
Analyzing the Benefits of Domain Knowledge in Substructure
Discovery *

Surnjani Djoko, Diane J. Cook and Lawrence B. Holder
University of Texas at Arlington

Department of Computer Science and Engineering
Box 19015, Arlington, TX 76019

djoko@cse.uta.edu, cook@cse.uta.edu, holder@cse.uta.edu

Abstract

Discovering repetitive, interesting, and func-
tional substructures in a structural database im-
proves the ability to interpret and compress
the data. However, scientists working with a
database in their area of expertise often search for
predetermined types of structures, or for struc-
tures exhibiting characteristics specific to the do-
main. This paper presents a method for guid-
ing the discovery process with domain-specific
knowledge. In this paper, the %JBDUFi discov-
ery system is used to evaluate the benefits of
using domain knowledge to guide the discovery
process. The domain knowledge is incorporated
into SUBDUE following a single general method-
ology to guide the discovery process. Results
show that domain-specific knowledge improves
the search for substructures which are useful to
the domain, and leads to greater compression
of the data. To illustrate these benefits, exam-
ples and experiments from the computer pro-
gramming, computer aided design circuit, and
artificially-generated domains are presented.

Introduction
With the increasing amount and complexity of today’s
data, there is an urgent need to accelerate the dis-
covery of information and the generation of knowl-
edge from large databases. To date, the SUBDUE sys-
tem has been used to discover interesting and repeti-
tive substructures in structural data (Holder, Cook, &
Djoko 1994). The substructures are evaluated both by
a set of domain-independent heuristics and by the sub-
structures’ ability to describe and compress the origi-
nal data set based on the minimum description length
(MDL) principle (Q uinlan & Rivest 1989). Once the
substructures are discovered, they are used to simplify
the data by replacing instances of the substructure
with a pointer to the substructure definition. The dis-
covered substructures allow abstraction over detailed
structure in the original data. Iteration of the sub-
structure discovery and replacement process constructs
a hierarchical description of the structural data in

*Supported by NASA grant NAS5-32337.

terms of the discovered substructures. This hierarchy
provides varying levels of interpretation that can be
accessed based on the goals of the data analysis.

Although the MDL principle is useful for discovering
substructures that maximize compression of the data,
scientists often employ knowledge or assumptions of a
specific domain to the discovery process. Domain inde-
pendent heuristics and discovery techniques are valu-
able in that the discovery of unexpected substructures
is not blocked. However, the discovered substructures
might not be useful to the user. On the other hand,
using domain specific knowledge can assist the discov-
ery process by focusing search and can also help make
the discovered substructures more meaningful to the
user.

This paper focuses on a method of realizing the
benefits of domain-dependent discovery approaches
by adding domain-specific knowledge to a domain-
independent discovery system. Secondly, this paper
explicitly evaluates the benefits of utilizing domain-
specific information. In particular, the performance
of the SUBDUE system is measured with and without
domain-specific knowledge along the performance di-
mensions of compression, time to discover substruc-
tures, and interestingness of the discovered substruc-
tures. These methods are generally applicable to many
structural data, such as computer-aided design (CAD)
circuit data, computer programs, chemical compound
data, and image data.

Adding domain knowledge to the
SUBDUE system

We now present several types of domain knowledge
that are used in the discovery process, explain how
they bias discovery toward certain types of substruc-
tures, and detail how the knowledge is added to the
SUBDUE system. Although the minimum description
length principle still drives the discovery process, do-
main knowledge is used to input a bias toward certain
types of substructures. The intuition behind this ap-
proach is that experts often have a preference for par-
ticular types of discoveries. Domain knowledge can be
used to isolate those aspects of substructures they do

Djoko 75

From: KDD-95 Proceedings. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

understand, and to help constrain the discovery pro- ing model definition.
cess.

Model/Structure knowledge
Model/Structure knowledge provides to the discovery
system specific types of structures that are likely to ex-
ist in the database and that are of particular interest to
a scientist using the system. The input structures are
organized in a hierarchy. Leaves in the hierarchy repre-
sent primitive (nondecomposable) structures which are
basic elements of the domain, and inner nodes repre-
sent nonprimitive structures. Nonprimitive structures
consist of a conglomeration of primitive vertices and/or
lower-level nonprimitive vertices. The hierarchy for a
particular domain is supplied by a domain expert. The
structures in the hierarchy and their functionalities are
well known in the context of that domain.

In the programming domain, for example, special
symbols are represented by primitive vertices, and
functional subroutines (e.g., swap, sort, increment) are
represented by nonprimitive vertices. In the CAD cir-
cuit domain, the basic components of a circuit (e.g.,
resistor, transistor) are represented by primitive ver-
tices, and functional subcircuits such as operational
amplifier, filter, etc. are represented by nonprimitive
vertices. This indexed hierarchical representation al-
lows examining of the structural knowledge at various
level of abstraction, focusing the search and reducing
the search space.

Using structure knowledge to guide the dis-
covery. The modified version of SUBDUE can be bi-
ased to look for structures of the type specified in
the model/structure hierarchy. The model/structure
pointed by the matched model vertex is selected as a
candidate model to be matched with the input sub-
structure. Each iteration through the process selects a
substructure from the input graph which has the best
match to the selected model according to its ability to
compress the entire input graph. Selected substruc-
tures are incrementally expanded as possible candi-
dates for the next iteration. The process searches for
the best substructure until either a substructure has
been found that matches the selected model or all pos-
sible substructures have been considered.

To represent an input graph using a discovered sub-
structure from the model hierarchy, the representation
involves additional overhead to replace the substruc-
ture’s instances with a pointer to the model hierarchy.
If compression is greater than zero, the representa-
tion of G using S which match the model M is used
instead of the default representation (compression is
defined as (1 - ““D”Lf ~~~~~~$$~h), where DL is
description length).

The compressed graph is encoded as described else-
where (Holder, Cook, & Djoko 1994). After a sub-
structure is discovered, each instance of the discovered
substructure is encoded as an index to the correspond-

Combining substructure discovery with and
without model knowledge . In order not to overly
bias the discovery process toward certain types of sub-
structures based on the model knowledge, the discov-
ery process can combine the discovery without us-
ing model knowledge with the discovery process us-
ing model knowledge. Using domain-independent and
domain-dependent knowledge together may be more
useful than using either type of approach in isola-
tion. In particular, using domain-dependent knowl-
edge alone may block the discovery of unexpected
substructures. However, domain-dependent knowledge
can assist the discovery process by focusing search and
ensuring that the discovered substructure is meaning-
ful to the user.

In each iteration of the algorithm, the SUBDUE sys-
tem discovers at most two best substructures, one dis-
covered using only the MDL principle (without domain
knowledge), and the other discovered using the MDL
principle and model knowledge (with domain knowl-
edge). Each of the substructures is used to compress
the input graph. SUBDUE selects the compressed graph
yielding the maximum amount of compression as the
input graph for the next iteration of the discovery pro-
cess. The compressed graph which has not been se-
lected is put in the unprocessed list. If after further
iterations, SUBDUE obtains a compressed graph whose
amount of compression is smaller than any compressed
graph in the unprocessed list, this compressed graph
is not processed immediately, but is inserted into the
unprocessed list according to its compression value.
SUBDUE resumes the discovery process using the com-
pressed graph from the unprocessed list which has the
maximum amount of compression. This discovery is
repeated until the unprocessed list is exhausted. The
MDL principle is used as a compression measure for
both using the model knowledge and without using the
model-based discovery.

Graph match rules

At the heart of the SUBDUE system lies an inexact
graph match algorithm that finds instances of a sub-
structure definition. The graph match is used to
identify isomorphic substructures in the input graph.
Many of those substructures could show up in a slightly
different form throughout the data. These differences
may be due to noise and distortion, or may illustrate
slight differences between instances of the same gen-
eral class of structure. Each distortion of a graph is
assigned a cost. A distortion is described in terms of
basic transformations performed by the graph match
such as deletion, insertion and substitution of vertices
and edges. Given gl and 92, and a set of distortion
costs, the actual computation of matchcost(gl,g2) can
be performed using a tree search procedure. As long
as matchcost(gl,g2) does not exceed the threshold set

76 KDD-95

From: Proc. of the 1st Int'l . Conference on Knowledge Discovery and Data Mining. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

by the user, the two graphs gl and g2 are considered
to be isomorphic.

By using graph match rules, each transformation is
assigned a cost based on the domain of usage. Con-
sider an example in the programming domain. We al-
low a vertex representing a variable to be substituted

a,- ~~ 1 by another variate vertex, ana do not aiiow a vertex
representing an operator which is a special symbol, a
reserved word, or a function call, to be substituted by
another vertex. These rules can then be represented
as the following:
IF (programming domain) and (substitute variable vertex)

THEN graph match cost = 0.0;
Graph match rules allow a specification of the

amount of acceptable generality between a substruc-
ture definition and its instances or between a model
definition and its instances in the domain graph.

Complexity analysis. The algorithms employed by
SUBDUE are computationally expensive. For example,
an unconstrained graph match is exponential in the
number of graph vertices. In practice, SUBDUE makes
.._~ -J? ----I-~-I--L- 11.-L -~--I-~- Ll- ~.-~ .~ . ..~ ~~~ --~ ---1 use 01 constraints mar maxes 6ne program more scai-
able. In this section, we will generate an upper bound
on the complexity of SUBDUE as a function of the num-
ber of nodes in the input graph.

In what follows, we will be using the following defi-
nitions:
n = the number of a substructure’s instances found in
the input graph,
L = the user-defined limit on the number of substruc-
tures considered for expansion,
nv = the number of nodes in the input graph,
nsub = the total number of substructures that can be
generated,
gm = the user-defined maximum number of par-
tial mappings that are considered during each graph
match,
nn = the total number of instances needed to be com-
pared for a given substructure, and
B = the total number of nodes expanded.

Since the algorithm spends most of its time perform
graph matching, the total running time of the algo-
rithm can be expressed as

B = nsub x nn x gm
Considering an upper bound time complexity, as-

sume the input graph is a fully connected graph, where
the number of neighbors for a given node is (nv - l),
the maximum size of a substructure generated in iter-
ation i of the algorithm is i nodes, and the number of
nodes which has already been considered in previous
iteration of i is (i - 1). Hence, the total number of
possible expansion node is ((nv - 1) - (i - 1)).
Therefore, the total number of substructures that can
be generated is

L

nsub = c i x ((nv - 1) - (i - 1))
i=l

The total number of instances needed to be com-
pared for a given substructure involves the instances
of the substructure itself and the instances of the sub-
structure’s parent. For a substructure with i nodes, the
maximum number of nonoverlapping instances is y.
Since we consider an upper bound case, the maximum

-----I~ - -Pi. ~~~ -----I----?.- - Z--L--- --- t- .--. TT-.. ._ L,.. numner 01 nonoverlappmg instances is 7121. nence, 6ne
total number of instances needed to be compared for a
given substructure is

nn = nv x (L- 1)
We have shown that by placing a limit on gm and

L, the time complexity for the graph matching is poly-
nomial in nv. If either of the two limits L or gm are
removed, the complexity of the discovery algorithm be-
come exponential in nv. We are currently developing
a parallel implementation of SUBDUE that may further
improve the scalability of the algorithm.

Feature knowledge
Domain-specific rules can be used to generate new fea-
tures describing the data. Because we know that dif-
ferent domains wiii have features not expiicitiy repre-
sented in the original database which can be extracted
to provide more understanding toward the domain, we
incorporate domain feature knowledge into the system
to automatically generate these domain features. The
generated features should be considered of great value
in understanding the domain. Feature knowledge cap-
tures the relations among the substructures in the do-
main, generates important features of the input graph
to provide helpful information, and provides a step to-
wards understanding of the input graph.

Consider an example in the programming domain.
Feature knowledge specifies how to generate a loop
feature whenever repetitive statements/substructures
appear consecutively in a program and replace the
substructures with the loop structure! rendering the
program’s meaning clearer; to perform substitution of
variable definitions, enabling the system to extract for-
mulae. The results appear to be an effective aid to
graph understanding. Feature generation is supplied
as a preprocessing step to the discovery system.

Evaluation of SUBDUE’s
domain-independent versus

domain-dependent discovery
In this section, we evaluate the benefits of utilizing
domain-specific information in performing substruc-
ture discovery. We will measure the performance of
SUBDUE with and without domain-specific information
when applied to databases in the programming, cir-
cuit, and artificially-generated domains. The goals of
our substructure discovery system are to efficiently find
substructures that can reduce the amount of informa-
tion needed to describe the data, and to find substruc-
tures that are considered interesting and useful for the
given domain.

Djoko 77

From: Proc. of the 1st Int'l . Conference on Knowledge Discovery and Data Mining. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

made up of operational amplifiers. All of these sub-
structures receive very high human rating, and rep-
resent a tremendous reduction in description length.
On the other hand, the substructures found using the
graph match rules (with 6 instances) offers lesser com-
pression than the substructures found using no domain
knowledge (with 9 instances), and both of them receive
low human rating.

The result again shows that the time complexity of
SUBDUE depends on the amount of domain knowledge
used and the size of the substructure found. Further-
more, SUBDUE’S domain denendent discovery process
perform better of finding relevant substructures than
domain independent.

Evaluation of substructures in
artificially-generated domain
While we have shown the result of evaluations in two
domains, we now examine whether such domain knowl-
edge is useful in general. We would like to evaluate
whether the domain knowledge can improve SUBDUE'S
average case performance in an artificially-controlled
manh Tn tat. t;!& nerfnrmanw nn artifirinl allhntrnc- e--r- -- “-1” r”-.‘.a-----““) -*- --1-----1- 1-11”--1
ture is created and is embedded in larger graphs of
varying sizes. The graphs vary in terms of graph size
and the amount of deviation in the substructure’s in-
stances, but are constant with respect to the percent-
age of the graph that is covered by the substructure’s
instances. For each deviation value, we run SUBDUE on
the graphs until no more compression can be achieved
with the following four cases: a) no domain knowl-
edge, b) graph match rules, c) combined model knowl-
edge and graph match rules, and d) combination of
a & c. We then measure the compression, the num-
ber of nodes expanded, and the number of embedded
instances found for all iterations. The effects of the
varying deviation values are measured against the av-
erage compression value of the four cases mentioned
above (Figure 3) and the average number of nodes
expanded (Figure 4). As the amount of deviation in-
creases, the compression in all four cases decreases as
expected. Although case a demonstrates slightly bet-
ter compression than case c, it is not capable of find-
ing specific relevant substructures. On the other hand,
case c demonstrates the least compression, and is ca-
nable of findine the embedded substructure. Case b r---- CJ ----
has the highest compression, but it does not perform
well of finding the embedded substructure. The last
case is case d, which performs well in both compres-
sion and finding the embedded substructures. Hence,
the combination of discovery with and without domain
knowledge performs best as the amount of deviation is
increased.

Figure 4 shows that as deviation is increased, the
number of nodes expanded for case c remains about
the same, because the same substructures (of the same
size) are found consistently. However, since case d
combines both case a and c, and finds varied sizes 0i

Figure 2: Bandpass “leapfrog” : sixth-order.

I I I I -I

Table 2: Circuit - Discovered substructures.

to understand the layout, and to identify common
reusable parts in the circuitry.

We evaluate SUBDUE by using CAD circuit data
representing a sixth-order bandpass “leapfrog” ladder
(Bruton 1980) The circuit is made up of a chain of
somewhat similar structures (see Figure 2). We trans-
form the circuit into a graph representation in which
the component units appear as vertices and the current
f lnum ~nncar RR wiue,a The &scrint,inn 1cnut.h nf t,he .-.,-.., ..rr-- - “-b’-. r---*- ----o--- --

circuit in Figure 2 is 3139.05 (in bits). The numbers
in circles shown in Table 2 represent the iteration in
which the substructure is discovered.

When the model knowledge and graph match rules
are used, nine instances of operational amplifier cir-
cuits are quickly selected. We also tested SUBDUE'S
ability to find a hierarchy of substructures. The sub-
structures discovered by SUBDUE for the second iter-
ation represent four instances of inverting integrator
circuits which are made up of operational amplifier cir-
cuits. For the third iteration, SUBDUE discovered two - : 3
instances of inverting amphfier circuits which are also

78 KDD-95

From: Proc. of the 1st Int'l . Conference on Knowledge Discovery and Data Mining. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

To evaluate SUBDUE in a programming and CAD
circuit domain, we compare SUBDUE’S discovered sub-
structures to human ratings. If the domain-dependent
approach has some validity, SUBDUE should prefer the
substructures which were rated higher by humans.

Three types of discovered substructures are evalu-
ated: 1) substructures discovered without using the
domain knowledge, 2) substructures discovered using
the graph match rules, and 3) substructures discovered
using a combination of model knowledge and graph
match rules. The performance of the system is mea-
sured along three dimensions: 1) compression, which
shows a substructure’s ability to compress an input
graph, 2) number of search nodes expanded by SUB-
DUE, which indicates the time to discover a substruc-
ture, and 3) average evaluation value and standard de-
viation of human rating, which give the interestingness
of a substructure as measured by human experts. The
interestingness of SUBDUE’S discovered substructures
are rated by a group of 8 domain experts on a scale of
1 to 5, where 1 means not useful in the domain and 5
means very useful.

Evaluation of substructures in
programming domain
The discovery of familiar structures in a program can
help a programmer to understand the function and
modularity of the code. SUBDUE helps describe a
program which in turn helps facilitate many tasks
that require program understanding, e.g., maintenance
and translation. In order to determine the value of
substructures discovered by SUBDUE, we concatenate
three different sort routines (written in C) into one
program (see Figure l), and transform it into a graph
representation which is independent of the source lan-
guage.

The description length of the sample program shown
in Figure 1 is 2598.99 (in bits). Table 1 shows the
first iteration of three discovered substructures of the
sample program with: 1) compression, 2) time com-
plexity, and 3) human rating The substructure found
using no domain knowledge (with 9 instances) has the
lowest compression and human rating. Although the
substructure found using the graph match rules alone
(with 8 instances) has the highest compression, it does
not yield a good human rating. On the other hand,
the substructure found using both model knowledge
and graph match rules (with 3 instances) has a com-
pression higher than the substructure found using no
domain knowledge and it receives the highest human
rating.

Evaluation of substructures in CAD
circuit domain
As a result of increased complexity of design and
changes in the technologies of implementation of in-
tegrated electronic circuitry, the discovery of familiar
structures in complex circuitry can help a designer

{bubble sort}
sorted = 0;
while (sorted == 0)

sorted = 1;
for (j = 0; j < listsize - 1; j + +)

if (lis2[3] > lisqj + 11)
temp = fistlj]; kitb] = listlj + 11;
iistb + l] = temp; sorted = 0;

{shell sort} .
for (gap = nf2;g.v > 9; wp = gap/2)

forf(i yy;.* < n; I + +)
or --I -gap;3 >=o a&

f4.d > 4.i + SaPI; j = 3 - gap)
temp = ZJ~]; vb] = vb + gap];
w[i + gap] = temp;

{bubble sort operates as a type of selection sort)
for(i=n;i>O;i--)

for(j=2;j>=i;j++)
If (4li - 11 > 4liJ)

t = 4b - 11;
ab - 11 = ab]; 4b] = t;

Figure 1: Part of a sample program concatenating
three different sort procedures.

no&mm
kmwlad~

I I Expand

Table 1: Program - Discovered substructures.

Djoko 79

From: Proc. of the 1st Int'l . Conference on Knowledge Discovery and Data Mining. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

0.6 r --

1 \ i
o r,,,,],,,~I.,,,I,,,,i.,~,a, 4.1

-0.5 0 05 1 1.5 2 2.5
Deviation

Figure 3: Deviation versus compression.

0
-0.5 0 0 5 1 15 2 2.5

Deviation

Figure 4: Deviation versus number of nodes expanded.

cnh&rarrtnre.z it c.vna~ne-L th, m,wt nrlmhm nf nnrlan YU”““‘..‘“U’VV) A” CILyULIxaU “nab l,l”U” IIUIII”\rl “L AIVUbU.

Because case a and b discover smaller substructures as
deviation is increased, they expand lesser number of
nodes.

We again embedded an artificial substructure into
a larger graphs of varying sizes. Each of the graphs
varies in the size, as well as the amount of the input
graph covered by the embedded substructure. For each
coverage value, we test the same four cases. The effect
of the varying coverage values are measured against the
average number of embedded instances found (Figure
5). As the coverage is increased, cases c and d find
an increasing number of embedded instances. Case b
finds only slightly increasing number of instances. On
the other hand, case a does not find any instances.

Conclusions
SUBDUE is a system devised for experimenting with
automated discovery by using domain knowledge. This
approach requires that the domain knowledge be as
generic as possible and can be reused over a class of
similar applications.

0 0.2 04 0.6 0.8 1
Coverage

Figure 5: Coverage versus number of instances found.

This paper describes a method for integrating do-
main independent and domain dependent substructure
discovery based on the minimum description length
principle. This method is generally applicable to
many structural databases, such as computer aided de-
sign (CAD) circuit data, computer programs, chemical
compound data, etc. This integration improves SUB-
DUE’S ability to both compress an input graph and
discover substructures relevant to the domain of study.
The result also shows that the time complexity of the
discovery process depends on the amount of domain
knowledge used and the size of the substructure found.

Since many rules about a domain are incomplete,
and uncertainty can arise because of incompleteness
and incorrectness in the domain expert’s understand-
ing of the properties of the environment, the inclusion
nf IlnFmtll;?l Lnnwl&a,-l,Tn &ll h* ~ll.Ol.‘arl “I Ul*L.r&YUn.I RIl”..../a6b 1.111 “x2 yurcJuucA4.

References
Bruton, L. T. 1980. RC-active circuits theory and
design. Prentice Hall.
Holder, L. B.; Cook, D. J.; and Djoko, S. 1994. Sub-
structure discovery in the subdue system. In Proceed-
tngs of Knowledge Discovery rn Databases Wokshop
(KDD-9), 169-180.
Quinlan, J. R., and Rivest, R. L. 1989. Inferring
decision trees using the minimum description length
principie. injormaiion and Compuiaiion 802227-248.

80 KDD-95

From: Proc. of the 1st Int'l . Conference on Knowledge Discovery and Data Mining. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

