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Abstract

An attribute-oriented rough set method for
knowledge discovery in databases is described.
The method is based on information generaliza-
tion, which examines the data at various levels
of abstraction, followed by the discovery, anal-
ysis and simplification of significant data rela-
tionships. First, an attribute-oriented concept
tree ascension technique is applied to generalize
the information; this step substantially reduces
the overall computational cost. Then rough set
techniques are applied to the generalized infor-
mation system to derive rules. The rules repre-
sent data dependencies occurring in the database.
We focus on discovering hidden patterns in the
database rather than statistical summaries.

Introduction

Knowledge discovery in databases (KDD), in general,
is “the nontrivial extraction of implicit, previously un-
known, and potentially useful information from data”
(Piatetsky-Shapiro et al. 1991). The central ques-
tion in knowledge discovery research is how to turn
information, expressed in terms of stored data, into
knowledge expressed in terms of generalized state-
ments about characteristics of the data. Some ma-
chine learning techniques are appropriate for analyz-
ing databases (Fayyad et al. 1993; Gemello and Mana
1989). Knowledge discovery methods based on the
principles of machine learning must provide computa-
tional efficiency to deal with very large databases and
robustness to cope with superfluous or “noisy” data.

The theory of rough sets (Pawlak 1991) offers a new
approach to reasoning from data. This methodology,
which is complementary to statistical inference, pro-
vides new insights into properties of data and has been
successfully applied in knowledge acquisition, forecast-
ing and predictive modeling, expert systems, knowl-
edge discovery in databases (Slowinski 1992; Ziarko
1994; Ziarko and Shan 1995).

We present an approach to knowledge discovery from
large relational databases. Qur approach can discover
different kinds of knowledge from relational databases,
including empirical keys, minimal relations, and dis-
crimination rules. An empirical key is a minimal sub-
set of attributes of a relation which uniquely identifies
every tuple in the relation. In contrast to the notion
of a key known in database theory, the empirical key is
derived from data rather than from known data depen-
dencies and may not preserve the tuple identification
property in all instances of the relation. The set of tu-
ples of the relation projected on an empirical key is a
minimized representation of the relationship encoded
in the original relation. This set of tuples is called a
minimal relation. A set of discrimination rules is a de-
scription of a class that distinguishes the target class
from a fixed number of other classes. The approach
integrates the concepts of information generalization,
information reduction, and rule generation which sig-
nificantly reduce the computational complexity of an-
alyzing large databases. An attribute-oriented concept
tree ascension technique is used to generalize an infor-
mation system (which is either a relational database
or a relation extracted by a query from a database).
The generalization process is guided by domain ex-
perts. After the generalization process, a rough set
method is applied to the generalized information sys-
tem. The reduction technique introduced in rough sets
is applied to generate a minimalized information sys-
tem called a reduct which contains the minimal subset
of the generalized attributes. By analyzing relation-
ships between attributes, irrelevant attributes are re-
moved without losing any essential information. For
the generation of discrimination rules, a set of maz-
tmally general rules can be derived directly from the
reduct. The maximally general rules embody the most
general patterns within the database. The rules can be
used to interpret and better understand the database.
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Make Model Fuel Disp Weight Cyl Power Turbo Comp Tran Mileage

Ford Escort EF1 Medium 876 [) High yes high auto medium

Dodge Shadow EFI Medium | 1100 6 High no medium | manu | medium

Ford Festiva BFI Medium 1589 6 High no high manu | medium

Chevrolrt Corvette | EFI Medium 987 6 High no medium | manu | medium

Dodge Stealth EFl Medium 1096 6 High no high manu medium

Ford Probe BFI Medium 867 [ High no medium | manu medium

Ford Mustang EFI Medium 1197 [} High no high manu medium

Dodge Daytona EFI Medium 798 6 High yes high manu high

Chrysler Le Baron BF1 Medium 1056 4 Medium no medium manu medium

Dodge Sprite BFI Medium 1557 8 High no medium | manu low

Honda Civic 2-BBL Small 786 4 Low no high manu high

Ford Bscort 2-BBL Small 1098 4 Low no high manu medium

Ford Tempo 2-BBL Small 1187 4 Medium no high auto medium

Toyota Corolla EF1 Small 1023 4 Low no high manu high

Mazda 323 EFI Medium 698 4 Medium no medium manu high

Dodge Daytona BFI Medium 1123 4 Medium no medium manu medium

Honda Prelude EFI Small 1094 4 High yes high manu high

Toyota Paseo 2-BBL Small 1023 4 Low no medium | manu high

Chevrolet Corsica EFI Medium 980 4 High yes medium | manu | medium

Chevrolet Beretta EFI Medium 1600 [} High no medium auto low

Chevrolet Cavalier BFI Medium 1002 6 High no medium | auto medium

Chrysler Le Baron EFI Medium 1098 4 High no medium | aute medium

Mazda 626 EF1 Small 1039 4 Medium no high manu high

Chervolet Corsica EFI Small 980 4 Medium no high manu high

Chevrolet Lumina EFI Small 1000 4 Medium no high manu high

Table 1: A collection of car information.
Information Generalization

. i . {Honda _Civic, ..., Honda.Accord} C Honda
Formally, an information system S is a quadruple (Toyotal Tercel, ..., Toyota_Camry} C Toyota
< U AV, f> where U = {21,22,..,2n} is 2 {Ma1da.323, Mazda.626,... Mazda 939}  C Maada
nonempty finite set of objects, A is a finite set of at- {Honda, Toyota, ..., Mazda} C Japan(Car)

. . : Ford Bscort, d.Probe, ..., Ford_ T: Ford
tributes, V = |J, ¢4 Vp is a nonempty finite set of val- {Pord Eacort, Ford Probe, ..., FordTaurue}  C For
f b pE h . h d . £ ib {Chevrolet_Corvette, ..., Chervolet.Corsica} C Chevrolet
ues of attributes where iﬁ. is the domain of attribute .p {Dodge Stealth, ..., Dodge Dynasty} C Dodge
(the set of values of attribute p), and f: Ux A > V is {Ford, Dodge, ..., Chevrolet} € USA(Car)
an information function which assigns particular val- {Japan(Car), ..., USA(Car)} C Any(Make Model)
ues from the domains of attributes in A to objects such {0..300} C Light
that f(zi,p) € Vp forallz; e U and pe A. Inare- {#01..1200} C Modiam
{1201..1600} C Heavy

lational database system, the function f assigns each
object to a unique tuple of a database table to avoid
duplication and to provide storage efficiency. We view
a relational database table as an information system
and use the terms relational database table and in-
formation system interchangeably. Table 1 shows an
information system for a collection of Japanese and
American cars.

A concept hierarchy for an attribute A; is repre-
sented as an attribute value classification tree, called
a concept tree. A higher-level value is a more general
value corresponding to the set of values of lower-level
values in the concept tree. Typically, concept hierar-
chies for a database are provided by knowledge engi-
neers or domain experts, but some hierarchies can be
constructed automatically (Michalski 1983). Figure 1
shows concept hierarchies for the “Make_Model” and
“Weight” attributes of Table 1.

A large database usually contains many distinct at-
tribute values and is too refined for a clear representa-
tion of knowledge. For the purpose of knowledge dis-
covery it is often useful to replace the original attribute
values of an information system with more general cat-
egories, such as value ranges and higher level concepts.
Thus, patterns not visible within the original database
may become visible.
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{Light, Medium, Heavy} C Any(Weight)

Figure 1: Examples of concept hierarchies for Table 1.

In our opinion, the procedure of information gener-
alization should be guided by domain experts, because
deep understanding of the meaning of the higher level
concepts is required. By identifying relevant attributes
and guiding the generalization to a certain level in the
concept hierarchy, the domain expert can obtain an
appropriate generalized information system.

An attribute is generalizable if there exists a con-
cept hierarchy for the attribute. Otherwise, it is non-
generalizable. If an attribute is generalizable, it can
be generalized to a higher level by concept tree ascen-
sion, which corresponds to the climbing generalization
trees generalization rule (Cai et al. 1991). If an at-
tribute is nongeneralizable, it can be removed, which
corresponds to the dropping conditions generalization
rule (Michalski 1983). This removal can be viewed
as a generalization to the most general concept ANY.
The replacement of the value in a tuple by a higher
level concept generalizes the tuple by making it cover
more cases than the original one. The final generalized
information system may coasist of only a small num-
ber of distinct tuples. Table 2 shows the result of the



Make _Model Fuel Disp Weight Cyl Power Turbo Comp Tran Mileage CNo
USA EFI Medium | Medium | 6 High yes high auto medium 1
USA EFI Medium | Medium 6 High no medium manu medium 3
USA EFI Medium | Heavy 6 High no high manu medium 1
USA EF1 Medium | Medium | 6 High no high manu | medium 2
USA EF1 Medium | Light 6 High yes high manu { high 1
UsSA EFI Medium | Medium | 4 Medium | no medium | manu | medium 2
USA EF1 Medium | Heavy 6 High no medium manu low 1
Japan 2-BBL | Small Light 4 Low no high manu high 1
USA 2-BBL | Small Medium 4 Low no high manu medium 1
USA 2-BBL | Small Medium 4 Medium no high auto medium 1
Japan EFI Small Medium | 4 Low no high manu | high 1
Japan EFI Medium | Light 4 Medium | no medium | manu | high 1
Japan EFI Small Medium 4 High yes high manu high 1
Japan 2-BBL | Small Medium 4 Low no medium manua high 1
USA EFI Medium | Medium 4 High yes medium manu medium 1
USA EFI Medium | Heavy 6 High no medium | auto low i
USA EFI Medium | Medium 6 High no medium auto medium 1
UsaA EFI Mediam | Medium 4 High no medium auto medium 1
Japan EFI Small Medium 4 Medium | no high manu high 1
USA EF1 Small Medium 4 Medium no high manu high 2

Table 2: A generalized car information system.

generalized car information system created by gener-
alizing the attributes “Make_Model” and “Weight” to
a higher level. The levels of the other attributes are
already considered appropriate. The numeric column
“CNo” is the number of tuples in the original database
which support the generalized tuple. It provides a mea-
sure of strength or confidence associated with the tu-
ple (Ziarko 1991). A generalized information system
maintains the relationship among generalized data in
different attributes for a frequently queried data set.

The following simple algorithm extracts a general-
ized information system from a relation R. More so-
phisticated algorithms are given in (Han 1994) and
(Carter and Hamilton 1995).

Generalization Algorithm: Extracts a generalized
information system from a relation.
Input: (i) A set of task-relevant data R, a relation
of arity n with a set of attributes 4; (1 <1 < n);
(ii) a set H of concept hierarchies, where each
H; € H is a hierarchy on the generalized
attribute A;, if available;
(iii) & is the specified level for attribute A;;
Output: The generalized information system R’
R « R
fori=1tondo
if A; is not generalizable then
Remove attribute A; from R’
else
if level is not appropriate then
Ascend tree H; to the specified level I;
and make appropriate substitutions in R’
endif
endif
endfor
Remove duplicates from R’
Suppose there are n tuples in a database table with
a attributes. The time for substituting the lower level
concepts by the higher level concepts is an for all at-
tributes and the time for deleting redundant tuples is
nlogn. Thus, the total time is at most (an + nlogn).
Since a are much smaller than n in a large database,
the time complexity of the attribute-oriented method

is O(nlogn).

Discovery of Empirical Keys, Minimal
Relations, and Core Attributes

Suppose we wish to discover minimal relations char-
acterizing Japanese cars using subset of attributes in
the car information system. This discovery task can be
represented as an SQL-like request (Cai et al. 1991)
that includes the attribute “Make_Model=Japan”.
The result of the query is the relation shown in Ta-
ble 3.

The tuples in a generalized information system rep-
resent a certain relationship between attributes of the
objects (cars). Every relationship among attributes A
corresponds to a classification of objects of an informa-
tion system into disjoint equivalence classes where ob-
jects belonging to the same equivalence class have the
same attribute values. The classification correspond-
ing to the set of attributes A can be represented by
an equivalence relation R(4) C OBJ x OBJ. Two
relationships, one between attributes @ and the other
between attributes P, of an information system are
equivalent if they produce the same classification of
OBJ, that is if R(P) = R(Q).

Based on the above observations, one can see that
the same relationship may be described in a simpler
way by using the technique of attribute reducts (Pawlak
1991), resulting in a simpler information representa-
tion and better understanding of the nature of the re-
lationship. A reduct is a minimal sufficient subset of
attributes RED C A such that

(a) R(RED) = R(A), i.e., RED produces the same
classification of objects as the whole attribute collec-
tion A, and

(b) for any a € RED, R(RED — {a}) # R(A), that
is, a reduct is a minimal subset with respect to the
property {a).

By definition, each reduct represents an alterna-
tive and simplified way of expressing the same rela-
tionship between attributes. It is easy to see that
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Fuel Disp Weight Cyl Power Turbo Comp Tran Mileage CNo
2-BBL Small Light 4 Low no high manu high i
EFI Small Medium 4 Low no high manu high 1
EFI Medium Light 4 Medium no medium manu high 1
EFI Small Medium 4 High yes high manu high 1
2-BBL Small Medium 4 Low no medium manu high 1
EFI Small Medium 4 Medium no high manu high 1

Table 3: A generalized car information system.

reduct has the same properties as key defined in re-
lational database theory (with respect to a specific
instance of a relation only), and therefore it can be
called an empirical key in this context. For exam-
ple, in the generalized information system given in Ta-
ble 3 one can identify the following reducts (empiri-
cal keys): {Fuel, Weight, Power}, {Fuel, Power, Comp}
and {Weight, Power, Comp}. The projections of Ta-
ble 3 on above empirical keys result in three different
minimal relations.

The core attributes are the ones which cannot be
eliminated from A without affecting our ability to clas-
sify an object into a particular relationship category.
They are the most significant attributes in the ana-
lyzed relationship. The core attribute set is equal to
the intersection of all computed reducts (Pawlak 1991).
For example, the core attribute set of the generalized
information system given in Table 3 is “Power” which
means that it is the fundamental factor in the relation-
ship between the given attributes. In other words, the
relationship class of an object cannot be determined
without knowing “Power” attribute values.

Discovery of Discrimination Rules

In this section, a method for discovering discrimina-
tion rules using rough set theory is introduced. Sup-
pose our objective is to discover a set of decision
rules which identify the features of a car that de-
termine the “Mileage”. The discovery task extracts
the relevant set of data shown in Table 2 from the
car’s database. In such an information table, at-
tributes A can be partitioned into two (disjoint) sub-
sets, the condition attributes C and decision attributes
D. Let R*(C) = {X1,Xa,..., Xn} be the collection
of equivalence classes of the relation R(C), and let
R*(D) = {V1,Y2,...,Ym} be the collection of equiva-
lence classes of the relation R(D), where each element
Yi is a group of objects having the same values for
all attributes in D and creates a concept on the uni-
verse U. The pair AS = (U, R(C)) is called an ap-
prorimation space (Pawlak 1991). The lower approz-
imation in the approximation space AS, denoted as
LOW/(C, D), is defined as the union of those equiva-
lence classes in R*(C') which are completely contained
by one of the equivalence classes Y; € R*(D), that is
LOW(C,D) = Uv,er-(py{X € R*(C) : X CYi}. The
degree of dependency K (C, D) in the relationship be-
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tween the groups of attributes C and D can be defined
as I{(C,D) = M%)Q&H' where card yields set
cardinality. The dependency between two sets of at-
tributes C' and D indicates the extent to which val-
ues of attributes in D depend on the values of at-
tributes in C. By definition, 0 < K(C,D) < 1 be-
cause LOW(C,D) CU. If K(C, D) is equal to 1, the
dependency, as represented in the information system
table, is fully functional. K(C, D) is equal to 0 when
none of the values of attributes in D can be uniquely
determined from the values of attributes in C.

Attribute Reduction

A relative reduct (Pawlak 1991) is a minimal sufficient
subset of a set of attributes which preserves the degree
of dependency with respect to another set and which
has the same ability to discern concepts as when the
full set of attributes is used.

Definition A subset B of a set of attributes C is a
relative reduct of C with respect to a set of attributes
D if: 1) K(B,D) = K(C,D), and K(B,D) # K(B -
{a}, D), for any a € B.

The first condition ensures that a relative reduct pre-
serves the degree of dependency with respect to D, and
the second condition ensures that a relative reduct is a
minimal subset and that any further removal of condi-
tion attributes will change the degree of dependency.
The following algorithm constructs a relative reduct
for an information system.

Generalization Algorithm: Computes a relative reduct
Input: (i) A generalized information system S;
_ (i) A set of attributes C over S;
(iii) The degree of dependency K(C, D) in S;
Output: A relative reduct SM
Compute the significance value for each attribute a € C
Sort the set of attributes C in ascending order
of the significance values
SM « C
N « |SM|
fori=0to N-1do
Remove the i*" attribute a, from the set SM
if K(SM, D) # K(C, D) then
SM « SM U a;
endif
endfor

First, the algorithm assigns a significance value based
on an evaluation function to each attribute and sorts
the attributes based on their significance values. To
compute a reduct, the algorithm remove attributes one



Make _Model Weight Power Comp Tran Mileage CNo
USA Medium High high auto medium 1
USA Medium | High medium manu medium 4
USA Heavy High high manu | medium 1
USA Medium | High high manu | medium 2
USA Light High high manu high 1
USA Medium Medium medium manu medium 2
USA Heavy High medium manu low 1
Japan Light Low high manu high 1
UsaA Medium Low high manu medium 1
UsaA Medium Medium high auto medium 1
Japan Medium Low high manu high 1
Japan Light Medium | medium | manu | high 1
Japan Medium High high manu high 1
Japan Medium | Low medium | manu | high 1
UsA Heavy High medium | auto low 1
USA Medium | High medium | aute medium 2
Japan Medium Medium high manu high 1
USA Medium | Medium | high manu high 2

Table 4: A relative reduct of the generalized car information system.

by one from set SM. At each step, the degree of depen-
dency is calculated based on the remaining attributes
in the set SM. If the degree of dependency has been
changed, then the attribute is restored to the set SM;
otherwise, the attribute is permanently discarded. The
attributes remaining in set SM at the end form a rel-
ative reduct. Table 4 shows a relative reduct with re-
spect to the decision attribute “Mileage” for the gen-
eralized car information system given in Table 2.

For n objects (tuples) with a attributes, the time
complexity of our algorithm in the worst case is
O((2a + 1)n + aloga), because computing the degree
of dependency (by using a hashing technique) is O(n),
computing attribute significance values is O(an), sort-
ing the attributes based on the significance values is
O(aloga), and creating the relative reduct is O(an).

Simplification of Decision Rules

A rule is a combination of values of some condition at-
tributes such that the set of all objects matching it is
contained in the set of objects labeled with the same
class, and such that there exists at least one such ob-
Ject. Traditionally, a rule r is denoted as an implication

ri(ain = Vi) A @iz = Viz), A A (in = Vin) = (d = Vi)

where a;1, a;9, ..., and a;, are the condition attributes
and d is a decision attribute. The set of attribute-
value pairs occurring on the left hand side of the
rule r is referred to as the rule condition part, de-
noted cond(r), and the right hand side is the deci-
sion part, dec(r), so the rule can be expressed as
cond(r) — dec(r). Including more condition attributes
in cond(r) makes the rule more specific. A reduced in-
formation system can be considered as a set of specific
decision rules RULE = {ry,ry,...,7s}. Each rule in
RULE corresponds to exactly one equivalence class
Xi € R*(RED). Such decision rules can be general-
ized by dropping conditions. The process by which
the maximum number of condition attribute values
are removed without loosing essential information is

called Value Reduction (Pawlak 1991) and the result-
ing rule is called mazimally general or minimal length.
Discovering the optimal rules is of particular impor-
tance in knowledge discovery in databases because they
represent the maximally-general patterns that exist in
databases. The mazimally general rules minimize the
number of rule conditions and are optimal because

their conditions are non-redundant.

To obtain a set of maximally general rules MRULE,
each rule r € RULE is considered for dropping con-
ditions. The algorithm initializes M RULE to empty
and copies one rule r; € RULE to rule r. A condi-
tion is dropped from rule r, and then rule r is checked
for decision consistency with every rule r; € RULE.
If rule r is inconsistent, then the dropped condition
is restored. This step is repeated until every condi-
tion of the rule has been dropped once. The resulting
rule = is a maximally generalized rule. Before rule r is
added to MRULE, it is checked for rule redundancy.
If rule r is logically included in any rule r, € MRULE,
rule r is discarded. If any rules in M RULE are logi-
cally included in rule r, these rules are removed from
MRULE. After all rules in RULE have been pro-
cessed, MRULE contains a set of maximally general
rules.

Generalization Algorithm: Rule Generation
Input: A set of specific decision rules RULE
Output: A set of maximally general ruless MRULE
MRULE « ¢
N « |RULE)]
fori=0to N-1do
rerg
M « |r]
for j=0to M —1do
Remove the j** condition attribute a; in rule r
if r inconsistent with any rule r, € RULE then
Restore the dropped condition a;
endif
endfor
Remove any rule r' € MRULE that is logically
included in rule r
if rule r is not logically included in a rule
r' € MRULE then
MRULE « r| JMRULE
endif
endfor
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Make Model Weight Power Comp Tran Mileage CNo
- Heavy - medium - low 2
USA Medium High - medium 9
USA Medium - medium - medium 8
- Medium - - auto medium 4
USA - Light medium 1
- Heavy - - medium 1
- - Medium medium | high 3
Japan - - - high 6
. Light high 3

Table 5: A set of maximally general rules.

Suppose there are n’ tuples (decision rules) with a’ at-
tributes in the reduced information system. Finding
a maximally general rule for one decision rule requires
O(a’n’) time and finding maximally general rules for n’
decision rules requires O(a’n’?) time. Eliminating re-
dundant rules is O(n’?). Consequently, the time com-
plexity of our algorithm is O((a’ + 1)n'?) = O(a’n’zz.

Table 5 shows the set of maximally general rules
corresponding to the values in Table 4; in Table 5, “-”
indicates “don’t care”. For example, the first entry in
the table corresponds to:

(Weight = Heavy) A (Comp = medium) — (Mileage = low)

The rules in Table 5 are more concise than the original
data in Table 1, and they provide information at a
more abstract level. Nonetheless, they are guaranteed
to give decisions about “Mileage” consistent with the
original data. The higher the value of “CNo”, the more
the rule is confirmed. Usually, we would not rely on
a rule based on one or very few support tuples unless
it is known that the contents of the information table
exhausts all feasible combination values of attributes.

Summary and Conclusions

We presented an approach to knowledge discovery
which provides an effective way to discover hidden pat-
terns and to transform information in a database into
simplified, easily understood form. During the infor-
mation generalization stage, undesired attributes are
eliminated, primitive data are generalized to higher
level concepts according to concept hierarchies and the
number of tuples in the generalized information system
is decreased compared with the original relation. The
rough sets technique, used at the data analysis and
reduction stages, provides an effective tool to analyze
the attribute dependencies and identify irrelevant at-
tributes during the information reduction process. The
rules computed from reduced information system are
usually concise, expressive and strong because they are
in the most generalized form and only use necessary
attributes. The rules represent data dependencies oc-
curring in the database.
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