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Abstract 

We report a novel possibility for extracting a 
small subset of a data base which contains all 
the information necessary to solve a given clas- 
sification task: using the Support Vector Algo 
rithm to train three different types of handwrit- 
ten digit classifiers, we observed that these types 
of classifiers construct their decision surface from 
strongly overlapping small (k: 4%) subsets of the 
data base. This finding opens up the possibiiity 
of compressing data bases significantly by dispos- 
ing of the data which is not important for the 
solution of a given task. 
In addition, we show that the theory allows us to 
predict the classifier that will have the best gener- 
alization ability, based solely on performance on 
the training set and characteristics of the learn- 
ing machines. This finding is important for cases 
where the amount of available data is limited. 

Introduction 
Learning can be viewed as inferring regularities from 
a set of training examples. Much research has been 
devoted to the study of various learning algorithms 
which allow the extraction of these underlying regular- 
ities. No matter how different the outward appearance 
of these algorithms is, they all must rely on intrinsic 
regularities of the data. If the learning has been suc- 
cessful, these intrinsic regularities will be captured in 
the values of some parameters of a learning machine; 
for a polynomial classifier, these parameters will be the 
coefficients of a polynomial, for a neural net they will 
be the weights and biases, and for a radial basis func- 
tion classifier they will be weights and centers. This 
variety of different representations of the intrinsic reg- 
ularities, however, conceals the fact that they all stem 
I?--- ^ ------ ---A M”lll a C”,ll‘ll”ll T”“b. 

In the present study, we explore the Support Vector 
Algorithm, an algorithm which gives rise to a number 
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of different types of pattern classifiers. We show that 
the algorithm allows us to construct different classifiers 
(polynomial classifiers, radial basis function classifiers, 
and neural networks) exhibiting similar performance 
and relying on almost identical subsets of the training 
set, their support vector seZs. In this sense, the support 
vector set is a stable characteristic of the data. 

In the csse where the available training data is lim- 
ited, it is important to have a means for achieving the 
best possible generalization by controlling characteris- 
tics of the learning machine. We use a bound of sta- 
tistical learning theory (Vapnik, 1995) to predict the 
degree which yields the best generalization for polyno- 
mial classifiers. 

In the next Section, we follow Vapnik (1995), Baser, 
Guyon & Vapnik (1992), and Cortes & Vapnik (1995) 
in briefly recapitulating this algorithm and the idea 
of Structural Risk Minimization that it is based on. 
Following that, we will present experimental results 
obtained with support vector machines. 

The Support Vector Machine 
Structural Risk Minimization 
For the case of two-class pattern recognition, the task 
of learning from examples can be formulated in the 
following way: given a set of functions 

{ja : a E A}, ja : RN + (-l,+l} 

(the index set A not necessarily being a subset of R”) 
and a set of examples 

(x1,Yl),...,(w,w)~ xi E RN, w E (-1, +l}, 
each one generated from an unknown probability dis- 
tribution Hr. ul. we want to find a function f.4 which -. ----~ ~---- ,” 
provides th&&ll&t p&ible value for the risk 

R(a) = J KY(x) - YI dP(x, Y). 
The problem is that R(a) is unknown, since P(x, y) 
is unknown. Therefore an induction principle for risk 
minimization is necessary. 
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The straightforward approach to minimize the em- 
pirical risk 

turns out not to guarantee a smaii actuai risk (i.e. a 
small error on the training set does not imply a small 
error on a test set), if the number 4 of training examples 
is limited. To make the most out of a limited amount of 
data, novel statistical techniques have been developed 
during the last 25 years. 

The Structural Risk Minimization principle is such 
a technique. It is based on the fact that for the above 
learning problem, for any (Y E A with a probability of 
at least 1 - q, the bound 

RI \ < R---l \swh logo, ‘“\a, 2 -cmjJ\~, I -\-I e .t’ (1) 
holds, 9 being defined as 

qh lcdd) = J 
h (log * + 1) - lo&/4) 

JI?’ e e . 

The parameter h is called the VC-dimension of a set 
of functions. It describes the capacity of a set of func- 
tions implementable by the learning machine. For bi- 
nary classification, h is the maximal number of points k 
which can be be separated into two classes in all possi- 
bie 2-” ways by using functions of the iearning machine; 
i.e. for each possible separation there exists a function 
which takes the value 1 on one class and -1 on the 
other class. 

According to (l), given a fixed number J! of training 
examples one can control the risk by controlling two 
quantities: Rcmp(a) and h({j, : LY E A’}); A’ denoting 
some subset of the index set A. The empirical risk de- 
pends on the junction chosen by the learning machine 
(i.e. on a), and it can be controlled by picking the right 
cr. The VGdimension h depends on the set of junc- 
tions (jc : (Y E A’) which the learning machine can 
implement. To control h, one introduces a structure of 
nested subsets S,, := {fa : cy E A,,} of {fa : CY E A}, 

Sl c s2 c . . . c stl c . . . , (2) 

with the corresponding VC-dimensions satisfying 

hI 5 h2 5.. .I h, 5 . . . 

For a given set of observations (xi, yi), . . . . (xc, yl) the 
!Structural Risk Minimization principle chooses the 
function fa; in the subset {fa : cr E A,} for which 
the guaranteed risk bound (the right hand side of (1)) 
is n&imal. 

The Support Vector Algorithm 
A Structure on the Set of Hyperplanes. Each 
particular choice of a structure (2) gives rise to a 
learning algorithm. The support vector algorithm is 

based on a structure on the set of hyperplanes. To de- 
scribe it, first note that given a dot product space Z 
and a set of vectors xl,. . . ,x, E Z, each hyperplane 
{xEZ:(w.x)+k 0) corresponds uniquely to a 
pair (w, a) E Z x R if we additionally require 

i=~,~,r!(W*Xi) + b[ =I- (3) 

Each hyperplane corresponds to a decision function 
constructed in the following way: we first find the 
smallest ball Bx~,...,x, = {x E Z : 11x - aI1 < R} 
(a E Z) containing the points xl,. . . , xp. Then we 
define a decision function fw,b by 

fW,b : Bxr I..., X, + {flh 

fW,b = %n ((W - X) + a). (4) 

The possibility of introducing a structure on the set of 
hyperplanes is baaed on the fact (Vapnik, 1995) that 
the set {j;H,b : iiwii 5 A) ha8 a Vcdimension ir sati& 
fying 

h < R2A2 . (5) 
Note. Dropping the condition llwll 5 A leads to a set 
of functions whose VC-dimension equals N + 1, where 
N is the dimensionality of Z. Due to llwll 5 A, we can 
get VC-dimensions which are much smaller than N, 
enabling us to work in very high dimensional spaces. 

The Support Vector Algorithm. Now suppose we 
aregivenasetofexamples(xl,yl),...,(xt,yl), XiE 

RN;w E {-1: tl]: and we want to find a decision 
pction fw,? with the property fW+,b(qi) = 2/i, i .= 

, . . . , f?. If this function exrsts, canomcahty (3) imphes 
Yi((W * Xi) + 6) 2 1, i = 1 e. ,..‘, (6) 

In many practical applications, a separating hyper- 
plane does not exist. To allow for the possibility of 
examples violating (6), Cortes & Vapnik (1995) intro- 
duce slack variables 

to get 
(i>O, i=l,..., J, (7) 

&((W * Xi) + 6) 1 1 - &, i = 1 1. ,...I (8) 
The support vector approach to minimizing the guar- 
anteed risk bound (1) consists in the following: mini- 
mize 

subject to the constraints (7) and 1;;. According to 
(5), minimizing the first term amounts to minimizing 
the VC-dimension of the learning machine, thereby 
minimizing the second term of the bound (1). The 
term cf=, &, on the other hand, is an upper bound on 
the number of misclassifications on the training set - 
this controls the empirical risk term in (1). For a suit- 
able positive constant 7, this approach therefore con- 
stitutes a practical implementation of Structural Risk 
Minimization on the given set of functions. 
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Introducing Lagrange multipliers cy( and using the 
Kuhn-Tucker theorem of optimization theory one can 
show that the solution has an expansion 

C 
w= c YiWXi, 

id 
(10) 

with nonzero coefficients oi only for the cases where the 
corresponding example (xi, vi) precisely meets the con- 
straint (8). These xi are called Support Vecdors, and 
(10) is the Support Vector Expansion. All the remain- 
ing examples xj of the training set are irrelevant: their 
constraint (8) is satisfied automatically (with <j = 0), 
and they do not appear in the support vector expan- 
sion. Although the solution w is unique, the coeffi- 
cients oi are not. They can be found by solving the 
following quadratic programming problem: maximize 

W(*)=&ui-i 
c 

C W!/jWaj(Xi * Xj) (11) 
i=l i,j=l 

subject to 

Osaisr, i=l,.*., 1, and koigi = 0. (12) 
i=l 

By linearity of the dot product, the decision function 
(4) can thus be written as 

f(x)=sgn &/iCEi*(X*Xi)+b 
( 

. 
i=l ) 

So far, we have described linear decision surfaces. 
These are not appropriate for all tasks. To allow 
for much more general decision surfaces, one can first 
nonlinearly transform the input vectors into a high- 
dimensional feature space by a map 4 and then do 
a linear separation there. Maximizing 11) then re- 
quires the computation of dot productb I 4(x) .4(Xi)) 
in a high-dimensional space. Under certain conditions 
(Boser, Guyon & Vapnik, 1992), these expensive calcu- 
lations can be reduced significantly by using a function 
K such that 

(4(x) * 4(xi)) = K(x, pi)* 
We thus get decision functions of the form 

f(x) = sgn eloi * K(x, xi) + 6 . (13) 
i=l 

Experimental Results 
In our experiments, we used the support vector al- 
anr;thm with atanc-larcl mrartrdir nmmrmnmintr t.wh- ~V&aV“&*A ..a”*. Y”U.aU-.. yIU”“‘“Y.” y’.sb’“““a’L”b I”“*- 
niques to construct three different types of classifiers. 
This was done by choosing three different functions K 
in the decision function (13) and in the function to be 
maximized under the constraint (12), 

c 
C W.t/jaiajK(xi,xj)* (14 

i,j=l 

Homogeneous polynomial classifiers: 
K(x,Xi) = (X*Xi)degree 
Radial Basis Function (RBF) classifiers: 
K(x,Xi)= "xp(-IIX-Xi112/U2) 
Neural networks: 
K(x, xi) = tanh(K * (X * xi) - 0) 
All the results reported in this paper were obtained 

with y = 10 (cf. (9)). We used a US postal database 
of 9300 handwritten digits (7300 for training, 2000 for 
testing) (cf. LeCun et al., 1990). Each digit is a 16 x 16 
vector with entries between -1 and 1. Preprocessing 
consisted in smoothing with a Gaussian kernel of width 
u = 0.75. 

To get the ten-class classifiers for the digit recog- 
nition problem, we constructed ten two-class classi- 
fiers, each trained to separate a given digit from the 
other nine, and combined them by doing the ten-class 
classification according to the maximal output (before 
applying the sgn function) among the two-class classi- 
fiers. 

Performance for Various Types of 
Pl,,c.:a-w VaQPUIUszI cl 

The results for the three different functions K are sum- 
marized in Table 1. They should be compared with 
values achieved on the same database with a five-layer 
neural net (LeCun et al., 1990), 5.1%, a two-layer 
neural net, 5.9%, and the human performance, 2.5% 
(Bromley & Szckinger, 1991). 

Table 1: Performance for three different types of classi- 
fiers, constructed with the support vector algorithm by 
choosing different functions K in (13) and (14). Given 
are raw errors (i.e. no rejections allowed) on the test 
set. The normalization factor c = 1.04 in the sigmoid 
case is chosen such that c. tanh(2) = 1. For each of the 
ten-class-classifiers, we also show the average number 
of support vectors of the ten two-clas~classifiers. 

polynomial: K(x, y) = ((x . y)/256) degree 
degree 1 2 3 4 5 6 
raw error % 8.9 4.7 4.0 4.2 4.5 4.5 
av. # of SVs 282 237 274 321 374 422 

RBF: K(x, y) = exp (-[lx - y112/(256 u”)) 
CT2 1.0 0.8 0.5 0.2 0.1 
raw error/% 4.7 4.3 4.4 4.4 4.5 
av. &of SVn 2.14 2.15 2.51 366 722 

sigmoid: K(x, y) = 1.04 tanh(2(x . y)/256 - 0) 
8 0.9 1.0 1.2 1.3 1.4 
raw error % 4.8 4.1 4.3 4.4 4.8 
av. #of SVs 242 254 278 289 296 

The similar performance for the three different func- 
tions K suggests that the choice of the set of decision 
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Table 2: Performance of the classifiers with degree predicted by the VC-bound. Each row describes one 
two-class-classifier separating one di~$ (stated in the first column) from the rest. The remaining columns contain: 
de ree: the degree of the best polynonual as predicted by the described procedure, parameters: the dimensionality 
A-h- o t e lgh dimensional space, which is also the maximum possible V&dimension for hnear classifiers in that 
space, hertim.: the VC dimension estimate for the actual classifiers, which is much smaller than the number of free 
parameters of linear classifiers in that space, 1 - 7: the numbers of errors on the test set for polynomial classifiers 
of degrees 1 through 7. The table shows that the decribed procedure choosea polynomial degrees which are optimal 
or close to optimal. 

chosen classifier errors on the tl 3t set for degrees 1 - 7 

digit degree parameters herrim. 1 2 3 41 51 61 7 

0 3 2.8 - lo6 547 36 14 1111 11 

1 7 1.5 * 101z 95 17 15 14 11 

2 3 2.8 - lo6 832 53 32 q 
3 3 2.8 - lo6 1130 57 25 1221 

4 4 1.8.10s 977 50 32 32 
5 3 2.8. lo6 1117 37 20 pJ 
6 4 1.8.10” 615 23 12 12 

I 7 n 5 I 9.5 - log I 526 11 25 1 15 1 12 10 

8 4 1.8 - 10s 1466 71 33 28 
9 5 9.5 * log 1210 51 18 15 

26 

24 

functions is less important than capacity control in the 
chosen type of structure. This phenomenon is well- 
known for the Parzen window method for density esti- 
mation: there, the choice of the Kernel function is less 
critical than the choice of the appropriate value of the 
bandwidth parameter for a given amount of data. 

Predicting the Optimal Decision Functions 

Given a set of training data, for some choices of the 
nested set of decision functions (2) one can estimate 
the second term on the right hand side of Eq. (1). 
We will call the latter term the “VC-confidence”. In 
these cases, since one can also measure the empirical 
risk R e,,,,,(~), one can actually compute upper bounds 
on the expected risk R(cr) (i.e. the expected error on 
the test set). We can try to use these bounds to pre- 
dict, which set of decision functions will give the best 
performance on test data, without the use of any vali- 
dation or test sets. Clearly this could be very useful in 
situations where the amount of available data is very 
limited. 

To test this idea we concentrated on the polynomial 
classifiers with K(x, y) = (((x . y) + 1)/256)degree. 
For these decision functions, the nested structure (2) 
is implemented by varying the degree of the polyno- 
mial. We estimated the VC dimension h by making 

the assumption that the bound (5) is met, that is, 

h N hertim. = R211wl12s 

In this case, the right hand side of Equation (1) is 
dominated by the VC-confidence, which is minimized 
when the VC-dimension is minimized. Now llwll is de- 
termined by the support vector algorithm; so in order 
to estimate h, we need to compute R. 

Recall that R is the radius of the smallest sphere 
enclosing the training data in the high dimensional 
space (the space in which K corresponds to a dot 
product). We formulate the problem as follows: Min- 
imize R2 subject to IlXi - X*11’ 5 R2 where X* is 
the (to be determined) position vector of the center 
of the sphere. This is a well known quadratic pro- 
gramming problem. We use the objective function 
t2 -xi &( R2 - (Xi -X*)2) and vary R and X* to get 

* = xi &Xi and the Wolfe dual problem: Maximize 

cXi’(Xi*Xi)-CXiAj*(Xi*Xj) 
i 

subject to 
i,j 

i 
where the & are Lagrange multipliers. As in the sup- 
port vector algorithm, this problem has the property 
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degree: 2 3 4 5 6 7 

Figure 1: Average VC-dimension (solid) and total 
number of test errors of the ten two-class-classifiers 
(dotted) for polynomial degrees 2 through 7 (for degree 
1, Remp is comparably big, so the VC-dimension alone 
is not sufficient for predicting R, cf. (1)). The baseline 
on the error scale, 174, corresponds to the total number 
of test errors of the ten best two-class-classifiers out 
of the degrees 2 through 7. The graph shows that the 
VC-dimension allows us to predict that degree 4 yields 
the best overall performance of the two-class-classifiers 
on the test set. This is not necessarily the case for 
the performances of the ten-class-classifiers, which are 
built from the two-clsss-classifier outputs before ap- 
plying the sgn functions. The fact that indeed our 
ten-class-classifier with degree 3 so far performs bet- 
ter that the one with degree 4 (see above) leads us to 
believe that the latter can be improved by using a more 
principled way of doing ten-class-classification. 

that the Xi appear only in dot products, so as before 
one can compute the dot products in the high dimen- 
sional space by replacing (Xi *Xi) by K(xi,Xj) (where 
the xi live in the low dimensional space, and the Xi in 
the high dimensional space), provided the K functions 
satisfy certain positivity conditions. In this way, we 
computed the radius of the minimal enclosing sphere 
for all the training data for polynomial classifiers of 
degrees 1 through 7. 

We then trained a binary polynomial classifier for 
each digit, for degrees 1 through 7. Using the obtained 
values for our approximation to h, we can predict, for 
each digit, which degree polynomial will give the best 
generalization performance. We can then compare this 
prediction with the actual polynomial degree which 
gives the best performance on the test set. The re- 
sults are shown in Table 2; cf. also Fig. 1. The above 
method for predicting the optimal classifier functions 
gives good results. In four cases the theory predicted 
the correct degree; in the other cases, the predicted de- 
gree gave performance close to the best possible one. 

Comparison of the Support Vector Sets 
for Different Classifiers 
In the remainder of the paper we shall use the optimal 
parameters according to Table 1 in studying the sup- 

port vector sets for the three different types of classi- 
fiers. Table 3 shows that all three classifiers use around 
250 support vectors per two-class-classifier (less than 
4% of the training set). The total number of different 
support vectors of the ten-class-classifiers is around 
1600. The reason why it is less than 2500 (ten times 
the above 250) is the following: one particular vector 
that has been used as a positive example (i.e. gi = +l 
in (13)) for digit 7, say, might be a good negative ex- 
ample (vi = -1) for digit 1. 

Table 3: First row: total number of different sup- 
port vectors of three different ten-class-classifiers (i.e. 
number of elements of the union of the ten two-class- 
classifier support vector sets) obtained by choosing dif- 
ferent functions K in (13) and (14); second row: aver- 
age number of support vectors per two-clsss-classifier. 

Polynomial RBF Sigmoid 
total # of svs 1677 1498 1611 

average * of SVs 274 235 254 

Tables 4-6 show how many elements the support vec- 
tor sets of the different classifiers have in common. As 
mentioned above, the support vector expansion (10) 
is not unique. Depending on the way the quadratic 
programming problem is solved, one can get different 
expansions and therefore different support vector sets. 
We used the same quadratic programming algorithm 
and the same ordering of the training set in all three 
cases. 

Table 4: Percentage of the support vector set of [col- 
umn] contained in the support set of [row]; ten-class 
clsssifiers. 

Table 5: Percentage of the support vector set of [col- 
umn] contained in the support set of [row]; only one 
classifier (digit 7) each 

Polynomial RBF Sigmoid 
Polynomial 100 84 93 

RBF 100 92 
Sigmoid 86 100 

shown that the support vector set contains all the in- 
formation a given classifier needs for constructing the 
decision function. Due to the overlap in the support 
vector sets of different classifiers, one can even train 
classifiers on support vector sets of another classifier. 
Table 7 shows that this leads to results comparable to 
those after training on the whole database. 
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Table 6: Comparison of all three support vector sets at a time. For each of the (ten-class) classifiers, % intersection 
gives the fraction of its support vector set shared with both the other two classifiers. Out of a total of 1834 different 
support vectors, 1355 are shared by all three classifiers; an additional 242 is common to two of the classifiers. 

Polynomial RBF Sigmoid intersection shared by 2 union 
no. of supp. vectors 1677 1498 1611 1355 242 1834 

% intersection 81 90 84 100 - - 

Table 7: %aining classifiers on the support vector sets of other classifiers leads to performances on the test set 
which are as good as the results for training on the full data base (shown are numbers of errors on the 2000-clement 
test set, for two-class classifiers separating digit 7 from the rest). Additionally, the results for training on a random 
subset of the data base of size 200 are displayed. 

Conclusion 
We have shown that 
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