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Abstract 
Fraud and uncollectible debt are multi-billion dollar 
problems in the telecommunications industry. Because it is 
difficult to know which accounts will go bad, we are faced 
with the difficult knowledge-discovery task of 
characterizing a rare binary outcome using large amounts of 
noisy, high-dimensional data. Binary characterizatioos may 
be of interest but will not be especially useful in this 
domain. Instead, proposing an action requires an estimate 
of the probability that a customer or a call is uncollectible. 
This paper addresses the discovery of predictive knowledge 
bearing on fraud and uncollectible debt using a supervised 
machine leamiog method that constructs Bayesiao network 
models. The new method is able to predict rare event 
outcomes and cope with the quirks and copious amounts of 
input data. The Bay&an network models it produces serve 
as ao input module to a normative decision-support system 
and suggest ways to reinforce or redirect existing efforts in 
the problem area. We compare the performance of several 
conditionally independent models with the conditionally 
dependent models discovered by the new learning system 
using real-world datasets of 4-6 million records and 603 
800 million bytes. 

I. Introduction 
Every year, the telecommunications industry incurs 
several billion dollars in uncollectible debt. Despite the 
fact that collectible revenues are considerably higher 
(more than 100 billion dolIars annually), controlling 
uncollectibles is an important problem in the industry. 

If an oracle unerringly identified customers who would 
not pay their bills or phone calls for which we could not 
coiiect, policy making wouid be simpie. instead, we can 
never really be certain about a customer or a call. That is 
not to say though that we must be entirely uninformed. To 
support policy making that reduces the level of 
uncollectible debt, we need only provide an estimate of 
this probability of uncollectible debt. In fact, unqualified 
black and white assessments will not be particularly 
useful. Instead, a probability model could and should be 
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Pzawa, 19931. That way a variety of actions might he 
considered, ranging from inaction to call disconnect in the 
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most extreme cases. The question to be addressed then is 
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The datasets employed here contain a mixture of call- 
detail and customer-summary information. While large 
by research standards (4-6 million records and 600-800 
million bytes) they are small by telecommunications 
industry standards. The interesting outcomes (i.e. the non- 
paying customers) are rare, comprising just 1 or 2% of the 
population. Compounding the difficulty is the reality of 
unequal misclassification costs. Non-paying customers 
that initially slip through undetected will be identified 
within a couple of billing cycles anyway. As bad as that 
may be, the greater potential problem is incorrectly 
classifying valuable paying customers. In today’s highly 
competitive telecommunications market, dissatisfied 
customers have a range of options to choose from; the 
corresponding revenue might well be lost forever. And 
finally, the data are described by more than thirty 
variables, some discrete and some continuous. Many of 
the discrete variables have large unordered outcome sets. 
The continuous variables are not normally distributed. 
And last but not least, missing values are all too common. 

Some learning methods simply cannot hope to process 
this much data in a timely manner because they must 
process it many times over before converging to a soiution 
[Baldi and Chauvin, 19911. Efficient decision tree 
learners that use recursive partitioning [Quinlan, 19931 
often have diificulty with discrete variables that have large 
unordered outcome sets, such as telephone exchange or 
city name. In addition, their pruning mechanisms are 
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too often returning a single node tied to the majority class 
instead of a meaningful tree structure. Even though we 
enriched our datasets by selecting a subpopulation more 
likely to be uncollectible, now 9 to 12% instead of 1 to 
2%, these systems still have difficulties characterizing the 
minority class. Lastly, decision tree learners offer little 
support for problem domains with unequal 
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considered misclassification costs that vary from example 
to example the way they do in this problem.) At the 
moment, appropriate treatment of unequal 
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misclassification costs is an open research area [Catlett, 
1995, Pazzani et al, 19941. All of this is merely to suggest 
the kinds of difficulties this data poses to learning systems 
in general, whether they are regression systems, nearest- 
neighbor systems, neural networks, etc. 

This paper presents the Advanced Pattern Recognition 
and Identification (APRI) system, a Bayesian supervised 
machine-learning system. Comparisons between APRI 
and standard methods such as discriminant analysis and 
recursive tree builders can be found elsewhere [Ezawa and 
Schuermann, 19951. Instead, the large call-detail datasets 
mentioned above will be used here to compare the 
performance of several conditionally-independent 
probabilistic models to the performance of conditionally- 
dependent models constructed by APRI. 

IL The Bayesian Network Approach 
Theoretically, the Bayesian CZassQIer CFukunaga, 19901 
provides optimal classification performance. As a 
practical matter, however, its implementation is infeasible. 
Recent advances in evidence propagation algorithms 
[Shachter 1990, Lauritzen 1988, Pearl 1988, Jensen 1990, 
Ezawa 19941 and computer hardware allow us to 
approximate the ideal Bayesian classifier using Bayesian 
network models [Cheeseman 1988, Herskovits 1990, 
Cooper 1992, Buntine 1993, Langley 1994, Provau 19951. 

A. The Bayesian Network 
The classification problem can be addressed using the 
joint probability Pr{x, X} of classes or populations x and 
the variables X that describe the data. The classification 
of an observation is based on the conditional probability 
Pr{n I X}. Assessing this probability directly is often 
infeasible due to computational resource limitations. The 
conditional probability of the attributes given the classes, 
Pr{ X I z}, and the unconditional probability of the classes, 
Pr{x}, are often assessed instead by analyzing a 
preclassificd training data set. With those probabilities in 
hand, Bayes’ rule then yields the desired conditional 
probability Pr{ x I X}. 

Figure 1: A Bayesian Network Model 

Rewriting Pr{n, X} as a product distribution can shed 
light on the underlying probabilistic structure. Figure 1 
depicts a model where Pr{q X} is further factored to 
attribute level relationships, in particular 

Pr{n}xPr{X,In}xPr(X21?c}xPr{X31X2,n}x... 
In this standard graphical notation, the conditional 
probability of a variable depends only on its parents. And 
given its parents, a variable is conditionally independent 
of the other variables in the network. 

B. APRI 
The Advanced Pattern Recognition & Identification 
(APRl) system developed at AT&T Bell Labs is a 
Bayesian network-based supervised machine learning 
system that constructs graphical probability models like 
those described earlier, using the entropy-based concept of 
mutual information to perform dependency selection. It 
first selects a set of variables and then a set of 
dependencies among the selected variables using 
heuristically identified mutual information thresholds, 
We settled on this approach to reduce the training time 
wirn specuu empnasts on repeated reading of the training 
dataset. APRI is extremely efficient in this regard. In 
fact, it reads the training dataset no more than five times. 

APRI constructs graphical probability models using a 
four-step process. It takes three inputs: a database of 
training cases and two parameters Tt,f and Tf, each 
between zero and one. TpI governs variable selection, and 
TE governs selection of variable-to-variable links for the 
final model. 

APRI first scans the database to identify the outcome 
sets for each variable. For continuous variables it either 
estimates the kernel density or uses information-based 
discretization. If the class variable is continuous in the 
latter case, APRI fust defines the class outcomes either by 
discretization or kernel density estimation. 

In the second step, APRI chooses the variables for the 
final model. It computes the mutual information between 
the class node and each variable, then ranks the variables 
accordingly. Without loss of generality, let the indices 
from 1 to K reflect the ranking, so that I(n; X1) 2 I@; X2) 
2 I@; X3) and so on. APRI selects the smallest number of 
variables J out of the entire pool of K variables, such that 

iI(n;Xi) 2 Tpf &(rc;Xi) 
i=l 

In other words, the parameter Tpf establishes a mutual 
information threshold for choosing relevant variables. A 
value of 1 indicates that all the variables should be 
incorporated in the model. Lesser values indicate that less 
informative variables should be excluded. In the final 
graphical model, the class node becomes the parent of 
each of the selected variables. 
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The third step is akin to the second one, save that it 
identifies relationships between variables. In particular, it 
computes the conditional mutual information 1(X1; XJ I 7~) 
between pairs of the J previously identified variables, 
where i#j. These candidate links are rank ordered. 
The highest ranked are then selected until the cumulative 
value is just Ttr times the total conditional mutual 
information. Diiectionality of these links is based on the 
mutual information variable ranking determined in the 
second step. 

In the fourth and final step, APRI computes Pr{rc} and 
Pr{Xj I C(x j} where C(Xj) represents the parents of Xi, 
including the class node II. 

Reading the dataset from secondary storage is a key 
element missing from analyses that assume data are stored 
in fast random-access memory [Herskovits 1990, Cooper 
1992, Quinlan 1993, Provan 19951. For problem domains 
lie ours, the luxury of sufficient random-access memory 
is unlikely to be available in the near term. APRI is quite 
efficient in this regard, reading the database just four or 
five times: once in the first step for discrete classes or 
h.4r.b A... nrm+:.w.c...” ,.l.,nonn +l.arr ,...,.a :n ,.,.A. ,.F l l.,. *I...,, 
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remaining steps. 

C. Alternative Methods 
A number of other authors have developed algorithms that 
search for graphical models by computing joint 
probabilities P{B,,D}, where B, is a Bayesian network 
structure and D a dataset [Hcrskovits 1990, Cooper 1992, 
Heckerman 1994, Provan 19951. This kind of approach 
was not taken here, because it is impractical for 
applications with massive datasets. 

Creation of the data structures that support these 
programs could be a problem. In K2 the supporting data 
structure is the index tree [Cooper, 1992, pp. 316-3171. 
Just two variables with 1,000 or more outcomes (e.g., 
originating and terminating cities) could yield an index 
tree with l,OOO,OOO cells or more. If even a few more 
variables with small outcome sets are brought together as 
the parents of the same node, constructing and storing the 
index tree would be infeasible in typical computing 
environments. K2’s search exacerbates this difficulty by 
considering all possible links at each step, eliminating no 
attributes from consideration and making no distinctions 
based on the size of outcome sets. 

Even if these programs succeed in creating and storing 
their support structures, they face another run-time 
problem. If a dataset is too large to hold in memory, they 
must read it at least once for each arc in the final 
graphical model. For K2, it appears that the dataset 
would have to be read O(n(u+l)) times to create a model, 
where n is a number of nodes and u the maximum number 
of parents per node. With 33 variables and allowing 2 

parents per node, K2 might need to read the dataset 99 
times. If the training data consists of several million 
records and perhaps hundreds of millions of bytes of data, 
as in the application described here, reading and re- 
reading the data will become the liiiting factor. APRI 
reads the dataset just four or five times during model 
creation, for any n and u. 

Still other authors have investigated the possibility of 
very simple probabilistic models mgley and Sage, 
19941. The naive Bayesian classifier estimates probabil- 
ities using a fully independent model incorporating all the 
given variables. That is: 
Pr{n,X} = Pr(Xl7r) x Pr(7c) 

= Pr{X,In}xPr{X,I~}x...xPr{X,I~}xPr{n} 
Recognizing that certain variables might be irrelevant 

or even damaging to the classification, Langley and Sage 
also implement a selective Bayesian classifier that 
assumes independence but uses a forward search to 
develop a limited variable set and uses an error metric as a 
stopping criterion. In their experiments, the selective 
classifier is never significantly worse than the full 
~fi&nf=mdtwt nrrive rlaccifkr and ic nftm cionifironh~r r-------” ..-.- .,-u”“Y-“*( ..a... .” “IS”L. “X‘y.IL’“un.U, 

better. 
Conditionally independent models are easier to create 

and require much less storage than conditionally 
dependent models. Of course, if the variables are in fact 
conditionally dependent in important ways, the accuracy 
of independent Bayesiau classifiers will suffer. 
Conditionally dependent models with many interrelated 
attributes tend to require more time to create and more 
space to store. And of course, additional dependencies 
require additional data if the learned model is to be robust. 

III. Predicting Uncollectible Debt 
Four different models are compared in this section. The 
dependent models were constructed with APRI, using a 
95% cumulative entropy threshold for attribute selection 
and a 25% or 45% cumulative entropy threshold for 
dependency selection <Tpf and TE respectively). A fully 
independent model was also constructed (a naive Bayesian 
classifier), as was an independent model limited to the 
attributes selected by APRI (analogous to the selective 
Bayesian classifier). Because the probability models do 
not themselves output a binary classification, an 
uncollectible probability threshold is needed to perform 
classification. In one set of experiments the uncollectible 
probability threshold is 50%. a standard value. It was set 
at a more conservative 70% level in a separate 
experiment. 

The training dataset consists of 4,014,721 records 
described by 33 attributes. The size of the dataset is 585 
million bytes. The attributes are a mixture of call-detail 
information and customer-summary information. The 
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baseline probability of a call going bad is 9.90%. Training 
the conditionally dependent model with APRI took about 4 
hours on a SUN Spare 20 workstation. 

For a practical application, we need to train the model 
on data from a particular period and test it on data from a 
subsequent period. This means that out-of-sample 
prediction is not with a typical hold-out sample of the 
same period but a full set from a subsequent period. 
Testing models this way is more demanding but also more 
realistic. The testing dataset used here is indeed from a 
later period. It contains 5,351,834 records (773 million 
bytes) and has an 11.88% unconditional probability of a 
call going bad. 

Table 1 shows the results of applying the learned 
models to this separate dataset taken from a subsequent 
period. The numbers in square brackets indicate the total 
number of calls for that cell. Because of the nature of the 
marketplace, incorrectly classified collectible calls must be 
minimized at the same time that the number of correctly 
classified uncollectible calls is maximized. This suggests 
examining the volume ratio in the fourth column, a 
quantity that should ideally be minimized. One further 
point is worth noting. Because of the nature of the 
business, learned classitlers will never have an impact 
operationally unless they correctly classify a high enough 
percentage of uncollectible calls; otherwise it would be 
better to do nothing. Some classifiers with appealing 
volume ratios would not meet this requirement. 

Table 1: Out-of-Sample Evaluation 

Model Type ICC ecu VR 
Full Ind. 14.01 % 35.06 % 

( 2 50% *) W.WW [222,874] 2.97 : 1 
Full Ind. 7.95 % 22.94 % 
( 2 70%) [374,969] [ 145.7991 2.57 : 1 

Limited Ind. 4.32 % 14.73 % 
( 2 50%) [203,601] P3,6001 2.18: 1 

Limited Ind. 1.48 % 5.92 % 
( 2 70%) [69,752] [37,635] 1.85 : 1 

APRIff25 6.87% 29.53 % 
( 2 50%) [323,851] [ 187,678] 1.7:1 

APRLff25 2.92 % 17.56 % 
( 2 70%) [ 137,943] [11Mw 1.21 

APRIff45 6.57% 31.86 % 
( 2 50%) [309,7841 [202,500-l 1.5:l 

APPIff45 2.85 % 21.10% 
I> 7(jqo T,‘)” ‘)c\c, r,‘)* ,‘),I L13-+,JUJJ L13+,1JlJ 1.6:1 

CC: Incorrect Classification of Collectible Calls 
CCU: Correct Classification of Uncollectible Calls 
VR: Volume Patio -- ICC vs. CCU 
*: Uncollectible-Call Probability Threshold 

APRI’s dependent models do a good job at out-of- 
sample prediction. At the 50% prediction level, ie. when 
classifying a call as uncollectible requires the predicted 
probability to be more than 50%, the model identifies 
about 30% of all uncollectible calls and they missclassify 
about 6-7% of collectible calls. If we raise the predicted 
probability threshold to a more conservative 70%, the ratio 
of false positives to true positives improves even more (VP 
Column). Being more conservative means that we let a 
few bad calls slip through, but gain by falsely identifying 
as uncollectible far fewer calls that are in fact collectible. 
Neither of the independent models does as well. At any 
rate, this table suggests that a more conservative threshold 
may indeed be appropriate for our application. 

Accuracy and False Positive Comnarison (%) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
I Jncollectible Probabilitv Threshold 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Uncollectible Probability Threshold 

21 

Figure 2: Accuracy & Call Volume vs. the Uncollectible 
Probability Threshold 
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uncollectible probability threshold in the range of 10% to 
90% affects the proportion of correctly classified calls 
(collectible & uncollectible), correctly classified 
uncollectible calls, and falsely classified collectible calls. 
(It was generated using APRI with a 45% field-to-field 
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cumulative entropy threshold.) The higher the 
uncollectible probability threshold, the more conservative 
we are about classification. Fewer good calls are falsely 
classified, but at the expense of correctly identifyiig fewer 
bad calls. 

If one were to focus only on the top half of Figure 2 
(Accuracy and False Positive Comparison), one might 
accept a lower, more aggressive uncollectible probability 
threshold since throughout the graph, the percentage of 
correctly classified uncollectible calls (the true positives) 
is larger than the percentage of incorrectly classified 
collectible calls (here, the false positives). However, 
because of the disparity in class proportions, looking at the 
classification percentages is insufficient. The better thing 
to do is to examine call volumes as the predicted 
probability threshold increases. 

The bottom half of Figure 2 also shows how the 
corresponding call volumes change in response to changes 
in the uncollectible probability threshold. (The vertical 
axis is in a log scale.) This Figure shows that a more 
conservative approach is indeed warranted. Only at a 
threshold of around 70% does the volume of true positives 
exceed the volume of false positives. 

IV. Discussion and Summary 
This paper has presented a method for learning Bayesian 
network models from extremely large datasets. In such 
cases, the processing bottleneck is likely to be repeatedly 
reading the training dataset from secondary storage. 
APRI reads the dataset a constant number of times, not a 
number of times linear in the size of the final network. It 
does this by thresholding mutual information to select 
attributes and dependencies. While this certainly is a 
coarse heuristic, there is reason to believe it’s on the right 
track. In particular, when APFU’s heuristic was used to 
select the variables in the liited independent model, out- 
of-sample performance improved over the full 
independent model in every instance, as measured by the 
volume ratio. 

Overfitting of the learned model to the training data is a 
potential problem for all inductive learners. In Bayesian 
network models this problem can manifest itself in 
probabilities 0 and 1. In APRI the avoidance of 
probability 1 in the classification process provides 
protection against over-fitting. This feature allows us to 
separate the impact of model complexity from overfitting. 
n-2- - ..I^^“:c--r:^^ * nnT ^:--L. ^I-:xl ^ ..^..z^L,^ . ..l..,.l. 
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causes a classification probability to be one, just as if it 
was a missing value. Note that the effect of this “pruning” 
step is not explicitly observable on the network itself, but 
is implicit in the evaluation of probabilities. 

One of the interesting features of predicting 
uncollectible debt is the requirement of genuine out-of- 

sample testing datasets from separate time periods. Such 
testing is essential because of the inevitable lag between 
model creation and model deployment. Of course, there is 
the risk that fraud or uncollectible patterns will change in 
the interim. Seasonal variations could even interfere. 
Given enough data, these effects might be modeled. In 
addition, active network policies could also change 
observed patterns of activity, although there is probably 
less hope of modeling the effects of untried policies. 
Despite these potential pitfalls, subsequent-period out-of- 
sample prediction will remain the real litmus test for this 
application. 

Lastly, it has become popular in the recent literature to 
invoke a gold standard network in the testing and 
evaluation of learning methods [Chickering, 19951. At 
this stage of our research a gold standard is unavailable 
and probably inappropriate, because an inevitable side- 
effect of active policies is a change in the patterns of 
activity related to uncollectible debt. The reason is that 
the fraud and uncollectible debt problem environment is 
not static, but dynamic. Whether policies are influenced 
by APRI or not, today’s policies directly impact 
tomorrow’s uncollectible environment. The better the 
uncollectible debt model, the faster its obsolescence. 
Success in detecting and treating the uncollectible 
accounts or calls, in part, changes the character of future 
uncollectible accounts and calls. The uncollectible 
problem simply evolves into a different shape and adjusts 
to the new environment. We will not find a gold standard 
Bayesian network structure; it changes from moment to 
moment. Instead, we choose to emphasize the ability to 
create good models in reasonable amounts of time using 
very large datasets. 

We have demonstrated the performance of APM, a 
Bayesian network learning system, on a problem with a 
rare binary outcome, mixed data types, and extremely 
large datasets. The need for a probabilistic assessment 
and the abundance of data limit the set of learning 
algorithms we can consider. When compared to several 
conditionally independent probability models, the 
conditionally dependent models created by APRl do quite 
well. 

Acknowledgments 
We are grateful to Til Schuermann and to the referees 

for their careful readings and constructive comments. 

References 
Baldi, P., and Chauvin, Y., 1991, “Temporal Evolution of 
Generalization During Learning in Linear Networks,” 
Neural Computation, 3, pp. 589403. 

104 KDD-95 



Buntine, W.L. and Smyth, P., 1993, “Learning from Data: 
A Probabiliitic Framework,” Tutorial Program, Ninth 
Conference on Uncertainty in Artificial Intelligence. 

Catlett, J., 1995, “Tailoring Rulesets to Misclassification 
Costs”, Preliminary Papers of the Fifth International 
Workshop on Artificial Intelligence and Statistics. 

Cheeseman, P., Kelly, J., Self, M., Stutz., J., Taylor, W., 
and Freeman, D., 1988, “AUTGCLASS: A Bayesian 
Classification System,” Proceedings of the Fi@h 
International Conference on Machine Learning pp. 54-64, 
Morgan Kaufmann. 

Chickering, D.M., Geiger, D., and Heckerman, D., 1995, 
“Learning Bayesian Networks: Search Methods and 
Experimental Results”, Preliminary Papers of the Fifth 
International Workshop on Artificial Intelligence and 
statistics. 

Cooper, G.F. and Herskovits, E., 1992, “A Bayesian 
Method for the Induction of Probabilistic Networks from 
Data”, Machine Learning, 9, pp. 309-347. 

Ezawa, K.J., 1993, “‘A Normative Decision Support 
System”, Third International Conference on Artificial 
Intelligence in Economics and Management. 

Ezawa, K.J., 1994, “Value of Evidence on Influence 
Diagrams”, Proceedings of the Tenth Conference on 
Uncertainty in Artificial Intelligence, pp. 212-220, 
Morgan Kaufmann. 

Ezawa, K.J., and Schuermann, T., 1995, 
“Fraud/Uncollectible Debt Detection Using a Bayesian 
Network Based Learning System: A Rare Binary Outcome 
with Mixed Data Structures,” forthcoming in the Eleventh 
Conference on Uncertainty in Artificial Intelligence. 

Fukunaga, K., 1990, Zntroduction to Statistical Pattern 
Recognition, Academic Press. 

Heckerman, D.E., Geiger, D., and Chickering D.M., 1994, 
“Learning Bayesian Networks: The Combination of 
Knowledge and Statistical Data,” Proceedings of the 
Tenth Conference on Uncertainty in Artificial 
Intelligence, Morgan Kaufmann, pp. 293- 301. 

Herskovits, E.H., and Cooper, G.F., 1990, “Kutato: An 
entropy-driven system for the construction of probabilistic 
expert systems from databases”, Proceedings of the 
Conference on Uncertainty in Arti$icial Intelligence, pp. 
54 - 62. 

Jensen, V., Olesen K. G., and Anderson S. K., 1990, “An 
Algebra of Bayesian Universes for Knowledge-Based 
Systems,” Network-s, 20, pp. 637-659. 

Langley, P. and Sage, S., 1994, “Induction of Selective 
Bayesian Classifiers,” Proceedings of the Tenth 
Conference on Uncertainty in Artificial Intelligence, pp. 
399-406, Morgan Kaufmann. 

Lauritzen, S.L., and Spiegelhalter, D.J., 1988, “Local 
Computations with Probabilities on Graphical Structures 
and their Application to Expert Systems,” .I. R. Statistics 
Society, B, 50, No. 2, pp. 157-224. 

Pazzani, M., C. Merz, P. Murphy, K. ali, T. Hume and C. 
Brunk, 1994, “‘Reducing Misclassification Costs”, in 
Proceedings of the International Conference on Machine 
Learning, pp. 217-225, Morgan Kaulinann 

Pearl, J., 1988, Probabilistic Reasoning in Intelligent 
Systems, Morgan Kautinamr. 

Provan, G.M., and Singh, M., 1995, “Learning Bayesian 
Networks Using Feature Selection,” Preliiinary Papers of 
International Workshop on Artificial Intelligence and 
Statistics, pp. 450 - 456. 

Quinlan, J. R., 1993, C4.5: Programs for Machine 
Learning, Morgan Kaufmann. 

Shachter, R. D., 1990, “Evidence Absorption and 
Propagation through Evidence Reversals”, Uncertainty in 
Artificial Intelligence, Vol. 5, pp. 173-190, North- 
Holland. 

Ezawa 105 


