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Abstract

Knowledge discovery in databases has become an increas-
ingly important research topic with the advent of wide area
network computing. One of the crucial problems we study
in this paper is how to scale machine learning algorithms,
that typically are designed to deal with main memory based
datasets, to efficiently learn from large distributed databases.
We have explored an approach called meta-learning that is
related to the traditional approaches of data reduction com-
monly employed in distributed query processing systems.
Here we seek efficient means to learn how to combine a
number of base classifiers, which are learned from subsets
of the data, so that we scale efficiently to larger learning
problems, and boost the accuracy of the constituent classi-
fiers if possible. In this paper we compare the arbiter tree
strategy to a new but related approach called the combiner
tree strategy.

Introduction
With the coming age of large-scale network computing, it is
likely that orders of magnitude more data in databases will
be available for various learning problems of real world im-
portance. Financial institutions and market analysis firms
have for years attempted to learn simple categorical clas-
sifications of their potential customer base, i.e., relevant
patterns of attribute values of consumer data that predict
a low-risk (high profit) customer versus a high-risk (low-
profit) customer. Many corporations seeking similar added
value from their databases are already dealing with over-
whelming amounts of global information that in time will
likely grow in size faster than available improvements in
machine resources. Furthermore, many existing learning
algorithms require all the data to be resident in main mem-
ory, which is clearly untenable in many realistic databases.
In certain cases, data are inherently distributed and cannot
be localized on any one machine (even by a trusted third
party) for competitive business reasons, as well as statutory
constraints imposed by government. In such situations, it
may not be possible, nor feasible, to inspect all of the data at
one processing site to compute one primary “global” clas-
sifier.

�This work has been partially supported by grants from NSF
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Incremental learning algorithms and windowing tech-
niques aim to solve the scaling problem by piecemeal pro-
cessing of a large data set. Others have studied approaches
based upon direct parallelization of a learning algorithm
run on a multiprocessor. A review of such approaches
has appeared elsewhere (Chan & Stolfo 1995). An alter-
native approach we study here is to apply data reduction
techniques common in distributed query processing where
cluster of computers can be profitably employed to learn
from large databases. This means one may partition the
data into a number of smaller disjoint training subsets, ap-
ply some learning algorithm on each subset (perhaps all in
parallel), followed by a phase that combines the learned re-
sults in some principled fashion. In the case of inherently
distributed databases, each constituent fixed partition con-
stitutes the training set for one instance of a machine learning
program that generates one distinct classifier (far smaller in
size than the data). The classifiers so generated may be a
distributed set of rules, a number of C programs (e.g. “black
box” neural net programs), or a set of “intelligent agents”
that may be readily exchanged between processors in a net-
work. Notice, however, that as the size of the data set and
the number of its partitions increase, the size of each parti-
tion relative to the entire database decreases. This implies
that the accuracy of each base classifier will likely degrade.
Thus, we also seek to boost the accuracy of the distinct
classifiers by combining their collective knowledge.

In this paper we study more sophisticated techniques for
combining predictions generated by a set of base classifiers,
each of which is computed by a learning algorithm applied
to a distinct data subset. In a previous study (Chan & Stolfo
1995) we demonstrate that our meta-learning techniques
outperform the voting-based and statistical techniques in
terms of prediction accuracy. Here we extend our arbiter
tree scheme to a related but different scheme called com-
biner tree. We empirically compare the two schemes and
discuss the relative merits of each scheme. Surprisingly,
we have observed that combiner trees effectively boost the
accuracy of the single global classifier that is trained on the
entire data set, as well as the constituent base classifiers.
(Some of the descriptive material in this paper has appeared
in prior publications and is repeated here to provide a self-
contained exposition.)
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Figure 1: An arbiter and a combiner with two classifiers.

Meta-learning Techniques
Rather than learning weights of some statistical weighting
scheme, our approach is to meta-learn a set of new clas-
sifiers (or meta-classifiers) whose training data are sets of
predictions generated by a set of base classifiers. Arbiters
and combiners are the two types of meta-classifiers studied
here.

We distinguish between base classifiers and ar-
biters/combiners as follows. A base classifier is the outcome
of applying a learning algorithm directly to “raw” training
data. The base classifier is a program that given a test datum
provides a prediction of its unknown class. For purposes of
this study, we ignore the representation used by the classi-
fier (to preserve the algorithm-independent property). An
arbiter or combiner, as detailed below, is a program gener-
ated by a learning algorithm that is trained on the predictions
produced by a set of base classifiers and sometimes the raw
training data. The arbiter/combiner is also a classifier, and
hence other arbiters or combiners can be computed from the
set of predictions of other arbiters/combiners.

Arbiter An arbiter (Chan & Stolfo 1993b) is learned by
some learning algorithm to arbitrate among predictions gen-
erated by different base classifiers. This arbiter, together
with an arbitration rule, decides a final classification out-
come based upon the base predictions. Figure 1 depicts how
the final prediction is made with predictions from two base
classifiers and a single arbiter.

Let x be an instance whose classification we seek, C1(x),
C2(x), ... Ck(x) are the predicted classifications ofx from k
base classifiers, C1,C2, ... Ck, andA(x) is the classification
of x predicted by the arbiter. One arbitration rule studied
and reported here is as follows:

� Return the class with a plurality of votes in C1(x), C2(x),
... Ck(x), andA(x), with preference given to the arbiter’s
choice in case of a tie.

We now detail how an arbiter is learned. A training set
T for the arbiter is generated by picking examples from the
validation set E. The choice of examples is dictated by a
selection rule. One version of the selection rule studied here
is as follows:

� An instance is selected if none of the classes in the k base
predictions gathers a majority vote (> k=2 votes); i.e.,
T = fx 2 E j no majority(C1(x); C2(x); :::Ck(x))g:

The purpose of this rule is to choose examples that are
confusing; i.e., the majority of classifiers do not agree. Once
the training set is formed, an arbiter is generated by the
same learning algorithm used to train the base classifiers.
Together with an arbitration rule, the learned arbiter resolves
conflicts among the classifiers when necessary.

Combiner In the combiner (Chan & Stolfo 1993a) strat-
egy, the predictions of the learned base classifiers on the
training set form the basis of the meta-learner’s training
set. A composition rule, which varies in different schemes,
determines the content of training examples for the meta-
learner. From these examples, the meta-learner generates a
meta-classifier, that we call a combiner. In classifying an
instance, the base classifiers first generate their predictions.
Based on the same composition rule, a new instance is gen-
erated from the predictions, which is then classified by the
combiner (see Figure 1). The aim of this strategy is to co-
alesce the predictions from the base classifiers by learning
the relationship between these predictions and the correct
prediction. In essence a combiner computes a prediction
that may be entirely different from any proposed by a base
classifier, whereas an arbiter chooses one of the predictions
from the base classifiers and the arbiter itself.

We experimented with two schemes for the composition
rule. First, the predictions, C1(x), C2(x), ... Ck(x), for
each example x in the validation set of examples, E, are
generated by the k base classifiers. These predicted classi-
fications are used to form a new set of “meta-level training
instances,” T , which is used as input to a learning algorithm
that computes a combiner. The manner in which T is com-
puted varies as defined below. In the following definitions,
class(x) and attribute vector(x) denote the correct clas-
sification and attribute vector of example x as specified in
the validation set, E.

1. Return meta-level training instances with the cor-
rect classification and the predictions; i.e., T =
f(class(x); C1(x); C2(x); :::Ck(x)) j x 2 Eg: This
scheme was also used by Wolpert (1992). (For further
reference, this scheme is denoted as class-combiner.)

2. Return meta-level training instances as in class-combiner
with the addition of the attribute vectors; i.e., T =
f(class(x); C1(x); C2(x); ::::Ck(x);
attribute vector(x)) j x 2 Eg: (This scheme is denoted
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Figure 2: Sample arbiter tree.

as class-attribute-combiner.)

Arbiter Tree
In the previous section we discussed how an arbiter is
learned and used. The arbiter tree approach learns arbiters
in a bottom-up, binary-tree fashion. (The choice of a binary
tree is to simplify our discussion.) An arbiter is learned from
the output of a pair of learned classifiers and recursively, an
arbiter is learned from the output of two arbiters. A binary
tree of arbiters (called an arbiter tree) is generated with the
initially learned base classifiers at the leaves. For k subsets
and k classifiers, there are log2(k) levels generated.

When an instance is classified by the arbiter tree, predic-
tions flow from the leaves to the root. First, each of the leaf
classifiers produces an initial prediction; i.e., a classifica-
tion of the test instance. From a pair of predictions and the
parent arbiter’s prediction, a prediction is produced by an
arbitration rule. This process is applied at each level until
a final prediction is produced at the root of the tree.

We now proceed to describe how to build an arbiter tree
in detail. For each pair of classifiers, the union of the data
subsets on which the classifiers are trained is generated. This
union set (the validation set) is then classified by the two
base classifiers. A selection rule compares the predictions
from the two classifiers and selects instances from the union
set to form the training set for the arbiter of the pair of
base classifiers. To ensure efficient computation, we bound
the size of the arbiter training set to the size of each data
subset; i.e., the same data reduction technique is applied to
learning arbiters. The arbiter is learned from this set with the
same learning algorithm. In essence, we seek to compute a
training set of data for the arbiter that the classifiers together
do a poor job of classifying. The process of forming the
union of data subsets, classifying it using a pair of arbiter
trees, comparing the predictions, forming a training set, and
training the arbiter is recursively performed until the root
arbiter is formed.

For example, suppose there are initially four training data
subsets (T1�T4), processed by some learning algorithm,L.
First, four classifiers (C1 �C4) are generated from T1 �T4.
The union of subsets T1 and T2, U12, is then classified by
C1 and C2, which generates two sets of predictions (P1
and P2). A selection rule generates a training set (T12) for
the arbiter from the predictions P1 and P2, and the subset
U12. The arbiter (A12) is then trained from the set T12 using
the same learning algorithm (L) used to learn the initial

classifiers. Similarly, arbiter A34 is generated in the same
fashion starting from T3 and T4 and hence all the first-level
arbiters are produced. Then U14 is formed by the union of
subset T1 through T4 and is classified by the arbiter trees
rooted with A12 and A34. Similarly, T14 and A14 (root
arbiter) are generated and the arbiter tree is completed. The
resultant tree is depicted in Figure 2.

This process can be generalized to arbiter trees of higher
order. The higher the order is, the shallower the tree be-
comes. In a parallel environment this translates to faster
execution. However, there will logically be an increase
in the number of disagreements and higher communication
overhead at each level in the tree due to the arbitration of
many more predictions at a single arbitration site.

Combiner Tree
The way combiner trees are learned and used is very sim-
ilar to arbiter trees. A combiner tree is trained bottom-up
and classifications also propagate bottom-up. A combiner,
instead of an arbiter, is at each non-leaf node of a combiner
tree. To simplify our discussion, we describe how a binary
combiner tree is used and trained.

To classify an instance, each of the leaf classifiers pro-
duces an initial prediction. From a pair of predictions, the
composition rule is used to generate a meta-level instance,
which is then classified by the parent combiner. This process
is applied at each level until a final prediction is produced
at the root of the tree.

Another significant departure from arbiter trees is that for
combiner trees, a random set of examples (the validation
set) is selected at each level of learning in generating a
combiner tree instead of choosing a set from the union of
the underlying data subsets according to a selection rule.
Before learning commences, a random set of examples is
picked for each level of the combiner tree.1 To ensure
efficient processing, the size of these random training sets
is limited to the size of the initial subsets used to train base
classifiers. Base classifiers are learned at the leaf level from
disjoint training data. Each pair of base classifiers produce
predictions for the random training set at the first level.
According to the composition rule, a meta-level training set
is generated from the predictions and training examples. A
combiner is then learned from the meta-level training set.
This process is repeated at each level until the root combiner
is created, similar to how an arbiter tree is produced.

The arbiter and combiner tree strategies have different
impact on efficiency. The arbiter tree approach we have
implemented requires the classification of, possibly, the en-
tire data set at the root level. This might be expensive for
certain learning algorithms whose classification time is not
relatively insignificant to the training time. The combiner
tree approach, however, always classifies at most the size of
the meta-level training set. Therefore, combiner trees can
be generated more efficiently than arbiter tress in certain
cases.

1In earlier experiments, for efficiency reasons, we only ran-
domly picked one set of training examples for all levels and the
results obtained were not as robust as those reported here.
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Figure 3: Accuracy for the arbiter tree techniques.

Experiments and Results

Two inductive learning algorithms were used in our ex-
periments reported here. ID3 (Quinlan 1986) and CART
(Breiman et al. 1984) were obtained from NASA Ames
Research Center in the IND package (Buntine & Caruana
1991). They are both decision tree learning algorithms that
require all training examples to be resident in main memory.

Two data sets were used in our studies. The DNA splice
junction (SJ) data set (courtesy of Towell, Shavlik, and
Noordewier (1990)) contains sequences of nucleotides and
the type of splice junction, if any, at the center of each
sequence. Exon-intron, intron-exon, and non-junction are
the three classes in this task. Each sequence has 60 nu-
cleotides with eight different values per nucleotide (four
base ones plus four combinations). The data set contains
3,190 training instances. The protein coding region (PCR)
data set (courtesy of Craven and Shavlik (1993)) contains
DNA nucleotide sequences and their binary classifications
(coding or non-coding). Each sequence has 15 nucleotides
with four different values per nucleotide. The PCR data
set has 20,000 sequences. The two data sets chosen in our
experiments represent two different kinds of data sets: one
is difficult to learn (PCR at 70+% accuracy) and the other
is easy to learn (SJ at 90+%).

In our experiments, we varied the number of equi-sized
subsets of training data from 2 to 64 ensuring each was

disjoint but with proportional distribution of examples of
each class (i.e., the ratio of examples in each class in the
whole data set is preserved). We also varied the order of the
arbiter/combiner trees from two to eight. For the combiner
trees, both the class-combiner and class-attribute-combiner
strategies were evaluated. The prediction accuracy on a
separate test set is our primary comparison measure. The
different strategies were run on the two data sets with the
two learning algorithms. The results from the arbiter trees
are plotted in Figure 3, which were reported in an earlier
study (Chan & Stolfo 1995) and are included here for com-
parison purposes. The results from the combiner trees are
in Figure 4. The accuracy for the serial case is plotted as
“one subset,” meaning the learning algorithms were applied
to the entire training set to produce the baseline accuracy
results for comparison. The classifier learned from the en-
tire training set is called the global classifier. The plotted
accuracy is the average of 10-fold cross-validation runs.
Statistical significance was measured using the one-sided
t-test with 90% confidence value.

We first examine the results from the arbiter tree strategy.
For the splice junction data set, there is a drop in accuracy,
compared to the global classifier, when the number of sub-
sets increases. Also, the higher order trees are generally less
accurate than the lower ones. However, in the protein cod-
ing region domain, the accuracy is maintained, or exceeded
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Figure 4: Accuracy for the combiner tree techniques.



in some circumstances, regardless of the order of the trees.
Recall that at each tree level, the size of the arbiter training

set is fixed to the size of the initial data subset partition used
to train the base classifiers. If we relax the restriction on the
size of the data set for training an arbiter, we might expect an
improvement in accuracy at the expense in processing time.
To test this hypothesis, a set of experiments was performed
to double the maximum training set size for the arbiters
(denoted as “max x2”). As we observe in Figure 3, by
doubling the arbiter training set size, the original accuracy is
roughly maintained by the binary trees in the splice junction
domain, regardless of the learner. The binary trees are
generally more accurate, with statistical significance, than
higher-order trees in the splice junction domain.

For the class-combiner tree strategy (Figure 4), there is
a drop in accuracy in both data sets in most cases, com-
pared to the global classifier, when the number of subsets
increases. The drop varies from 3% to 15%. The binary
combiner trees are statistically less accurate than higher or-
der trees. This might be due to the lack of information for
finding correlations among only two predictions and the cor-
rect classification. As in the experiments for arbiter trees,
we doubled the size of meta-level training sets. Statisti-
cally significant improvements were observed in the splice
junction case with CART as the learner. In general, the
class-combiner tree strategy tends toward lower accuracy in
most of our experiments.

For the class-attribute-combiner tree strategy (Figure 4),
the binary trees appear to maintain the accuracy except in the
splice junction data set with CART as the learner. Higher-
order trees were generally less accurate. Doubling the size
of the training sets for combiners improved accuracy. For
the protein coding regions data set, the accuracy of the bi-
nary trees was consistently higher than that from the global
classifiers; i.e., this meta-learning strategy has demonstrated
a means of boosting accuracy of a single classifier trained
on the entire data set. The improvement is statistically sig-
nificant. This is a particularly interesting finding since the
information loss due to data partitioning was more than re-
covered by the combiner tree. Thus, we have demonstrated
a means of combining the collective knowledge distributed
among the individual base classifiers.

In summary, from our experiments, the class-combiner
tree strategy does not perform as well in maintaining or
boosting accuracy as the arbiter or class-attribute-combiner
tree strategies. Relatively less information in the meta-level
training sets is likely the contributing factor. Higher order
trees are usually less accurate. This is probably due to the
decrease in opportunities for correcting predictions when
the height of the tree decreases. The relatively poor per-
formance of one-level (non-tree) meta-learning techniques
compared to the multi-level (tree) schemes in our earlier
study (Chan & Stolfo 1995) also provides support for this
observation. Increasing the size of the meta-level training
sets improves the accuracy of the learned trees, a likely re-
sult from the simple observation that more data are available
for training. The experimental data convincingly demon-
strate that doubling the training set size of the meta-level

partitions is sufficient to maintain the same level of accuracy
as the global classifier, and indeed may boost accuracy as
well.

Concluding Remarks
In a previous study (Chan & Stolfo 1995) we demonstrated
that the meta-learning strategies outperform the voting-
based and statistical techniques reported in the literature.
We also showed that the arbiter tree approach is viable in
sustaining the same level of accuracy as the global classifier
learned from the entire data set. Empirical results presented
in this paper show that the class-attribute-combiner tree
strategy can also sustain the accuracy level achieved by the
global classifier. In a few cases the global classifier’s ac-
curacy was consistently exceeded; i.e., meta-learning can
boost the accuracy of a single classifier trained on the entire
data set. The combiner tree strategies might also have an
advantage of faster tree construction over the arbiter tree
strategy for certain learning algorithms. Furthermore, our
techniques are also data and algorithm-independent, which
enable any learning algorithm to train on large data sets.

We are investigating meta-learners that are specialized in
combining decisions. Learners that search M-of-N concepts
and other counting-related decision rules might be useful in
locating effective combining rules. We are also studying
the use of multiple learning algorithms in generating base
classifiers to improve overall prediction accuracy. Experi-
ments on testing our techniques in a parallel and distributed
environment are in progress.
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