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Abstract 

In this paper, we investigate enhancements to an up- 
per classifier - a decision algorithm generated by an 
upper classification method, which is one of the clsssi- 
fication methods in rough set theory. Specifically, we 
consider two enhancements. First, we present a step- 
wise backward feature selection algorithm to prepro- 
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rough classification methods are incapable of remov- 
ing superfluous features. We prove that the stepwise 
backward selection algorithm finds a small subset of 
relevant features that are ideally sufficient and neces- 
sary to define target concepts with respect to a given 
threshold. This threshold value: indicates an accept- 
able degradation in the quality of an upper classifier. 
Second, to make an upper classifier adaptive, we as- 
sociate it with some kind of frequency information, 
which we call incremental information. An extended 
decision table is used to represent an adaptive upper 
classifier. It is also used for interpreting an upper clas- 
sifier either deterministically or nondeterministically. 

Keywords- Rough sets, feature selection, adaptive 
classifier. 

Introduction 
Feature selection is the probleln of choosing a small 
subset of features that is necessary and sufficient to 
describe a target concept(s). The importance of fea- 
ture selection in a broader sense is due to the potential 
it offers for speeding up the processes of both concept 
learning and object classification, reducing the cost of 
classification (e.g., eliminating redundant tests in med- 
ical diagnosis), and improving the quality of classifi- 
cation jiiira & kendell 1gg2j. It is weli known tliat 

searching for the smallest subset of features in the 
feature space takes time that is bounded by 0(2lJ), 
where: I is the number of features, and J is the com- 
putational effort required to evaluate each subset. This 
type of exhaustive search would be appropriate only if 
I is small and time complexity of J is low. Greedy 
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approaches like stepwise backward/forward techniques 
(James 1985; Modrzejewski 1993), and dynamic pro- 
gramming (Chang 1973) are some of the efficient search 
techniques applied with some feature selection crite- 
rion. For near-optimal solutions or optimal solutions 
in special cases, weights of either individual features 
or combinations of features are computed with respect 
to some feature seiection criteria (or measuresj such 
as Bhattacharya coefficient, divergence. Kolmogorov 
variational distance, etc., in statistics (Devicver & 
Kittler 1982; Miller 1990); entropy or classification 
accuracy in pattern recognition and machine learn- 
ing (Pal & Chakraborty 1986; Duda & Hart 1973; 
Fayyad & Irani 1992); classification quality, based on 
variations of MZ metric, in information retrieval sys- 
terns (Bollmann & Cherniavsky 1981). In such proce- 
dures, irrelevant features are either eliminated or as- 
signed small coefficients. 

Instead of adapting near-optimal solutions for fea- 
ture selection problem from other disciplines, we take 
advantage of the fact that the quality of an upper 
classifier worsens as the feature set is pruned down. 
Note that an upper classifier is a decision algorithm (or 
rules) generated by the upper classification method for 
a given data (or training) set. We present a stepwise 
backward selection algorithm to find a small subset of 
features that is sufficient and necessary to define target 
concepts with respect to a given threshold. The thresh- 
old value indicates how much degradation one is willing 
to allow in the quality of an upper classifier. Controlled 
threshold value is inspired by S&berg’s MS algorithm 
(Salzberg 1992). Even though our feature sekction 
algorithm is developed as a pre-processing stage for 
rough classifiers, it can certainly be integrated to any 
other data analysis technique. 

The theory of rough sets in either algebraic or proba- 
bilistic approximation spaces has been used for a num- 
ber of real life applications; namely, in medicine, phar- 
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macology, industry, engineering, control systems, so- 
2-l --:----- --.:A.-L:-- ^:-^-.:L^ !------ ^^^^^ :-- ^A.^ Lull scltx‘cl5s, aw1cLuIrlg cII-Lllus, 1111at;e p’“cess‘“‘g, elxJ., 
(Raghavan & Sever 1995). In this article we consider 
classification methods only in algebraic approximation 
spaces, which do not require any preliminary or addi- 
tional information about data as opposed to rough sets 
in probabilistic approximation spaces. We use upper 
classifiers and decision tables to address some prob- 
lematic aspects of handling very large, redundant, in- 
complete, noisy, and dynamic data (Matheus, Chan, & 
Piatetsky-Shapiro 1993). 

The dynamic characteristic of the data requires to 
design an incremental method and separate the sum- 
mary and the result of a method from one to another. 
For example, in the context of rough classification, 
the strength of a possible decision rule (Ziarko 1991) 
is a part of the summary of the decision algorithm. 
Similarly, a further refinement of antecedent parts of 
rules in a decision algorithm is also a part of the sum- 
mary, if the decision algorithm is persistent in the sys- 
tem and the background knowledge from which the 
decision algorithm has been induced is dynamic. In 
chc. m,.rrh on+ l;eo,.x+,.,n ehn +nrmo %,nr\nr;clenne, rrnrl lrur rvuEjrr c?cTlr Ilb~LcwUI~, IrUG tlG;IIIID IIIL”IID,DcGlltJ auu 

‘nondeterministic’ decision algorithms (or rules) are 
used interchangeably (Slowinski & St,efanowiski 1995; 
Pawlak 1986), though they are different concepts. As 
shown later, inconsistent decision algorithms, under 
an appropriate representation structure, can be in- 
terpreted deterministically as well as nondeterminis- 
tically. This is an important distinction, particularly 
when the background knowledge is incomplete and dy- 
namic. 

Ciassification Methods in Rough Set 
Theory 

A decision table can be viewed as an application of 
rough set theory such that each object is described 
by a. set of attributes. It is defined as a quadruple 
5’ = (U, Q = CON U DEC, V, p) where: U is the finite 
set of objects; Q is the the uniorl of condition, denoted 
by CON, and decision attributes, denoted by DEC; 
V is the union of domains of attributes in Q; and p : 
UXQ + V is a total description function. For all 

- r, ,-J - F A -I- -\ z t u dmu u t w, piz,u~ = pz(a). FOi given F c &, 
let ]P] = r. We introduce following notations. 

.- 
(i) pZ (P) denotes extended version of total descrip- 

t.ion function, that is, 

P, (P) =< w,e! , . . . ,oT >, where ‘11i = pz(Pi). 

(ii) F denotes the equivalence relation on U defined 
by the values of P, that is, 

F = {(x,y) : x,y E UA P, (I’) =Py (P)}. 

(iii) [z],- = {y : p, (P) =py (P)} denotes a block of 
P. 

(iv) U/F denotes a set of blocks of p. 

It is usual to call [z],~~ an elementary set and 
M oyc a concept of interest. For notational simplic- 
ity we denote a concept [x],T~ by X. A decision al- 
gorithm, denoted by Ds(X), is induced from 5’ such 
that, for a given object y, it yields one of these three 
answers: 

a) yisinX, 

b) yisnotinX,or 

c) unknown. 

In the following, we define corresponding sets of X in 
S for each answer. Let POSs(X) be a set of objects 
each of which is considered as a member of the concept 
X by the decision algorithm Ds (X) . Let BNDs(X) 
be a set of objects for which Ds(X) gives the answer 
of unknown. Finally, let NEGs(X) be a set of objects 
that are not regarded as members of X by Ds(X). 

The approximation accuracy of a decisaon algorithm 
Ds(X) is defined as the ratio of objects in POSs(X) 
that are correctly approximated to be in X to all 
objects in POSs(X), which can be formulated as 
AD = lPOSs(X) fl XI / lPOSs(X)I . We also intro- 
duce a second accuracy measure that is called the ap- 
proximation accuracy of a concept X in S. It is defined 
as the ratio of objects in X that are correctly approx- 
imated as POSG~X) to all obiects in X. which can be _ .“\ , .~ ~~~ -*--1- --- --, 
formulated as AC = /POSs(X) f~ XI / 1x1. To get the 
overall picture, we propose to consider the normalized 
size of intersection between POSs(X) and X. This in- 
tuitive idea, denoted by ps(X), can be formalized as 
follows. 

/-4X) = l 
Ix n fW5WI 

s&y + s&y = 31 1x1+ s2 I~O~s(X)I ’ 

where sr and sz are scaling factors and their sum must 
be q& to One, These ScaJinP fmtnrs mla.nt.ifv t;hp D ------.. 1-------J 

user’s preference as to amount of increment in accuracy 
of Ds(X) desired relative to a certain loss in accuracy 
of X (or vice versa). We simply take SI = sz = 0.5. 
Then, the measure becomes equal to what we call 
Dice’s coefficient in information retrieval systems. 

In the following, we introduce positive regions of the 
three approximation methods. 

1. The lower bound approximation: POS& (X) = {x E 
u : [x] CT&r c Xl- 
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2. The upper bound approximation: POSt(X) = {x E 

3. The elementary set approximation: POSE(X) = 
U 

5-+ ,,:, >e 
a, where 8 denotes a threshold value 

ranging in (0.5, l] and Ri E LYCFN. 

For all approximation methods stated above, the 
boundary region BNDs(X) is equal to POSg(X) - 
POSS (X) . 

A classification problem is described as generating 
a decision algorithm from S, D(S), that relates ele- 
ments of U/CFN to that of U/b$k’. If D(S) is a rela- 
tion then it is called an inconsistent decision algorithm; 
otherwise, it is said to be a consistent decision aEgo- 
rithm. Observe that an inconsistent decision algorithm 
might be interpreted deterministically or nondeter- 
ministically. Let U/D%C = {Xl, X2,. . . ,Xn). Since 
POW) = {~~~S~~l),~~~S~~2~,...,~~~S~~,~}, 

the extension of an approximation method to its coun- 
terpart in classification problem is straightforward. 
Similarly? the classification quality v(S) is equal to 
j& CL IX4 /&G)~ 

Our motivation is two fold. First, from the point 
of database mining applications, knowledge discovery 
methods must deal with incomplete or noisy data. The 
lower classification method, a traditional rough set ap- 
proach, induces a consistent decision algorithm that 
covers only the part of the data where decisions can be 
ma.de with certainty. On the other hand elementary set 
classifier provide us a fine and consistent approxima- 
tion of target concepts on the expense of more demand 
on disk space when the data i3 incomplete or noisy. 
Second, one of the characteristics of database mining is 
that data is dynamic. Neither lower nor elementary set 
classification methods provide basis for adaptive clas- 
sifiers since they weed out some portion of background 
knowledge. Whereas the upper classification method 
assumes such a decision is a matter of how its decision 
algorithm is interpreted; that is, an upper classifier 
bears inconsistency given in a background knowledge. 
This feature of upper classification method enable us 
to develop truely adaptive classifiers. Additionally an 
upper classifier could be just as well interpreted if it 
were produced by the classification method using only 
lower bounds or elementary sets. 

Stepwise Backward Feature Selection 
Let SIP denotes a substructure of S such that S/P = 
(U, Q’ = p u D-f-G UaEP V,, p’), where P 2 CON, p’ 
is a restriction of p to set UXQ’. We say that CON-P 
is B-superfiuous in S iff (o(S/P) = ~p(S)(l - 8), where 
0 5 0 5 1. Similarly, we say that P is a 6-reduct of 

Algorithm SBS(S, 0) 
1. F=CON 
2. Threshold = p”(S) * (1 - 13) 
3. for(j = ICON1 ; j > 1; j - -) 
4. MinQuality = Threshold 
5. Found = false 
6. for (i = 0; i < j; i + +) 
7. F = F - {ci} 
8. CurrentQuaEity = (p”(S/F) 
9. if (CurrentQuality 2 M&Quality) 
10. MinQuality = CurrentQuality 
11. KeepAttribute = { cz} 
12. Found = true 
13. F = F u {ci} 

14. if(Found == true) F = F - KeepAttribute 
15. else break 
16. return F 

Table 1: The stepwise backward selection algorithm. 

CON iff CON - P is 0-superfluous in S and no P’ c 1’ 
is e-superfluous in S/P. Note that if 0 == 0 we simply 
call them superfluous or reduct. As we have stated be- 
fore, the feature selection problem is to rhoose a small 
subset of features that is necessary and sufficient to 
define the target concept(s). In terms of these new 
definitions, the feature selection problem can be re- 
expressed as finding a 8-reduct of CON in S. 

In Table 1, Stepwise Backward Selection (SBS) al- 
gorithm is defined using C language like notation. At 
first two steps, we initialize F with CON and find the 
threshold value for the quality of an upper classifier 
in S. In the inner loop, we find an attribute c E F 
such that its elimination gives the minimum decrease 
in the quality of the upper classifier in S/F, but the 
resulting value of the quality of the upper classifier in 
S/(F - {c}) is no worse than the given threshold for 
that of S. Such an attribute is eliminated at each it- 
eration of the outer loop until either there is only one 
attribute is left or no other attribute can be pruned 
down with respect to the threshold. 

Let 1 be the size of CON, p be the size of U/CfN, 
and m be the number of objects in U. The computa- 
tional effort to evaluate the quality of an upper classi- 
fier in a given S is equal to OVll,~~(Zmp) (Sever 1995). 
Then it is easy to see that the time complexity of SBS 
algorithm is bounded by O(120~p’L(s~ (lml))), which is a 
polynomial time algorithm with the degree of three in 1 
and of one in m and p. To justify that SBS algorithm 
finds a 0-reduct of CON in S, we need to prove that, 
the quality of an upper classifier worsens as the feature 
set is pruned down. 
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Lemma 1 For all P, B c COik’, if P > B then U/F c 
U/g, that is, U/F is refinement of U/g. 

Proof: Assume P = B U B’. Let IPI = k and IBI = r. 
It is enough to show that for all [u]~, there exists [yb 
such that [u],- c [y]z;. Let [u],- be an element of U/P. 
Since U/g is a partition of U, there must be a [y]~ that 

- 
contains u. Let P, (P) =< ~0, ~‘1,. . . ,VIC > Then, 

- 
[U]F = {5:5EUAPz(P)-<vo,v1,...,vrc>] 

= {y:y~UA;~(B)=<vo,vl,...,w,>}n 

{z : z E UA ;, (B’) =< v,.+l,q.+z,. . . ,vk >} 

< {y:y~UA&,(B)=<vo,wl,...,v,>} 
= h/l,- iI 

Theorem 1 Let X C U and p:(X) be the quality of 
upper approxcimation of X in S. 

Proof: Assume P > B. We know that POE?&(X) = 
U[.e]-rlX~Q[“l~ 
de&ition . 

and pos&dxj = U[gl,nxg&~lg, by 
It is easy to see that if [xl,- is included 

in POS$,(X) then there exists a [y],- > [xl,- that 

must also be included in POS&(X) because U/F is 

refinement of U/g by Lemma 1. Then POS$(X) E 
Pfl.SL‘.-I Xl Thnn - - “s,B,a- ,. ---..-, 

P$m = 2 1x1 
WI + jPOS~,p~~~~ 

1x1 

L 21x1 + IPOS$X)l 

= #4/L?(X) 0 

The immediate consequence of Theorem 1 is given in 
the following. 

Corollary 1 V(P, B) G CON[P > B * @‘(S/P) 2 
cp”cw)1 0 

According to corollary 1, pruning the feature set 
down does not yield a better classification quality. This 
fact guarantees that SBS algorithm satisfies ‘sufficient’ 
condition of the feature selection problem. It is also 
easy to see that there is no &superfluous attribute in 
returned set of relevant attributes, F, because the last 
repetition of outer loop (i.e., steps 3-15) in SBS dgo- 
rithm verifies that no c E F can be extracted from F 
and yet we have (p”(S/(F - {c})) 5: (pU(S/F) * (1 - 0). 

Corollary 1 also enables us to use a branch and bound 
algorithm to find the smallest 0-reduct of relevant fear- 
tures. Since the detailed description of the branch and 
bound algorithm for feature selection is given in Naren- 
dra & Fukunaga 1977, we only state the corresponding 
information to incorporate our feature selection crite- 
rion into that algorithm. For a given decision table S 
and threshold value f3, a subset of condition attributes, 
denoted by F, and the quality of an upper classifier in 
S/z” a-nnctitrrta tho atsto nP 3 nnrlo in n nnnroh annno ~“II”“.“UU~ “ll\r Y”cm”b “I CA IA”Ub AI‘ rA UcIc.albsI oycwr. 

The state of a root node is, then, defined by CON and 
‘p”(S). A subset F is said to be feasible if the feature 
selection criterion, defined as p”(S/F) 1 @(S)*(l-O), 
is satisfied. Note that the objective function is de- 
fined as optimizing the feature selection criterion (i.e., 
finding a feasible subset such that its size is minimum 
among the other feasible subsets). 

Empirical Evaluation 
To see how SBS algorithm affects thfl- nerfnrmanw nf -.~“--------- -.----_- p---- ____ L_-- -_ 

an upper classifier, we design and run an experiment 
that uses traditional machine learning data sets. In 
the next two subsections, we discuss the issues related 
to designing the experiment and interpret the experi- 
mental results. 

Design of the Experiment 

The data sets are from the UC Irvine’s machine learn- 
ing database repository (Murphy & Aha), except for 
parity 5+10 and XOR, which are artificial data sets 
where the parity 5+10 is the concept of parity of five 
bits with ten irrelevant bits and XOR is the concept 
of ‘exclusive or’ with thirteen irrelevant bits. For all 
data sets that do not have a test set, we randomly 
choose two third of the objects from each class of the 
corresponding data set for a test set. We induce two 
upper classifiers for each data set; one is from a non- 
reduced training set and the other one is from a re- 
duced training set. Note that for all training sets we 
set the threshold 6 to 0.5%. 

TX7hom clne nr\n+n;no -:oo:ne. . . ..l.... ““11GL‘ a data D.zC L”,llradUU a I lUOUUl~ “adUG;) -we as- 

sume that it is a non-quantitative value and distinct 
from any other value, including other occurrences of 
missing values. No domain knowledge on data sets is 
exploited, except the type of attributes, e.g., quanti- 
tative or non-quantitative. Given a test set, the ac- 
curacy of an upper classifier is defined as the ratio of 
the number of correctly classified objects to the num- 
ber of objects in the test set. When the description 
of a given object does not match to known concepts 
we use 5NNR classification scheme with Euclidean dis- 
tance function to determine the closest known concept. 
The difference between two values of an attribute are 
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data set A zze 9’ 
Attr. Training Test 

1. Glass 9 66 148 
2. Breast cancer 9 211 488 
3. Parity 5+10 15 226 524 
4. Iris 4 45 105 
5. Monk 1 6 124 432 
6. Monk 2 6 169 432 
7. Monk 3 6 122 432 
8. Vote 16 132 303 
9. Soybean-small 35 15 32 
10. XOR 15 226 524 
11. Mushroom 22 2439 5685 
12. Hepatitis 19 47 108 

Table 2: Part I of Table 3. 

2. I I 96.4% 
3. 55.5% 
4. 92.4% 
r 3. 86.1% 
6. 74.8% 
7. 90.0% 
8. 91.1% 
9. 100% 
10. 78.1% 
11. 99.5% 

1 12 1 75.9% - 

SBi+ UC 
78.4% 
91.8% 

100.0% 
-. pi7 94.3 /o 

100.0% 
67.8% 
93.5% 
95.4% 
65.3% 

100.0% 
99.7% 

T- 

77.8% 

Subset 

w 
02 
O,V,3,4 
2 
OA4 
LGW,5 
0,1,3,4 
G43,6,7 
0,2,3 
3,8 
2,4,9,10,13 
0,2,4 

- 
Reduc- 

tion 
77.8% 
77.8% 
66.7% -- ^N 
75.W 
50.0% 
16.7% 
33.3% 
68.8% 

91.43% 
86.7% 

72.27% 
84.21% 

Table 3: Comparison of classification accuracies 
of UC and UC+SBS on real data sets. 

computed as suggested in ReZief algorithm (Kira & 
Rendell 1992); that is, the difference between two non- 
quantitative values is one if they are different and zero 
otherwise, and the difference between two quantitative 
values is normalized into the interval [O,l]. 

The Results of the Experiment 
Table 3 shows some data sets with their number of 
attributes, training and test sizes, 

the accuracies of the Upper Classifier (UC) with- 
out, and with the feature selection algorithm, SBS, the 
subset of features that Sa”S algorithm have returned 
when applied to the corresponding training sets, and 
the percentage of reductions in feature sets. 

On parity and XOR data sets, SBS algorithm found 
the smallest reduct of attributes. Since reduced train- 
ing sets of these data sets were complete, in the sense 
that they contained all combinations of corresponding 

relevant attributes, SBS + UC performed much bet- 
ter than UC did. The only data set that SBS + UC 
relatively performed much worse than IJC was small 
soybean data set. When we continued our experiment 
on this data set with different &reduct that was 20th 
and 21st features of soybean’s training set, we obtained 
accuracy of 96.1%, which was much better than that 
of the one given in soybean row in Table 2. Hence, 
soybean data set is peculiar enough to show us that 
a 0-reduct of a feature set would not be as good as 
another one. On all data sets, average accuracy and 
sample standard deviation of UC and SBS + UC are 
83.40 f 13.83% and 88.66 f 12.87%, respectively. On 
the other hand the average percentage of the reduction 
in features of data sets, excluding parity and XOR., 
is 64.7%. These results indicate that SBS algorithm 
finds a small subset of features that are sufficient to 
define target (or unknown) concepts. 

Extended Decision Table 
The classification methods are data driven methods, 
and hence, it is unrealistic, in most ewes, to expect 
that the decision rules obtained from a snapshot/part 
of a database will stand up no matter how the database 
changes over time. Therefore, one usually associates 
some frequency information with the decision rules to 
make them incremental. We call such information in- 
cremental information. They are not related with the 
contents of a decision table but provide information 
about the accuracy of each rule or the likelihood of 
its occurrence. Let CON-SAT be an event consisting 
of objects that satisfy the condition part of a decision 
rule in a base decision table’, and let RULESAT be 
an event consisting of objects being classified correctly 
by the same decision rule. Then incremental infor- 
mation of a decision rule is composed of the sizes of 
CONSAT and RULESAT. 

To incorporate incremental information into the de- 
cision table, we introduce the notion of Extended De- 
cision Table (EDT) in which each row corresponds a 
decision rule. We use EDT to represent a decision al- 
gorithm that is induced such that the antecedent part 
of each rule corresponds only one elementary set in 
the base decision table. Details of EDT are omitted 
for lack of space (Deogun, Raghavan, & Sever 1994; 
Sever 1995). The important thing that we would like 
to point out in the following paragraph is that EDT 
has three important advantages. 

First, EDT enables us compute the uccuracy mea- 
sure of a decision rule. Second, EDT is adaptive be- 
cause any data entry into (or update on) its base deci- 

‘A base decision table is the one from which the decision 
algorithm is obtained. 
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sion table is easily propagated to it. Observe that the 
feedback channel we consider here is between EDT and 
base decision table. Third, EDT enable us to inter- 
pret inconsistent decision algorithms either determin- 
istically or nondeterministically as explained below. 

-4 deterministic interpretation of an inconsistent 
EDT would be to always select the row whose accu- 
racy measure is the maximum among the conflicting 
rows for a given x E I/. On the other hand, a nonde- 
terministic interpretation of inconsistent EDT would 
be to select a row randomly when there is a domain 
conflict among the rows for a yiven c E U. The ran- 
dom choice can be biased in proportion to the relative 
values of the approximation accuracy of the rows. 

Conclusion 
The contributions of our work can be summarized as 
follows. We introduced a feature selection algorithm 
that finds a #-reduct of given feature set in polynomial 
time. This algorithm can be used in places where the 
quality of classification is monotonically non-increasing 
function as the feature set is reduced. We showed that 
the upper classifier can be summarized at a desired 
level of abstraction. The incorporation of incremental 
information into extended decision tables can make de- 
cision algorithms capable of evolving over time. This 
also allows an inconsistent decision algorithm to be- 
have as if it were a consistent decision algorithm. 
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