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Abstract 
We develop, in the context of discriminant analysis, a 
general approach to the design of neural architectures. 
It consists in building a neural net ‘around’ a statistical 
model family; larger networks, made up of such 
elementary networks, are then constructed. It is shown 
that, on the one hand, the statistical modeling 
approach provides a systematic way to obtaining good 
approximations in the neural network context, while, 
on the other, neural networks offer a powerful 
expansion to classical model families. A novel 
integrated approach emerges, which stresses both 
flexibility (contribution of neural nets) and inter- 
pretability (contribution of statistical modeling). A 
well known data set on birth weight is analyzed by 
this new approach. The results are rather promising 
and open the way to many potential applications. 

1. Introduction 
Statistical models play an important role in data explora- 
tion. Typically, a data set is looked at from the point view 
of a model family, large enough to contain ‘interesting’ 
alternative ‘explanations’ of a data structure, yet simple 
enough to permit quick screening, so that one or several 
best fitting alternatives may be selected for an in-depth 
look. We will restrict ourselves to the problem of predic- 
ting a class variable c from a vector of classifiers z. From a 
statistical perspective, the goal is to model the conditional 
probability P(c 1 z) . This is done either by the classical 
approach which specifies a model family at the outset, or 
by the adaptive approach, by which the model is arrived at 
by a sequence of data driven steps. The classical statistical 
approach has been to fit generalized linear models, in 
particular, for predicting a probability, the logistic model. 
More recently, the inadequacy of the linear model to 
handle problems frequently occurring in the applications, 
has spurred statisticians in the direction of model families 
which go beyond linearity, such as the generalized additive 
model (GAM) (Hastie & Tibshirani 1990). The adaptive 

modeling approach has produced regression trees (Breiman 
et al. 1984, Ciampi 199 1). For any given family, however, 
no matter how complex or general, it is always possible to 
find a realistic situation which does not fit it. The 
inadequacies of a model family are exposed by large data 
sets, such as those that are becoming increasingly available 
in every field of science and engineering. 

On the other hand, neural nets have, by now, a long 
history and are well established in the applied field as a 
flexible and powerful tool for solving prediction and 
pattern recognition problems: see (Hecht-Nielsen, 1990) 
for both a historical discussion and a review of important 
applications. The neural network approach finds its 
justification in a central theorem which claims that, under 
certain ‘reasonable’ conditions, any function can be 
approximated by a feedforward neural network with one 
hidden layer. This ‘universality’ of the neural approach is 
given a tremendous applied potential by the existence of a 
general learning paradigm, the back-propagation 
algorithm. From the point of view of data exploration, 
however, neural nets suffer from a serious shortcoming, in 
view of their well-known ‘black box’ character. No matter 
how well or how poorly a neural network performs, it is 
extremely difficult to understand how it works. In contrast, 
a statistical model contains in itself an explanation of its 
successes or failures. In view of this complementarity of 
the two approaches, it is not surprising that statisticians are 
now becoming interested in studying the properties of 
neural nets (Bing Cheng & Titterington, Ripley 1994), and 
that neural nets specialists draw more and more from 
statistical inference (Geman, Bienenstock & Dorsat 1992). 

In this paper we will outline an approach to the 
construction of neural networks which uses statistical 
models for designing the architecture of the network and 
for providing initial conditions to the back-propagation 
algorithm. The approach generalizes previous work in 
which classification trees were used in a similar way, as the 
‘initial’ statistical model (Sethi 1990, Brent 1991, 
Chabanon, Lechevallier & Millemann 1992). 
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The correspondence between networks and 
statistical models is developed in Section 2. An 
example is discussed in Section 3, and Section 4 
contains a brief conclusion. 

2. Representation by neural networks of 
statistical models for discrimination 

The logistic model is used commonly to construct 
classifiers in the 2-class case. For simplicity of notation we 
assume that the vector of the classifiers contains a 
component which is identically equal to 1 (constant term). 
Then the model is written as: 

logit (P(c = cllz)) = p-z (2.1) 

and it is immediately representable as the network with no 
hidden layers given by Figure 1, where the weight vector is 
to be identified with p and s( z ) with P(c = cl 1 z) . 
Maximum-likelihood methods are currently used for 
estimating the unknown vector coefficients from the data. 
With a cost function given by the negative log-likelihood, 
the network can also produce a maximum likelihood 
estimate of the weight vector via the back-propagation 
algorithm. 

Figure 1. Neural Network for logistic regression. 

There are two generalizations of (2.1) corresponding to 
two non-linear approaches for modeling P(c = cl 1 z) . One 
approach generalizes linearity on the logistic scale to 
additivity on the same scale: 

logit (P(c = c#) = t3#1) + !$(z2)+..*+gp(zp) (2.2) 

where the g’s are arbitrary functions which are determined 
by the data. In practice, one writes the g’s as linear 
combinations of a flexible but finite dimensional basis in 

function space, such as the B-splines (De Boor 1978) and 
the problem of estimating the g’s reduces to that of 
estimating the coefficients of a linear model as in (2.1). 

A neural net corresponding to (2.2) requires now hidden 
layers, but of a special structure, as shown in Figure 2. For 
simplicity the figure shows only two variables assumed 
continuous. The first hidden layer can in fact be seen as 
consisting of two blocks, each corresponding to the 
transformations of the corresponding classifier according 
to the chosen basis, e.g. the B-splines. The activation 
functions of this layer are clearly defmed by the chosen 
basis. Indeed this layer can in practice be avoided and, 
instead of it, the variables are transformed at the input 
level. A second hidden layer computes the g’s; all of its 
units can be treated as having a linear activation function 
f(x) = 1. Finally the output layer has a logistic activation 
function and outputs P(c = cl I z) . 

B-Spline blocks 

Figure 2. Neural Network for the additive model. 

The (generalized) additive model (2.2) constitutes a major 
improvement in flexibility compared with the (generalized) 
linear model (2.1). Its weakness is that it cannot take into 
account possible interactions among classifiers. 

Figure 3. Generalized regression tree. 
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The second type of generalization attempts to eliminate 
this problem by giving predominance to the interactions. It 
is known as generalized regression tree (Ciampi 1991); it 
can be written, for the 2-class case as: 

logit (P(c = clIz)) =y lIx(z) +y 212(z)+..+y LIIJz)(2.3) 

where the I’s are characteristic functions of L subsets of the 
predictor space which form a partition. 

The partition, hence the I’s, is obtained recursively given 
a data set, and is represented by a tree, as in Figure 3. The 
leaves of the tree represent the sets of the partition. Each 
leaf is reached through a series of binary (yes/no) questions 
involving the classifiers; these are determined from the 
data at each node as the most informative about the class 
probability. As shown in the figure, usually a question 
involves one component of z only, and, for continuous 
variables, is of the form: ‘is zi 2 a?‘. Thus the partition is 
formed by the intersection of hyperplanes parallel to the 
axis of the classifier space. 

As already noted in previous work (Sethi 1990, Brent 
199 1, Chabanon, Lechevallier & Millemann 1992), trees 
can be represented as networks. Figure 4 shows such a 
representation for the tree in Figure 3. 

1 

Figure 4. Neural Network for tree. 

Here we have, for simplicity, shown the weights assuming 
that the hidden layers have threshold activation function 
taking value - 1 for negative input and + 1 for positive input. 
The weights linking the second hidden layer to the output 
unit are determined by the data and are given by the logit 
of the class probability corresponding to the leaves of the 
tree. The activation function of the output unit is the 
logistic. The interest of this network, however, consists in 
allowing ‘soft’ thresholds, i.e. sigmoid functions between -1 
and 1, at the hidden layers. If we do this, it is useful to 
center the data around the cut-point defming the nodes and 
to scale them by the empirical variance, in which case the 
weights linking the unit input neurons to the second layer 

are all equal to 0. By allowing sigmoid activation 
functions, the weights of the network given in Figure 6, 
can be considered as an initialization. Back-propagation, 
starting from this initialization, but respecting the 
constraint given by the figure (absence of links not shown 
therein), determines the weights of all allowed connections. 
The resulting model is still relatively easy to interpret: it 
represents a tree similar to the one in Figure 4, but with 
‘fuzzy’ cut-offs at the nodes. Furthermore, these cut-offs 
can be centered around values of the corresponding 
variables which are different from the initializations. 

Finally, we note that the network approach allows a 
further increase in modeling flexibility. This is achieved by 
a network of networks, schematically shown in Figure 5. 
As inner networks one can use those found at a fast stage 
of the analysis, with weights and connections fixed once 
and for all. In this case, the only weights determined from 
the data are those arriving to the output unit, and the 
function of this architecture is to determine the ‘mixing’ 
parameters of the two inner nets. Many other possibilities 
can be envisaged, to each architecture corresponding a 
degree of modeling flexibility. 

Additive 
network 

Tree 
network 

Figure 5. Network of networks. 

3. An example 
We present here an initial analysis of a real data set. The 
data, fully described in (Hosmer & Lemeshow 1990), are 
from 189 women who have had a baby. Several variables 
were observed in the course of their pregnancy. Here we 
use the following: a) two continuous variables, AGE 
(in years), and LWT (in lbs), the weight of the mother at 
the last menstrual period before pregnancy; b) six binary 
(l/O) variables, WHITE (1 if the mother is white), BLACK 
(1 if the mother is black), SMOKE (1 if she is a smoker), 
PTL (1 if she has a history of premature labor), HT 
(1 if hypertension is present), UI (1 if uterine irritability is 
present). The class variable c as two values: cl for mothers 
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delivering babies of normal weight and c2 for mothers 
delivering babies of abnormally low weight (< 2500 g). 

It corresponds to binary variables for categorical 
variables and spline transformation for the two continuous 
variables. We have used cubic B-splines with 4 internal 
nodes, a flexible basis of real-valued functions. The 
presence of a connection between the constant term and the 
inner layer, makes it possible to eliminate one of the basis 
functions (3 instead of 4 for each variable). Also, the 
activation function of the hidden layer may be chosen as 
linear or sigmoid [-1, 11. In the former case we simply 
obtain the estimation of the classical statistical model, 
while in the latter case we may depart from it by 
introducing the possibility of an additional transformation. 

Table 1. 

Strategies 

Additive 
model as 

starting point 
Random 

initial 
weights: 

1 
2 
3 
4 
5 

Negative log likelihood 
Initial I 1000 iterations 

96.09 95.67 218.23 

129.86 105.84 237.68 
122.90 100.94 227.68 
127.40 105.62 227.24 
130.75 106.47 238.94 
127.20 103.45 232.90 

AIC 

73 30 
96 32 

In this example we have chosen sigmoid [- 1, 11. By 
appropriately choosing initial weights, we have forced the 
data to be in the linear zone of the sigmoid [-1, l] of the 
second hidden layer so that, initially, the generalized 
additive model is simulated perfectly. As the weights are 
allowed to vary, however, it is possible, in principle, to 
obtain a richer class of approximations. In Table 1 we 
report some calculations obtained from this strategy. In the 
first row we have the result of the back-propagation 
algorithm using initial connection weights which perfectly 
reproduce the additive model estimated by a purely 
statistical approach (calculations were done in Splus). It 
should be noted that the fmal model misclassifies 50 
subjects. In the second line, we show five random 
initializations for the weights. 
The AIC, given in the third column, is a measure of 
predictive information used in classical statistical modeling 
to make a trade-off between number of parameters and 
goodness-of-fit. Although its use has not been rigorously 
justified in the neural network context, it is still thought to 
provide some rough indication which may be useful to 
compare the models obtained here with those to be 
discussed below. In all additive models considered, the 
number of non-zero connection weights is 13. 

Figure 6 shows a tree analysis of the data. The numbers 
in the squares are the number of babies of normal weight 
and the total number of babies at the corresponding leaf. 
The activation functions of the two hidden layers are 
sigmoids, but the centering and scaling insures that in 
practice the hidden units work virtually as [-1, l] 
thresholds on the actual data. The results of the 
calculations are summarized in Table 2. 

Table 2. 

Strategie Negative log likelihood Number 
Initial 1000 iterations of weights 

1.1 129.81 106.50 
1.2 133.81 106.51 
1.3 140.56 106.41 16 
1.4 139.83 106.41 
1.5 131.80 106.40 
2 130.24 96.89 25 
3 108.51 102.16 16 
4 108.5 1 103.48 20 

AIC 

245 .OO 
245.20 
244.82 
244.82 
244.80 
243.78 
237.32 
246.96 

Figure 6. 
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The four strategies in Table 2 are defined as follows: 

Strategy 1: The initial weights are drawn at random 
but the connections not in Figure 7 are constrained to 
zero. Five random selections are shown. 

Strategy 2: As in 1 but allowing all connections 

Strategy 3: The initial weights are those shown in 
Figure 7 and the connections not there are constrained 
to zero. 
Strategy 4: As in 2 but with the constant term. 

Figure 7. Tree Neural Network. 

130 

125 

Log-likelihood 
Strategie 1 
Strategie2-mm-. _ 
Strategie 3 ‘mmmmm’ 

Figure 8. 

Figure 8 shows the variation of the log-likelihood during 
the iterations. It can be seen that the tree initialization 
accelerated the convergence and towards a considerably 
smaller value of the negative log-likelihood. Adding the 
constant term does not improve matters at all. Allowing all 
connections and starting from the tree as initial model does 
improve the negative log-likelihood as well as the AIC. 
However, the indication given by the AIC is that the best 
model is that obtained from strategy 3 : essentially this 
model corresponds to the initial tree but with ‘fuzzy’ leaves. 

It should be noted that at convergence there are 48 
misclassified subjects, which is slightly better than what is 
obtained with the network corresponding to the additive 
model. On the other hand, a comparison of the AIC’s of 
Table 2 with those of Table 1 would suggest that the 
additive model yields a better prediction than the tree 
model. Indeed, in view of the lack of a proper justification 
for the use of the AIC in this context, it is safer to 
conclude that it is not possible to clearly prefer one of the 
two models for these data. 

The network of networks approach yields the following 
results. When we use the networks corresponding to the 
pure tree and the pure additive models respectively and 
initial equal weights of .5 for the two blocks, convergence 
of the log-likelihood is achieved starting from 95.63 and 
ending to 94.26 (AIC = 192.52), with weights of .34 for 
the tree block and of .79 for the additive block 
respectively, and with 47 misclassified subjects. On the 
other hand, if we use the best networks obtained in the 
previous steps for the additive block and the tree block 
with equal initial weights of .5, we obtain at the start a log- 
likelihood of 94.49 and at convergence a log-likelihood of 
93.14 (AIC= 190.28) with weights of .45 for the tree block 
and of .73 for the additive block and with 43 misclassified 
subjects. 

4. Conclusions 
Neural networks research and statistical research can and 
should interact very fruitfully in the development of 
methods for data exploration. We have shown that the 
goals of flexibility and predictive accuracy, predominant in 
the neural network community, can be combined with the 
goals of interpretability and generalizability to a general 
population, perceived as essential among statistical 
modelers. The key is the correspondence of statistical 
model families with neural architectures. This can be 
exploited, on the one hand, to speed up convergence, and, 
on the other, to design more powerful architectures. The 
resulting new architectures of networks of networks can be 
seen, perhaps with a certain dose of optimism, as devices 
combining both a rudimentary form of intuition and an 
equally primitive form of analytical ability. 
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