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A framework for knowledge-based scientific 
discovery in geological databases has been de- 
veloped. The discovery process consists of two 
main steps: context definition and equation 
derivation. Context definition properly defines 
and formulates homogeneous regions, each of 
which is likely to produce a unique and mean- 
ingful analytic formula for the goal variable. 
Clustering techniques and a suite of visualiza- 
tion and interpretation routines make up a tool 
box that assists the context, definition task. T-v.., . W itnin each context, multi-variable regression 
analysis is conducted to derive analytic equa- 
tions between the goal variable and a set of rel- 
evant independent variables, starting with one 
or more of the initial base models. Domain 
knowledge, plus a heuristic search technique 
called component plus residual plots dynam- 
ically guide the equation refinement process. 
The methodology has been applied to derive 
porosity equations for data collected from oil 
fields in the Alaska Basin. Preliminary results 
demonstrate the effectiveness of this method- 
ology. 
Keywords: 
knowledge discovery from databases, scientific 
discovery, clustering, regression analysis, com- 
ponent plus residual plots 

1 Introduction 
Like a number of other domains, database mining is be- 
coming crucial in oil exploration and production. It is 
common knowledge in the oil industry that the typical 
cost of drilling a new offshore well is in the range of $30- 
40 million, but the chance of that site being an economic 
success is i in IO. Recent advances in drilling technol- 
ogy and data collection methods have led to oil com- 
panies and their ancillaries collecting large amounts of 
geophysical/geological data from production wells and 
exploration sites, and then organizing them into large 
databases. Can this vast amount of history from previ- 
ously explored fields be systematically utilized to evaluate 
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try has developed methodologies for finding fields and 
wells that are, in some sense, similar to a new prospect, 
and used the information in an ad hoc way to rank a 
set of new prospects[Allen and Allen, 19901. 

Recent developments in database mining[Fayyad and 
Uthurusamy, 19941 and the advances in computer-based 
scientific discovery[Zytkow and Zembowicz, 19931 natu- 
rally lead to the following question “can we derive more 
precise analytic relations between observed phenomena 
and parameters to make better quantitative estimates 
of oil and gas reserves P” In qualitative terms, good 
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are trapped by highly porous sediments reservoir poros- 
k ity), and surrounded by hard bulk rot s that prevent 

the hydrocarbon from leaking away. A large volume of 
porous sediments is crucial to finding good recoverable 
reserves, therefore, a primary task in determining hy- 
drocarbon potential is to develop reliable and accurate 
methods for estimation of sediment porosities from the 
collected data. 

Determination of the porosity or pore volume of a 
prospect depends upon multiple geological phenomena 
in a region. Some of the information, such as pore 
geometries? grain size, packing, and sorting, is macro- 
scopic, and some, such as rock types, formation, depo- 
sitional setting, stratigraphic zones, and unconformities 
(compaction, deformation, and cementation) is macro- 
scopzc. These phenomena are attributed to millions of 
years of geophysical and geochemical evolution, and, 
therefore, hard to formalize and quantify. On the other 
hand, large amounts of geological data that directly in- 
fluence hydrocarbon volume, such as porosity and per- 
meability measurements, grain character, lithologies, 
formations and geometry are available from previously 
explored regions. 

This paper develops a knowledge-based scientific dis- 
covery approach to derive analytic formulae for poros- 
ity as a function of relevant geological phenomena. The 
general rule of thumb is that porosity decreases quasi- 
exponentially with depth: 

porosity = K . e-F(xl,mz,...,x,),Depth. (1) 
But a number of other factors, such as rock types, struc- 
ture, and cementation, appearing as the parameters of 
function F in equation 1, confound this relationship. 
This necessitates the definition of proper contexts in 
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which to attempt discovery of porosity formulae. In 
data analysis we have been conducting for geological 
experts, the feature “depth” is intentionally removed, 
so that other geological characteristics that affect hy- 
drocarbon potential can be studied in some detail. Our 
goal is to derive the subset ~1, ~2, . . . . zm from a larger 
set of geological features, and the functional relationship 
F that best defines the porosity function in a region. 

Real exploration data collected from a region in the 
Alaska basin is analyzed using the methodology devel- 
oped. The data is labeled by code numbers (the lo- 
cation or wells from which they were extracted) and 
stratigraphic unit numbers. Stratigraphic unit num- 
bers describe sediment depositional sequences. These 
sequences are affected by subsidence, erosion, and com- 
paction which mold them into characteristic geometries. 
The data is extracted from the database as a flat file 
of objects; each object is described in terms of 37 ge- 
ological features, such as porosity, permeability, grain 
size, density, and sorting, amount of different mineral 
fragments (e.g., quartz, chert, feldspar) present, nature 
of the rock fragments, pore characteristics, and cemen- 
tation. All these feature-values are numeric measure- 
ments made on samples obtained from well-logs during 
exploratory drilling processes. 

Note that this is real data collected during real op- 
erations, therefore, we have almost no control on the 
nature and organization of data. By this we mean 
that there is no way in which variable values can be 
made to go up/down in fixed increments, and it is not 
possible to hold values of certain parameters constant, 
while others are varied. Techniques used in systems 
like BACON[Langley et al., 1983; Langley and Zytkow, 
19891, FAHRENHEIT[Langley and Zytkow, 19891, and 
ABACUS[Greene, 19881 cannot be directly applied to 
organize the search for relations among groups of vari- 
ables in this system. On the other hand, we have access 
to human experts who have partial knowledge about the 
relations between parameters. Therefore, the methodol- 
ogy we have developed is tailored to exploit this partial 
knowledge and focus the search of a systematic discov- 
ery method to derive analytic relations for porosity in 
terms of observed geological parameters. 

The framework for our knowledge-based discovery 
scheme is illustrated in Fig. 1. The first step in the 
discovery process, retrieval and preprocessing of data is 
not discussed in this paper. The next two steps: (i) 
clustering of the data into groups and interpreting the 
meaning of the clusters generated to define contexts, 
and ii) equation discovery in each of these contexts, 

6 are t e primary topics discussed in this paper. The 
next section reviews current work in this area. 

2 Background 
As discussed, early discovery systems like BACON[Lan- 
giey and Zytkow, i989], FAHRENHEIT~Langley and 
Zytkow, 19891, IDS[Langley and Zytkow, 19891, and 
COPER[Kokar, 19981, were designed to work in highly 
repeatable domains with well defined physical laws. For 
example, BACON assumed that the data required to 
derive equations could be acquired sequentially (say, 
by performing experiments) so that relations between 
pairs of variables could be examined while holding the 

other variables constant. Using systematic search pro- 
cesses, introducing ratio and product terms, and con- 
sidering intrinsic properties, BACON correctly formu- 
lated equations involving varying degrees of polynomi- 
als. FAHRENHEIT augmented BACON’s abilities to 
find and associate with each derived equation upper 
and lower boundary values. IDS employed Qualita- 
tive Process Theory (QPT)-like[Forbus, 19841 qualita- 
tive schema to embed numeric equations in a qualitative 
framework and thus constrain the search space. The 
qualitative framework makes it easier to understand the 
laws in context. Using dimension analysis[Bhaskar and 
Nigam, 19901, COPER eliminated irrelevant arguments 
and generated additional relevant argument descriptors 
in deriving functional formulae. 

More recent systems like 49er[Zytkow and Zembow- 
icz, 19931 and KEDS[Rao and Lu, 19921, are designed 
to work with real world data which, in addition to be- 
ing fuzzy and noisy, is frequently associated with more 
than one context. It becomes important for the system 
to group data by context before attempting equation 
discovery. In such situations, discovery is characterized 
by a two-step process: preliminary search for contexts, 
followed by equation generation and model refinement. 

In the preliminary search step, 49er organizes the 
data into contingency tables and performs slicing and 
projection operations to get the data into a form where 
strong regularity or functional relations can be detected. 
Subsets of data defined by slicing and projection define 
individual context, and the equation discovery process 
is applied separately to each context. In the KEDS 
system, the preliminary search step involves partition- 
ing by model matching. The expected relations are ex- 
pressed as polynomial equation templates. The search 
process uses sets of data points to compute the coef- 
ficient values of chosen templates, and then determine 
the probability of fit for each data point to the equa- 
tion. This is used to define contiguous homogeneous 
regions, and each region forms a context in the domain 
of interest. 

In the model refinement step, 49er invokes “Equation 
Finder”[Zembowicz and Zytkow, 19921 to uncover ana- 
lytic relations between the goal variable and the control 
variable. Additional relations between the two vari- 
ables can be explored by considering transformations 
like log(z) and.?, iteratively for the goal and control 
variables, enablmg the derivation of complex, non lin- 
ear forms. For the KEDS system, the matched equation 
templates are further refined by multi-variable regres- 
sion analysis within each context to accurately estimate 
the polynomial coefficients. 

A preliminary analysis of geological processes makes 
it clear that the empirical equations for porosity of sed- 
imentary structures in a region are very dependent on 
the context, which can be expressed in terms of geo- 
iogicai phenomena, such as geometry, iithoiogy, com- 
paction, and subsidence, associated with a region. It 
is also well known that the geological context changes 
from basin to basin(different geographical areas in 
the world) and also from region to region within a 
basin[Allen and Allen: 1990; Biswas et al., 19951. Fur- 
thermore, the underlymg features of contexts may vary 
greatly. Simple model matching techniques, which work 
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Figure i: Knowledge-based ScienGAc Discovery System Architecture 

in engineering domains where behavior is constrained by 
man-made systems and well-established laws of physics, 
may not apply in the hydrocarbon exploration domain. 
To address this, we use an unsupervised numeric clus- 
tering scheme, like the ABACUS system[Greene, 19881, 
to derive gross structural properties of the data., and 
map them onto relevant contexts for equation dlscov- 
ery. 

3 Our Approach 
Our approach to scientific discovery adapts the two-step 
methodology described in figure 2. It is assumed that 
each context is best defined by a unique porosity equa- 
tion. 

3.1 Context Definition 
The context definition step identifies a set of contexts 
C = (Cl, G, . . . ..qn). where each Ci is defined as a 
sequence of primitive geological structures. Primitive 
structures are identified using unsupervised clustering 
techniques. In previous work[Biswas et al., 19951, the 
clustering task is defined as a three-step methodology: 
(i) feature selection, (ii) clustering, and (iii) interpre- 
tation. Feature selection deals with selection of object 
characteristics that are relevant to the study being con- 
ducted. in our experiments, this task has been primar- 
ily handled by domain experts, assisted by our visual- 
ization and interpretation tools. 

The goal of clustering is to partition the data into 
groups such that objects in each group are more sim- 
ilar to each other than objects in different groups. In 
our data set, all feature-values are numeric, so we use a 
standard numeric partitional clustering program called 
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1. Context Definition 
1.1 discover prtmita’ve structures (gl, 92, . . . . gpra) by 

clustering, 
1.2 define co&e&in terms of the relevant sequences of 

primitive structures, i.e., C, = grl 0 g,20, . . . . og,k, 
1.3 group data according to the context definition to 

form honaogeneovs data groups, 
1.4 for each relevant data group, determine the set of 

relevant variables (x1, x2, . . . . xk) for porosity. 
2. Equation Derivation 

2.1 select possible base models using domain theory, 
2.2 use the least squares method to generate coeffi- 

cient values for each base model, 
2.3 use the componentplus residualplot (cprp) heuris- 

tic to dynamically modify the equation model to 
better fit the data, 

2.4 construct a set of dimensionless terms a = 

1 
XI, 7r2, . . ..7rk) from the relevant set of features 
Bhaskar and Nigam, 19901. 

Figure 2: Description of the Knowledge-based 
Scientific Discovery Process 



CLUSTER[Jain and Dubes, 19881 as the clustering tool. 
CLUSTER assumes each object to be a point in a mul- 
tidimensional metric space, and uses the Euclidean dis- 
tance as a measure of (dis)similarity between objects. 
Its criterion function is based on minimizing the mean 
square-error within each cluster. 

The goal of interpretation is to determine whether 
the generated groups represent useful concepts in the 
problem solving domain. In more detail, this is often 
performed by looking at the intentional definition of a 
class, i.e., the feature-value descriptions that charac- 
terize this class, and see if they can be explained by 
domain background knowledge (or by domain experts). 
For example, in these studies, our experts focused on the 
sediment characteristics to assign meaning to groups, a 
group characterized by high clay and siderite content 
but low in quartz was considered relevant and was con- 
sistent with a low porosity region. Experts often iter- 
ated through different feature subsets and changed fea- 
ture descriptions to obtain meaningful and acceptable 
groupings. 

A number of graphical and statistical tools have been 
developed to facilitate the interpretation task. For ex- 
ample, utilities help to cross-tabulate different cluster- 
ing runs to study the similarities and differences be- 
tween the groupings formed. Statistical tools identify 
feature value peaks in individual classes to help identify 
relevant features. Graphical plot routines also assist in 
performing this task visually. 

The net result of this process is the identification 
of a set of homogeneous primitive geological structures 
(Sl, 92, ".I gfia). These primitives are then mapped onto 
the unit code versus stratigranhic unit man. Fin. 3 de- 
picts a partial mapping for-a skt of wells and fou; prim- 
itive structures. 

The next step in the discovery process identifies sec- 
tions of wells regions that are made up of the same 
sequence of geological primitives. Every such sequence 
defines a context Ci. Some criterion employed in identi- 
fying sequences: longer sequences are more useful than 
shorter ones, and sequences that occur more frequently 
are more useful than those that occur infrequently. Cur- 
rently, the sequence selection job is done by hand, but 
in future work, tools, such as mechanisms for learn- 
ing context-free grammars from string sequences, will 
be employed to assist experts in generating useful se- 
quences . The reason for considering more frequently 
occurring sequences is that they are more likely to pro- 
duce generally applicable porosity equations. From the 
partial mappingof Fig. 3, the context Ci = g2ogiog2ogs 
was identified in two well regions (the 300 and 600 se- 
ries). After the contexts are defined, data points be- 
longing to each context are grouped together to initiate 
equation derivation. 

3.2 Equation Derivation 
The methodoiogy used for deriving equations that de- 
scribe the goal variable as a function of the relevant in- 
dependent variables, i.e., y = f(~i, ~2, . . . . zk), is multi- 
variable regression analysis[Sen and Srivastava, 19901. 
Theoretically, the number of possible functional rela- 
tionships that may exist among any set of variables 
are infinite. It would be computationally intractable 
to derive models for a given data set without constrain- 
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Figure 3: Area Code versus Stratigraphic Unit 
Map for Part of the Studied Region 

ing this search. Section 2 discussed why the simplistic 
search methods used in systems like BACON and ABA- 
CUS cannot be applied in this situation. 

In general, the search space can be cut down by re- 
ducing the number of independent variables in the equa- 
tion discovery process. This is achieved in the previ- 
ous step by recording the relevant features associated 
with each class that make up a context. Further nar- 
rowing of the search space can be achieved by employ- 
ing domain knowledge to select the approximate func- 
tional forms. This idea is exploited and it is assumed 
that pairwise functional relationships between the goal 
variable and each of the relevant independent variables 
can be derived from domain theory, or the 
vided by the domain expert interactively. i 

are pro- 
Note that 

systems like BACON and 49er assume this can be de- 
rived). For example, given that y = f(~i, 22,23), do- 
main theory may indicate that ~1 is linearly related, 22 
is quadratically related, and 23 is inverse quadratically 
related to the dependent variable y. One of the pos- 
sible base models that the system then creates is the 
model y = cc + citi + ~22: + ~3~~3~. An alternate base 
model may be y = cc + s. The standard least 3 
squares routine from the Minpackl statistical package 
is employed to derive equation coefficients. 

The obvious next step is to evaluate the base models 
in terms of fit, and refine them to obtain better fitting 
models. This may require changing the equation form 
and dynamically adjusting model parameters to better 
fit the data. A heuristic method, the component plus 
residual plots [Sen and Srivastava, 19901, is used to an- 
alyze the error (residual) term in the manner described 
below. 

First, convert a given nonlinear equation into a linear 
form. For example, the above base model would be 
transformed into g = co + clxi~ + c22i2 + c35%3 + ei, 
where x11 = xi, ~$2 = xg, and xi3 = xg2, and ei is the 
residual. The component plus residual for independent 

‘This is a free software package developed by B.S. Gar- 
bow, K.E. Hillstrom, J.J. Moore at Argonne National Labs. 
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Figure 4: Two Configurations 

variable, xirn, is defined as 
k 

cmxim + ei = yi - CO - c Cj Xij I 
j=l:j#na 

since cmxrm can be viewed as a component of $, the 
predicted values of the goal variable. Here, c,xina + 
ei is essentially yi with the linear effects of the other 
variables removed. The plots of cmxim + ei against xina 
is the compo,ne.~~ plns .re8.gnal p&?oqcprpj (Fig. 4). 

The plot is analyzed in the following manner. First, 
the set of points in the plot is partitioned into three 
groups along the xirrs value, such that each group has 
approximately the same number of points(h N n/3). 
The most “representative” point of each group is calcu- 
lated as (+, ~k’cmZam+e’)). Next, the slopes, h12 
for the line joining the &st two points and rE1s for th; 
line joining the first and the last point is calculated. 

1. If ICI2 = /cls, the data points describe a straight 
line and no transformation is needed. 

2. If kl2 < Ills, the line is convex, otherwise, the 
line is concave(see Fig. 4). In either case, the goal 
variable, y, or the independent variable, xina, needs 
to be transformed using the ladder of power trans- 
formations shown in Fig. 5. The idea is to move up 
the ladder if the three points are in a convex con- 
figuration, and move down the ladder when they 
are in a concave configuration. 

Coefficients are again derived for the new form of the 
equation, and if the residuals decrease, this new form is 
accepted and the cprp process is repeated. Otherwise, 
the original form of the equation is retained. This cycle 
continues till the slopes become equal or the line changes 
from convex to concave, or vice versa. 

4 Experiments and Results 
AR rlinr.nsnwl earlier. thin method wa.n annlid tn b && --- -_I_ -c--- -- ----‘, 1---- --_-G---- ..-- -TT -_-- d- 
set of about 2600 objects corresponding to sample mea- 
surements collected from wells is the Alaskan Basin. 
Clustering this data set produced a seven group struc- 
ture, and after the interpretation and context definition 
step, a set of 138 objects representing a context was 
picked for further analysis. The experts surmised that 
this context represents a low porosity region, and af- 
ter studying the feature value ranges, picked variables 

-l/Y2 
-l/Y 

-1/y* 
WY) 

Y3 
Y 

Y2 
Y3 
Y4 
Y5 

fi x+‘5 
If Convex X4 

Up the Ladder X3 

X2 
Q Current Position p X 

1 

If Concave h?(L) 
Down the Ladder -1/x+ 

u -l/x 

-1/x2 

-1/x3 

Figure 5: Ladder of Power Transformations 

to establish a relationship to porosity(P), the goal vari- 
able. Further the system was told that two variables, 
macroporosity and siderite are linearly related to 
porosity, and the other three, clay matrix(C), lamins 
tions(L) and glauconite(G) have an inverse non-linear 
relation to porosity. With this knowledge, three initial 
base models were set up as: 
Model 1:P = CO + clM+ CZS + c3 

c4C2+csL2+c6Ga 

Model 2:P = co+clM-t-c~S++3&~+~+ clO&ll 
Model 3:P = CO + czc~~~G~+cs 

where the cis are the parameters to be estimated by 
multi-variable regression analysis. After the parameters 
are estimated, the equations listed below were derived: 
P = 9.719 +0.43A!f + 0.033s+ 

2.3*10' 
--3.44 

P= 11.2+0.44M -O.O6S+ ,,011,,~~~~;~~102+ 
723~10~ 7.5*102 

1.9+103L2$2.49~105 - 52G+184*10z 

P = 10.0 + 1.7*105MS-7.5*103 
24.0*C2L2G2+5.8~106 

The Euclidean norm(Enorm) of the residuals for the 
three equations were 21.52, 16.06 and 23.97, respec- 
tively, indicating that model 2 was the best fit model. 
However, the high Enorms implied a poor fit, suggesting 
a change in the form of the dependent variable, using 
the left side of the ladder in Fig. 5. Just to be sure, how- 
ever, a simpler transformation, consistent with the cprp 
process was tried for model 1: transform the form of 
variable S from linear to quadratic. This only brought 
the Enorm of the residuais down siightiy from 2i.52 to 
20.47. 

The cprp plots suggested moving up the ladder, so 
y was successively transformed to y1i2 and then In(y). 
For the second transformation, the following equations 
were obtained: 
InP = 2.26 +O.O37M - O.O012S+ 

2 71106 
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group 1 group 2 group 3 group 4 
Model 2 2O.O.i 56.69 45.065 
Model 2’ 1.59 1.61 5.2 3.45 

Tabie I: The Enorms of Four Groups of Objects 
fitted by Model 2 and Model 2’ 

ZnP = 2.4 + 0.038M - 0.009s + O+$~~6~6r10a + 
1.47r106 4.95*10 

3.9*10’L~+3.8*10~ - 3.4*103G+1.1*105 

lnP = 2.3 + 9.0*103SM-6.3*103 
-7.3CaLaGa+1.5*106 

with Enorm of the residuals 2.20, 1.589, and 2.397, 
which is considerably less than the early residuals. 

Model 2’ was picked for further analysis, and the cprp 
plot suggested further improvements were possible. An 
incrementai change was made in this case, with G be- 
ing transformed to G2. The resultant Enorm, 1.586, 
was slightly lower than that of model 2’. No further 
refinements improved the result, and the last equation 
derived was retained as the final model: 
ZnP = 2.3 + 0.0386M - 0.009s + 1~2,1$~~~l~5~109 + 

1.05+10~ 1.0*1oa 
2.4~104La+3.1*106 - 52 509-j.3 O+lOr 

A comparison study is conducted to see the effect of 
context definition in equation derivation. In addition to 
the group of 138 objects(group 1 used in the previous 

J experiment, three more groups o ob.jects are formed as 
the following: group 2 with 142 objects was again de- 
rived through the context definition step, group 3 and 
4 containing 140 and 210 objects respectively are not 
real contexts. Their objects were randomly picked from 
the original data set. The Enorm of the residuals for 
the best quadratic and exponential models are listed in 
table 1. One notes that groups 1 and 2 which define rel- 
evant contexts produce much more close fit models than 
groups 3 and 4 that are defined randomly. Therefore, 
deriving proper context by clustering is very important 
in fitting accurate analytic models to the data. 

5 Conciusions 
Our work on scientific discovery extends previous work 
on equation generation from data[Zytkow and Zembow- 
icz, 19931. Given complex real world data, clustering 
methodologies and a suite of graphical and statistical 
tools are used to define empirical contexts in which the 
set of independent variables that are relevant to the goal 
variable are first established. Empirical results indicat- 
ing that the combination of multi-variable regression 
with the cprp technique is effective in cutting down the 
search for complex analytic relations between sets of 
variables. 

Currently, we are looking at adopting approaches de- 
veloped in MARS[Sekulic and Kowalski, 19921 to trans- 
form the chosen independent variables using the given 
relations, and then combine MARS’s systematic search 
method to come up with the nonlinear base models. In 
future work, we hope to systematize the entire search 
procedure further, and develop a collection of tools 
that facilitates every aspect of the scientific discovery 
task(see Fig. 1). 
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