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Abstract

Probabilistic expert systems based on Bayesian
networks (BNs) require initial specification of
both a qualitative graphical structure and quan-
titative assessment of conditional probability ta-
bles. This paper considers statistical batch learn-
ing of the probability tables on the basis of in-
complete data and expert knowledge. The EM
algorithm with a generalized conjugate gradient
acceleration method has been dedicated to quan-
tification of BNs by maximum posterior likeli-
hood estimation for a super-class of the recursive
graphical models. This new class of models al-
lows a great variety of local functional restrictions
to be imposed on the statistical model, which
hereby extents the control and applicability of
the constructed method for quantifying BNs.

Introduction

The construction of probabilistic expert systems (Pearl
1988, Andreassen et al. 1989) based on Bayesian net-
works (BNs) is often a challenging process. It is typi-
cally divided into two parts: First the construction of
a graphical structure which defines relations between
variables in a model, and second the quantitative as-
sessment of the strength of these relations as defined
by tables of conditional distributions.

Both aspects of this process can be eased by applying
automated methods for learning from a database of
observations or from a combination of a database and
expert knowledge. See Buntine (1995) for a literature
review on different learning methods.

This paper considers statistical batch learning for
the quantitative assessment of relations in a given
structural model. In this scheme a BN resembles a
quantified statistical model, that is, a particular dis-
tribution belonging to the set of distributions as de-
fined by the model. Usually, the recursive graphical
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models of Wermuth & Lauritzen (1983) underlie the
statistical modelling for BNs. We investigate a super-
class for these models, denoted as recursive exponential
models (REMs), which have evolved by the desire to
impose functional restrictions onto local components of
the model. One may visualize a local component as the
part of a model which defines the functional structure
of a particular conditional distribution in a quantifica-
tion table for the BN. Hence, the REMs extends the
recursive graphical models by the possibility to func-
tionally control the quantification of these tables.

Given a database of observations, the maximum like-
lihood estimate (MLE) is the usual candidate for a
quantification of a model. If also prior knowledge on
parameters is available, the largest posterior mode is a
natural alternative. This mode will be denoted as the
maximum posterior likelihood estimate (MPLE).

In situations of incomplete observations the deter-
mination of the MLE or MPLE may call for numer-
ical techniques. In Lauritzen (1995) it is shown how
to exploit the EM algorithm, as formally defined in
Dempster et al. (1977), for maximization within the
framework of recursive graphical models. Unlike var-
ious other numerical techniques for optimization, the
EM algorithm converges reliably even when started in
a distant point from the maximum. A common crit-
icism, however, is that convergence can be painfully
slow if high accuracy of the estimate is necessary. See
e.g. Louis (1982), Meilijson (1989), Jamshidian & Jen-
nrich (1993), and several discussants of Dempster et al.
(1977). For this reason we investigate an acceleration
of the EM algorithm by a generalised conjugate gradi-
ent algorithm which has a superior rate of convergence
when started close enough to the maximum to ensure
convergence. By using the EM algorithm for early it-
erations and the acceleration algorithm for the final it-
erations, we have constructed a hybrid method which
preserves the global convergence of the EM algorithm
but has a higher rate of convergence.

The idea of accelerating the EM algorithm is not



new in general. See Jamshidian & Jennrich (1993) for
a recent survey. In the context of quantifying BNs it
is new, probably due to the lack of publications on the
analytical evaluation of derivatives as needed for most
accelerations. Lauritzen (1995) and Spiegelhalter et al.
(1993) do, however, mention the possibility of calculat-
ing the gradient for recursive graphical models, and in
fact Russell et al. (1995} covers gradient-descent meth-
ods for MLE quantification based on these models.
Section 2 and 3 review the EM algorithm and the
generalized conjugate gradient algorithm used for ac-
celeration. Section 4 gives a concise description of
REMSs and account for the simplification into the well-
known recursive graphical models. In Section 5 the
algorithms are specialized for these models.

The MLE method

Given a conceptual model, yielding the vector of ran-
dom variables X = (X,)vev, with a family of distri-
butions p(X|6) parameterised by the vector § € © and
denote by I(f|z), the associated log-likelihood function.

Suppose that z is only observed indirectly through
the actually observed, possible incomplete, sample of
data y. The observed data may be incomplete in two
ways: Observations may be missing according to a full
instantiation of X so that individual cases only hold
observed values according to a sub-vector X4,A C V.
This accounts for both situations of latent (or hidden)
variables and situations of randomly missing values
among variables. Observations may ako be imprecise if
there are variables for which the collector of data can-
not distinguish between a set of possible values and
therefore reports this set instead of just a single value.

By this scheme, incomplete data associates a set of
possible completions denoted x(y). Under the condi-
tion that the observed data is incomplete in an un-
informative way according to these possible comple-
tions, the incomplete data distribution satisfies

pyl6) = > p(=lf). (1)

z€x(y)

In case of incomplete data the MLE is typically too
difficult to calculate analytically. Here, the general
idea of the numerical approaches considered in this pa-
per is described.

The EM algorithm

The EM algorithm has an intuitively easy interpreta-
tion of converting the ML estimation into a sequence
of “pseudo-estimations” with respect to the conceptual
model for complete data. Let 6™ denote the current
value of § after n iterations. Each iteration of the EM
algorithm can then be described in two steps:

E-step: Determine the conditional expectation of
the log-likelihood function given the observed data

Q(816™,y) = Egn [1(6]X)|y].

M-step: Determine gnt+1
Q(0l6™,y) in 6.

Generalizations of the EM algorithm appear by
strictly increasing Q(6"1!|6",y) over Q(8™|67,y)
rather than maximising it. The generalized EM algo-
rithms may be favourable in situations where the MLE
of Q(0]6™,y) has to be calculated iteratively.

There is no clear criterion for when to “retire” the
EM algorithm in favour of the acceleration algorithm.
However, if acceleration is started too early, divergence
will reveal by a sudden decrease in likelihood value. If
this happens the EM algorithm must take over a few
iterations from the point previous to the decrease in
likelihood before the faster method is started again.

by maximizing

Conjugate gradient acceleration

On the ground that appropriate generalised gradi-
ents can significantly improve the performance of al-
gorithms that use gradients, Jamshidian & Jennrich
(1993) proposed an acceleration of the EM algorithm
based on a generalised conjugate gradient method.

They showed that if the MLE € is an interior point
of O, then

™+ — 6™ = —(Q(619,))71i(8"]y) + o(8™ - 6),

where {(8™|y) is the gradient of the log-likelihood func-
tion at O™ and Q(f]6,y)) is the Hessian of Q(8]6,)
evaluated at §. As the key to the acceleration method
they observed that in the neighbourhood of 8, the
EM-step 6™t — " approximates the generalised gra-
dient [(0"|y) = —(Q(616,v))"*1(6"|y) with the norm
Il éll= (9’(—@(9]9,3/))0)%, where ' denotes transpose.

The obvious advantage of this approximation is that
the evaluation of a generalized gradient does only re-
quire an EM-step. Hence, by the assumption that the
EM-step qualifies as an appropriate generalised gradi-
ent, Jamshidian & Jennrich (1993) proposed a gener-
alised conjugate gradient acceleration, which for each
iteration operates as follows:

LS-step (Line search): Determine §”+! = 4" +
ad,, where « is a step length which (approxi-
mately) maximizes /(6" + ad.,|y).

DU-step (Direction update): Determine the next
conjugate direction as

dny1 = [(6™*'ly) — Bdn, where
5 = KO+ - i)
dr, (167 y) — 1(6my))
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The algorithm is initialised by do = I(8°]y).

The algorithm is motivated as an acceleration of the
EM algorithm as follows. If the length of an EM-step is
not optimal, a line search in this direction will improve
the rate of convergence. This is actually the acceler-
ation algorithm with 8 = 0. The rate of convergence
can also be improved by ensuring that moving along
in a direction will not cancel out traversals of previous
steps. Hence, instead of moving in the direction of the
EM-step, we proceed in a direction which is conjugate
to the previous direction, and, insofar as possible, to
all previous directions traversed. This is accomplished
by B with the evaluation of gradients as the cost.

The MPLE method

Traditional ML estimation may be compromised when
dealing with ill-posed problems like latent structure
models or situations of sparse data, where small
changes in the data can have a large impact on the esti-
mate. In these situations we may resort to a Bayesian
interpretation given to the estimation problem. In-
stead of just maximizing the likelihood we may incor-
porate prior information about the parameters by find-
ing the largest posterior mode, the MPLE. Dempster
et al. (1977) briefly describe how to modify the EM al-
gorithm to produce the MPLE. This has been further
entertained in Green (1990). A specialization for re-
cursive graphical models is found in Lauritzen (1995).

Suppose we have information about § in the form of
a prior distribution 7(8), then

p(0ly) o p(y|O)m().

By considering the posterior distribution as a posterior
likelihood, maximized by the EM algorithm by simply
replacing the E-step with the expectation of the pos-
terior log-likelihood, Q*(8|6™), the E-step becomes

Q™ (816™) = Q(616™) + log m(6). )

In the M-step, @* is maximized instead of Q.

The Bayesian interpretation of the EM algorithm
can be projected directly onto the gradient, as addi-
tionally needed for the acceleration method.

Analogous to the notation of the gradient for the
(traditional) log-likelihood by [(8ly), let [(f) and
[*(8ly) denote the gradients for the logarithm of prior
and posterior distributions, respectively. The gradient
of the posterior log-likelihood is then given by

1*(Bly) = UOly) +1(6). ©))
In effect, each of the expressions which goes into the
MPLE method is made up by two terms, which de-
scribe the game between fidelity and amount of data
against prior knowledge for modelling an acceptable
solution to the problem.
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The statistical modelling

Here, we introduce the REMs, which have evolved from
the recursive graphical models by the desire to im-
pose functional restrictions onto local components of
a model. We also investigate appropriate priors.

Recursive exponential models

A REM can be graphically represented by a directed
acyclic graph. That is, the variables X can be ar-
ranged by a response structure, where the set of nodes
represents variables and directed edges signify for each
variable X, € X the existence of direct causa! influence
from variables represented by the parents X,(,).

According to this graphical structure, a REM holds
assumptions of variation independence between pa-
rameters in different local components of the model, to
be described below. Readers familiar with Spiegelhal-
ter & Lauritzen (1990) and the line of work reported in
Heckerman et al. (1995) may recognize these assump-
tions as used in these papers but not explicitly named.

By global variation independence, p(X|6) factorises
into a product of mutually independent components
given by the recursive response structure of the graph.
That is,

p(X10) = H p(XU|Xpa(u))9v);
veV

where © = X,ev®,, and 6, € ©, completely speci-
fies the relatidnship between the variable X, and its
conditional set of variables Xpa(y).

In some applications, particularly pedigree analysis,
it is typical to restrain the tables of conditional distri-
butions by using the knowledge that some of the tables
are equal. Equal tables must be parametrized by the
same parameters. Let & C V specify a set of variables
that associates equal tables and denote by V the total
set of these equivalence classes. Then

p(X10) = [ [Ip(XelXpauy,b5),

DEV VED

where 8; € ©O; specifies the relationship between X,
and X,(,) for any v € 9. Hence, the global parameter
independence is relaxed a bit. If equal tables are repre-
sented by a single generic table, as assumed from now
on, this representation more directly illustrates the re-
duction of the parameter space into © = X ;©O5.

By local variation independence each (generic) ta-
ble is additionally broken into local components of
conditional distributions as defined for each parent
configuration. For v € 4, let + = 1,...,R; index
a parent configuration in the generic table, and let
s =0,...,5; index a particular value of the variable.



Hence, ©3 = x,0j, and conditional probabilities are
given by p(s|r,0;,), where 05, € Oy

By these simplifying assumptions the quantification
of a REM is broken into the quantification of local
models, which comply with the typical scenario of
breaking down the quantification of a BN into tables
of independently quantified conditional distributions.

The statistical modelling by REMs does not stop at
this point. To completely qualify as a REM each local
model must be structurally defined by a regular expo-
nential model. As any exponential model is allowed,
the REMs become a very extensive class of models,
which allows sophisticated functional restrictions to be
placed on each local model, if necessary.

Disregarding the possibility of specifying equal ta-
bles, the local exponential modelling makes the dif-
ference from the recursive graphical models for which
each local model cannot be restricted beyond the fact
that it is a model of probability distributions. We do
not account this as a functional restriction.

A recursive graphical model is defined in the frame-
work of REMs as follows (positivety constraints are
applied for simplicity). Consider the local model that
structurally defines the conditional distribution p(-|r).
Let 39 denote an index of reference, say sy = 0, and
let for sy =1,...,85;

6°+ = log[p(s+|r)/p(solr)]
and
s _J 1fors=s4
t%(s) = { 0 otherwise.

The local model is then defined by the exponential
model having probabilities of the form

p(s|r,0) = b(s, ) exp[8't(s) — $(9)], (4)

Ss
$(8) =log [ Y exp(6°+) |,

s4=1

where § = (6%, ...,05%) defines the parameters, ¢(s) =
(t(s),...,t53(s)) the statistics, ¢(6) the normalizing
function, and b(s,r) = 1 the carrying density.

Prior distributions for parameters

The construction of a prior distribution for parameters
is simplified considerably by matching the assumptions
of variation independence with assumptions of relaxed
global and local independence of parameters considered
as random variables. By these assumptions, the distri-
bution for parameters factorises as

R3
7(8) = [T 1= @)

sev r=1

Hence, each local component of the prior can be con-
sidered independently.

The notion of global and local independence is also
nicely covered within the line of work reported in Heck-
erman et al. (1995). It is inspired by similar assump-
tions in Spiegelhalter & Lauritzen (1990), which in-
troduced a method for sequential updating a Bayesian
network as new observations eventuate. To prepare
the quantification methods for the possibility of future
sequential updating by this method, we are especially
interested in (approximately) conjugate priors.

If functional restrictions are not specified for the lo-
cal model, the natural conjugate prior on probabili-
ties is given by a S;-dimensional Dirichlet distribu-
tion with parameters a(s,r) associated for each prob-
ability. That is, p(-|r,05,) ~ D(a(0,7),...,a(S5,7)).
By a transformation of parameters as given by the
exponential representation of probabilities in (4), the
prior distribution for 5, is defined by (noting that

dp(-|r, 65,)/dbs), = 152, p(slr,3,) gives the Jaco-

=0
bian of the transformation)

Ss
7 (051,) o< [ ] plslr, 051, ). (5)

s=0

Given a general exponential local model, the con-
struction of a conjugate prior becomes more compli-
cated. Denote by 6* the value that maximizes the lo-
cal prior m(f3},.). By a Taylor series expansion around
0* Thiesson (1995) shows that a conjugate distribution
can be approximated by a distribution proportional to
the multivariate normal distribution

* l *\—1
N(6 » g1 ™), (6)

where 3 and the maximizing value 6* are unknown pa-
rameters to be assessed by experts, and I(6*) denotes
the observed information at the value 6*.

In practice though, it seems unreasonable to request
domain experts for a parametrization of any of these
priors. To overcome this problem Thiesson (1995) also
shows how to assess the parametrization from a speci-
fication of a “best guess” distribution with a judgment
of imprecision (or confidence) on each of the proba-
bilities in the form of an upper and lower boundary.
Assessment of Dirichlet priors can also be studied in
Spiegelhalter et al. (1993) and Heckerman et al. (1995).

Specialization
The maximization algorithms are specialized for the
REMs. We consider computation of the MPLE, but
the MLE is easily obtained by inserting non-informa-
tive priors in the following. It turns out that maxi-
mization can be accomplished by local computations.
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The EM algorithm

To identify the E-step, we will first consider the like-
lihood function for a sample of independent complete
observations, z = (z!,...,z%). Due to the factoriza-
tion of the probability for a single observation

p(.’z,‘lla) = H Hp(:vi,lﬂ?;a(v),gﬁh:w(u))
eV veD

the likelihood factorises as

L R S\‘
10fe) o 1 ta'10) = TT 1T ITptor 0"
=1 pevr=1s=

where 72(s,7) = 3, ¢; n(s,7), and n(s,r) denotes the
marginal count in the configuration (s, ) for a family of
variables (Xy, Xpa(v)). The marginal count is obtained
by adding up the qualifying observations as

S T) Zx(s r)(xvixpa(u))

=1

where

or 1 for (z},z!,, ) = (s,7)
XN (@l 2ha) = { (0 Tyagr

0 otherwise.
(7

For a sample of independent, possibly incomplete,
observations y = (y!,...,y") the conditional expecta-
tion of the likelihood function is obtained by replacing
the marginal counts by expected marginal counts

a*(s,r) = Zn‘(s, T)

vED
L
= > > p(Xv=5,Xpawy=rl¥',0). (8)
vED I=1

As pointed out in Lauritzen (1995), the posterior
probabilities in (8) can be efficiently calculated by the
procedure of Lauritzen & Spiegelhalter (1988) for prob-
ability propagation.

The E-step (2) can now be identified as

Q*(616™,y)

R; [Ss
= > 5" |D_#(s,r)log p(s|r, Oyr) + log w(B5)

I-JEV r=1 Ls=0
Rs
= Z ZQ‘(gﬁh'e":y):
;,ef/ r=1

where p(s|r, 8;,) is of the exponential form (4).

By this, the M-step is completed by maximizing
(or increasing) each local part of the expected log-
likelihood independently.
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If the local model does not hold functional restric-
tions, the local prior is given by (5), and the maximum
for @*(05-|6™,y) can be found analytically as the value

85 € Oy, which obeys

n*(s,r) + a(s,r)
a*(r) + a(r)

where 2*(r) = Efio *(s,r) and «o(r) = Efio a(s,r).
A similar result is found in Lauritzen (1995). Recall
that a local model without functional restrictions com-
plies with a local part of a recursive graphical model.

For situations of functional restrictions in a local
model, we typically have to carry out the maximization
by an iterative method. Being able to calculate both
first and second order derivatives for Q*(65|6", ), the
globally convergent algorithm for maximization, as de-
scribed in Jensen et al. (1991, Theorem 3), can be ap-
plied. The overall computational efficiency of the EM
algorithm can be improved if only the first most influ-
ential iterations are considered here.

p(s[r, ét';|r) =

The acceleration algorithm

Recall that the generalized gradient for the posterior
likelihood is approximated by an EM-step. Hence, to
accomplish the specialization of the acceleration algo-
rithm we only need to derive the gradient. It can be
divided as specified in (3).

First consider the derivation of the gradient for the
(traditional) log-likelihood of a single incomplete ob-
servation, denoted by y. From (1) we see that

0
— logp(y|8) = z|6).

By global and local variation independence and by us-
ing the chain rule for differentiation

ao.,,r p(z10)

p(z|6) 2

= Zy|Tpa(v :05 T
§ (Ivlmpa(v)1aﬁ]r) 69'] p( | pa(®) ! )

$|9 ZX (xpa(u))ag lng(:UulT 0u|r)7
vED

where X" (Zpq(v)) is defined similarly to (7).

Let 7(6;5)-) denote the expected value of the statistic
for the local exponential model defining p(zy|r,05),).
By inserting the exponential representation we get

2 r
696|rp($10) = p(:z:|9) g X (Epa(v)) (t(mu) - T(0f1|r()1)0)



Finally, by inserting (10) into (9), the local components
of the gradient for a single observation are derived as

F)
T log p(y(6)

_ p(alf) s~ . o
- ;g‘%y) p(ylg) %X (xPa(’-’)) (t(xv) (ovlr))

S5
= Y > p(srly.0) (t(s) — T(651,) -

vED s=0

For a sample of independent observations the gradi-
ents for each observation simply add up. Hence, if y de-
notes a sample, then the gradient for the log-likelihood
is given by the local components derived as

) Ss
Wﬁrl(ﬁly) = ;n(s,r) (t(s) — 7(85),)) - w

When functional restrictions are not specified in a
local model, the gradient for the associated local log-
prior is found by straightforward differentiation of the
logarithm to the prior in (5), whereby

8 >
a'eng(o) = go afs,r) (¢(s) — 7(83,)) - )

Similarly, when restrictions are specified, the local
gradient is derived by differentiation of the logarithm
to the normal prior distribution in (6) as

) ) *
ml(é’) = —pv(65,) (651~ — 5;,.)- (13)

Local computation of the posterior gradient, with
components composed of (11) and one of (12) and (13),
hereby implies that also the acceleration algorithm can
be evaluated locally.
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