TCANNNNNNACG (Zhu & Zhang 1999). Mean max
z-score on simulated data : 6.37

8 Ns zs
CACGTGGG 3 16.75
CCGCNNNNNNNNNTGCC3 16.66
CACGTGSG 4 16.56
CCGGNNNNCGGC 2 16.36
CACGTGGR 5 16.34

Table 5: Five highest scoring motifs for the 5-gene
family PHO, whose known consensus is GCACGTGGG
or GCACGTTTT (Oshima, Nobuo, & Harashima
1996). Mean max z-score on simulated data: 16.0

s N~ z~
CGGNNNNNNNNNNNCCG28 32.72
CGGNNNNNNNNNNNSCG31 28.72
CGGNNNNNNNNNNNCSG28 26.03
CGGNNNNNNNNNNNCCS28 25.52
CGGNNNNNNNNNNNYCG29 25.13

Table 2: Five highest scoring motifs for the 6-
gene family GAL4, whose known consensus is
CGGNN~NNNNNNNCCG (Zhu & Zhang 1999). Mean
max z-score on simulated data : 6.84

s N8 zs
CACGAAA i0 15.92
CCGNNNNCGGA 4 15. ii
CRCGAAA 12 14.95
CWCGAAA 12 13.37
CGTNNNNNNCGCA4 13.21

Table 6: Five highest scoring motifs for the 3-gene
family SCB (or SWI), whose known consensus 
CNCGAAA (Zhu & Zhang 1999). Mean max z-score
on simulated data: 10.98

s N8 z8
ACGCGT 26 19.24
ACGCGW 35 17.63
ACGCGY 30 15.74
ACGSGT 30 14.39
CGCGTY31 14.38

Table 3: Five highest scoring motifs for the 12-gene
family MCB, whose known consensus is ACGCGT
[Chris Roberts, personal communication]. Mean
max z-score on simulated data: 6.48

s N8 z8
TGAAACA 15 9.17
AACNNNNNNNWEAC22 8.91
TGAAACR 18 8.61
TRAAACA 23 8.59
TRAAWCA 30 8.35

Table 7: Five highest scoring motifs for the 9-gene
family STE12, whose known consensus is TGAAACA
[Chris Roberts, personal communication]. Mean
max z-score on simulated data: 8.9

s Ns z8
TCCGYGGA14 38.02
TCCGCGGA 8 34.16
TCCR YGGA20 33.53
TCCGYGGR15 32.02
TCCRCGGR15 31.81

Table 4: Five highest scoring motifs for the 7-gene
family PDR3, whose known consensus is TCCGYGGA
(Zhu & Zhang 1999). Mean max z-score on simu-
lated data: 14.32

s Ns zs
TCACGTG 19 23.63
TCRCGTG 20 20.33
TCA CGYG 20 20.07
ATANAYAT 62 19.28
ATANNNAYAT57 18.87

Table 8: Five highest scoring motifs for the ll-gene
family MET, whose known consensus is TCACGTG or
AAAACTGTGG (van Helden, Andr4, & Collado-Vides
1998). Mean max z-score on simulated data: 8.26

348 SINHA



s /V8 z8
ACGCGT 104 34.88
ACGCGW 149 34.02
ACGCGY 121 28.57
RCGCGW 172 26.77

CGCGTY 119 24.63

Table 9: Five highest scoring motifs for the 57-gene
cluster CLN2 (Spellman et al. 1998). The cluster is
regulated by MCB, SCB and the binding site could
be WCGCGW (MCB) or CNCGAAA (SCB) (Zhu & Zhang
1999). See also Table 3.

them), the known consensus was in the top twenty
reported motifs.

3.2. Coexpressed Gene Clusters

We also ran our program on eight of the coex-
pressed gene clusters discovered by Spellman et al.
(1998) and Tavazoie eta/. (1999).

Tables 9 - 12 summarize the results from the best
four of these experiments (three from (Spellman et
al. 1998) and one from (Tavazoie et al. 1999)).
Again, the top five motifs in each family have very
high z-scores and match the binding site consensus
of the transcription factor believed to regulate the
family. In three out of four of these experiments,
the authors found a very similar motif. The fourth
experiment is on the Y’ cluster from Spellman et
al. (1998), whose regulation is not well understood,
and for which the authors reported no striking mo-
tif. Table 10 does reveal some very conspicuous and
high scoring motifs. These turn out to be part of
a repeated 168- to 173-met, which occurs in close
variations in 18 of the 31 upstream regions.

4. Future Work

The results of our approach have been most promis-
ing. There are several issues and aspects that war-
rant further research:

¯ The current motif characterization is still limited.
In some true binding sites, spacers may not be
centered, or there may be more than one run of
spacers. We do not handle such motifs yet.

¯ We are investigating how much of the work done
in the enumerative loop of the algorithm can
be moved to the preprocessing step, before the
coregulated gene sequences are input. We be-
lieve the program can be made much faster this
way.

* The accuracy of the results could be improved
by filtering out well known repeats from the up-
stream regions of the genes before running our
tool on them.

s N~ z~
GACGNNNNNNGGAC 23 56.33
CTGCNNNNNGCAG 36 55.85

GCAGNNNCTGC36 55.67
CAGANTCTG 36 51.93
CAGANNCTGC36 50.29

Table 10: Five highest scoring motifs for the 31-
gene cluster Y’ (Spellman et al. 1998). The regu-
lator and binding site for the cluster are unknown.

s N8 z8
RARCCAGC 23 14.82

ARCCA gCA 17 13.75
ARCCAGCR20 12.94
RRCCAGCA 20 12.33

AKAANAAKA138 12.23

Table lh Five highest scoring motifs for the 27-
gene cluster SIC1 (Spellman et al. 1998). The
cluster is regulated by Swi5p/Ace2p and the bind-
ing site is believed to be RRCCAGCK.

s N, za
ACGCGW 51 10.19
ACGCGT 32 9.77

CGCGTY 49 9.02
ACGCGW 175 29.87
ACGCGT 114 28.77
RCGCGW 207 23.48
ACGCGT 116 29.33
ACGCGW 164 27.68
ACGCGY 140 24.51

Table 12: Three highest scoring motifs for each of
three subsets of the the 186-gene cluster 2, which is
involved in replication and DNA synthesis (Tava-
zoie et al. 1999). The three subsets mimic the au-
thors’ cross-validation experiment. The cluster is
regulated by MCB, SCB and the binding site could
be WCGCGW (MCB) or CNCGAAA (SCB) (Zhu & Zhang
1999). See also Tables 3 and 9.
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¯ More experiments need to be done to determine
a good threshold for significant z-scores. This
threshold should depend on the number of non-
spacer characters as well as the size of the input
sequences.

¯ We are experimenting with more gene families for
which the binding site is not yet known, including
families from other eukaryotic genomes.

¯ In some of the experiments some motifs with very
high significance were discovered, but they are
not documented as binding sites. These motifs
need closer examination.
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A. Appendix

This section describes how we compute E(X,) and
cr(X,) for a given motif s, when X is a single region
of length n. The motif s is assumed to be a string of
length l over the alphabet {A,C,G,T,R,Y,S,W,N}.
For simplicity, the Markov model assumed here is
of 1st order; in Section A.4 the changes necessary
to accommodate higher orders are described.

The motif s is first converted into a set W of
strings, which contains strings of length l over the
alphabet {A,C,G,T,Iq}, by replacing the R’s, Y’s,
S’s, and W’s by all possible combinations of the ap-
propriate bases. Then for each string in W, its
reverse complement is also added to W. (As a re-
sult, W may be a multiset.) Notice that motif 
occurs at a given position in X (on either strand) 
and only if some string in the set W occurs at that
position.

A.1. Number of Occurrences

Xs is defined as the sum of the number of occur-
rences (in X) of each member of W. (Overlapping
instances are counted as separate.) Since palin-
dromes occur twice in W, we are effectively count-
ing two for each occurrence of every such palin-
drome. The reason for this is that an occurrence
of a palindrome on one strand accounts for two oc-
currences of the motif when both strands are con-
sidered.

We denote members of W by Wi, and [W[ by T
(counting duplicate elements as distinct).

Define X/j,’for i E {1,2,...,T} and j E
{1, 2,..., n - l + 1}, as a 0/1 indicator variable for

350 SINHA

the occurrence of Wi at position j, i.e.,

1, if Wi occurs at position j of XXij -- 0, otherwise

Also,

Xi

X$

T
dej E Xij’

i--1

n-l.-F1

j=l

T
de] E
= Xi.

i=l

This definition of X, is consistent with the defi-
nition in Section 2.2. Xs counts the total number
of occurrences of the motif s in X, taking both
strands into account, and considering the special
case of palindromes also.

(Note that X, = )’~T=1 Xi =----~L 1 ~-~n--l+l y
__

~-~n--l+l----~L 1 Xij --

L~j=I -.ij -- z.~j=l

~n-~+~ X,j.)j--1

A.2. Expectation

By definitions and the linearity of expectation, we
have

T

E(X.) : Z
i----I

n-l-bl

E(X,) = ~ E(X,/),
j-----i

E(Xij) = Pr(Xq = 1) pj (ail)p.(Wi),

where pj(c) is the probability of occurrence of base
c at position j, aim is the ruth character of string
Wi and p. (Wi) is the probability of Wi starting 
any position, given that ail occurs at that position.

Assuming pj to be a constant independent of j,
we can denote pj by p and rewrite the formula above
as E(Xij) = p(ail)p.(W~), from which we get

E(Xi) = (n - + 1)p(aix)p.(Wi). (3

The assumption that pj is independent of j is
discussed and justified by Kleffe and Borodovsky
(1992). The vector p is the so-called stationary dis-
tribution of the Markov chain.

We compute p.(Wi) by following the Markov
chain for l - 1 steps starting with ail. In following
the Markov chain, we have to "skip over" any spac-
ers by using higher powers of the transition matrix
(which can be precomputed for efficiency).



A.3. Variance

The variance of Xs is, by definition,

o(xs)~ = E(X~) - E(Xs)2,
where

n--l+l

E(X~) = E(( Z ~)
i=l

n--/+l n--l-I-1

j=l k=l

n--l+l

: E E(x~,)
i----1

n--l+l n--l+1

j=l k=j+l

Let B be the first summation in this expression,
and 2C be the remaining terms. We first consider
the term C.

where

C

n--l+l n--lW1

~E F_. E(X,X.k)
5=1 k=5+l

n--l+l j+l--1

: ~ ~ E(X,X.k)
5=1 k=j+l

n--21+l n--l-{-1

+ ~_, Z E(x.x,~)
j=l k=j+l

n--l+l l--1 T T

= E EE EE(Xi, jx/2J+k )+A
5=1 k=l i1=1 i2=1

n--21+l r*--l+ 1

A= E E E(XsjXsk).

5=1 k=S+l

Now let CW be the set of all overlapping con-
catenations of pairs of strings from W. That is,

CW = {xyz I Wil = xy and Wi2 = yz, for some
Q,i2, and nonempty x,y,z).

We denote members of CW by CWi. Like W, CW
can potentially be a muir/set.

Also, define

1, if CWi occurs at position jx W)~jc = 0, otherwise

Notice that there is a one-to-one correspondence
between

{(k,il,i~) [ Xil,jXi2,j.~- k = 1 and 0 < k < I}

and
{i l x}/w) = I},

for any j. Note also that the event XiljXi2j+k = 1

to the event X/~~’W)’- : 1, for the corre-is identical
sponding i.

Therefore,

1--I T T [CW[

k=lQ=li2=l i=1

where [CW[ denotes the caxdinality of CW.

We can thus write

n-t+l ICW[

c : E E (x TW))
5=1 i=1

n-ICWd+l

= E E E(X~w) )+
i j:l

where [CIVil denotes the length of the string CWi.

X} CW) z.~j=lV’n-IVWd+X (cw)Let : XO . Then we have

n-lCW~l+l

E E(X}J cW)) = E(x}CW))’
5:1

which can be computed just as any E(Xi) is com-
puted. (See Equation (3).) Let pk(C2[Cl) denote the
probability of finding the character c2 k steps (of
the Markov chain) after O- Defining q = n-2l+2,
we can then write C as

IcwI
c : ~ E(x~°"% +.4,

i=l

where

A
n--21+l n--l+l

~ F~(x.jx.~)
j=l k=5+|

q--1 q-5 T T

: EE E E
j=l k=l il:l i==1

= E E E
j k il i2

where
q--1 q--j

Si, i: = E Epk(ai~, ll aia,t)pj(ai~,l)"
j=l k=l

By imitating the computation shown in the proof
of Theorem I in Kleffe and Borodovsky (1992),
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and making appropriate approximation (replacing
a certain power series sum by its asymptotic limit,
as explained in Kleffe and Borodovsky (1992)), 
finally get

~ta, 1~q(q+l) a= ~’~ "~, )t~P( i2,1)-

(q 1)e~,~, Qpea,2, 2
- - eail,QP Qeat21}-

Here, eaii~ and eai2~ are elementary unit vectors
of length 4 that have a 1 in the position cor-
responding to the last character of W~1 and the
first character of W~2 respectively, P is the 4 x 4
transition probability matrix of the Markov chain
and Q is (P - I - lp~)-1, as defined in Kleffe and
Borodovsky (1992). (The notations * and p’ d e-
note the transpose of those vectors, and the vector
1 is the column vector with all ls.)

Now consider the term B defined earlier.
n--l+l

B = }F_, E(x j)
j----1

T T

j k=l q=l r#q

j k j q r~q

j k j q r#q

To simplify the second term, when r ~ q,

¯ XqjXrj = 1 if Wq and Wr are strings that can
both be instantiated at position j, and

¯ XqjXrj = 0 otherwise.

The simplest case in which XqjX~j = 1 is when
Wq and Wr are two copies of the same palindrome,
and it occurs starting at position j. An example of
the more general case is the motif s = AASANNSTT.
Two of its four instantiations in W would be

W1 = AACANNCTT

and
W2 = AAGANNGTT.

The reverse complement of W1 would then also be
added to W, namely

W5 = AAGNI~TGTT.

Now it is possible for both W2 and W~ to be in-
stantiated starting at position j, even though W2
and W5 are not identical. We will say that W2 and
W5 can be superimposed.

H Wq and W~ can be superimposed, with r ¢ q,
then they cannot both be instances of the motif

s, or both be reverse complements of instances of
s. Hence, for every q, there is at most one r ¢ q
such that Wq and W~ can be superimposed. Let
PAL be the set of indices q such that Wq can be
superimposed with W~, for some r ¢ q.

Rather than checking all pairs in W to find which
can be superimposed, it is more efficient to iden-
tify such pairs directly from the motif s. This is
easily done by reading s from both ends at once.
For each pair of superimposable strings Wq and W~
so identified, it is also easy to determine the most
general common instantiation Pq of both Wq and
W~. For the exaxaple strings W2 and W5 above,
/92 = P5 = AAGANTGTT. For q E PAL, let

1, if Pq occurs at position jYq~ = 0, otherwise

and
n-l+l

r,= Z
j----1

Then we can write
n--l+l T n--l+l

j=l k=l j=l qEPAL

= E(x,) + E(Y,).
qE PA L

E(Yq) can be computed just as any E(Xi) is com-
puted, using Equation (3).

In summary, the variance of X, can be obtained
from the following set of formulae:

a(X,)2 = E(X2)- E(X,)u,

E(X = B + 2C,
B = E(X,)+ E E(Yq), (4)

qEPAL

IcwI
C = E E(X} cW)) +A, (5)

i=l

A
T T

=
i1=1 i2=1

= ,(a, ~’q(q+l) arx "1, )ITP( i2,1)-

(q - 1)e~ia,qPeat=, -

i 2
ea,,,QP qe,,,=, }.

A.4. Higher Order Markov Model

This section outlines how to extend the calculations
above to handle higher order Markov chains. In the
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expectation calculations of Section A.2, pj(c) now
denotes the probability of occurrence of the m-met
c at position j, a~l in Equation (3) is now the first
m-mer of W~, and p. (Wi) is computed, as before, 
following the Markov chain, starting with a~l. The
transition matrix P is now a 4m x 4m matrix, where
the rows and columns are indexed by the possible
m-mers, and P~j is the probability that the m-mer
j starts at position t + 1, given that the m-mer i
starts at position t. Thus, each row in P has at
most 4 nonzero entries.

The variance calculations given in Section A.3
remain the same, except for Silq, which depends
on m. For the case m = 3 used in our experiments,
it is given by

~(a ~r q(q 1)
Sili2 = t’~ il.1)~TP(ai2,1)-

(q -- 1)ela,x,QpSeat21 

e’,l,QP2Qp2e,,21 }.
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