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Abstract 

Finding the “right” number of clusters, Ic, for a data 
set is a difficult, and often ill-posed, problem. In 
a probabilistic clustering context, likelihood-ratios, 
penalized likelihoods, and Bayesian techniques are 
among the more popular techniques. In this paper 
a new cross-validated likelihood criterion is investi- 
gated for determining cluster structure. A practi- 
cal clustering algorithm based on Monte Carlo cross- 
validation (MCCV) is introduced. The algorithm per- 
mits the data analyst to judge if there is strong evi- 
dence for a particular Ic, or perhaps weaker evidence 
over a sub-range of lc values. Experimental results 
with Gaussian mixtures on real and simulated data 
suggest that MCCV provides genuine insight into clus- 
ter structure. v-fold cross-validation appears inferior 
to the penalized likelihood method (BIC), a Bayesian 
algorithm (AutoClass v2.0), and the new MCCV al- 
gorithm. Overall, MCCV and AutoClass appear the 
most reliable of the methods. MCCV provides the 
da&miner with a useful data-driven clustering tool 
which complements the fully Bayesian approach. 

Introduction 
Cluster analysis is the process of automatically search- 
ing for natural groupings in a data set and extracting 
characteristic descriptions of these groups. It is a fun- 
damental knowledge discovery process. Clustering al- 
gorithms (of which there are many) typically consist of 
a specification of both (1) a criterion for judging the 
quality of a given grouping and (2) a search method 
for optimizing this criterion given data (see Jain and 
Dubes (1988) for an overview). 

A particularly vexing question, which is often glossed 
over in published descriptions of clustering algorithms, 
is “how many clusters are there in the data ?,, . Formal 
methods for finding the “optimal” number of clusters 
are few. Furthermore, “optimality” can be difficult to 
pin down in this context without some assumptions be- 
ing made. One viewpoint is that the problem of finding 
the best number of clusters is fundamentally ill-defined 
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and best avoided (cf. Gelman et al, Page 424, in a mix- 
ture modelling context). While we sympathize with 
this view we adopt a more pragmatic approach in this 
paper, namely, let the data tell us as much as possible 
about cluster structure, including the number of clus- 
ters in the data. If either the data are too few, or the 
measurement dimensions too noisy, then the data may 
not reveal much. However, when the data contain in- 
teresting structure one seeks an algorithmic technique 
which can reveal this structure. A fundamental point 
is that the process of structure discovery in data needs 
to be interactive, i.e., the data analyst must interpret 
the results as they see fit. 

In this paper we limit our attention to Gaussian 
mixture models: however, any probabilistic cluster- 
ing model for which a likelihood function can be de- 
fined is amenable to the proposed approach. The 
method could conceivably be extended to clustering 
algorithms which do not possess clear probabilistic se- 
mantics (such as the k-means family of algorithms), 
but this is not pursued here. 

Probabilistic Clustering Using Mixture 
Models 

Finite Mixture Models 
The probabilistic mixture modelling approach to clus- 
tering is well-known: one assumes that the data are 
generated by a linear combination of component den- 
sity functions resulting in a mixture probability density 
function of the form: 

where g is a particular value of a d-dimensional feature 
vector X, Ic is the number of components in the model, 
& are the parameters associated with density compo- 
nent gj, the oj are the ‘&weights” for each component 
j, and @pk = {or,. . . ,cYL,&, . . . ,&} denotes the set of 
parameters for the overall model. We will adopt the 
notation that &k denotes parameters which have been 
estimated from data. It is assumed that Cj oj = 1 
and oj > 0, 1 5 j 5 k. 

From: KDD-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



Estimating the Clusters from Data 
Clustering (in this mixture model context) is as follows: 

1. 

2. 

Assume that the data are generated by a mixture 
model, where each component is interpreted as a 
cluster or class Wj and it assumed that each data 
point must have been generated by one and only 
one of the clauses wj . 

Given a data set where it is not known which data 
points came from which components, infer the char- 
acteristics (the parameters) of the underlying den- 
sity functions (the clusters). 

The component density functions are often assumed 
to be multivariate Gaussian with parameters & = 
(kj, Cj) where ~~ and Ej are the mean and covari- 
ante matrix, respectively. Thus the mean kj specifies 
the location of the jth component density in feature 
space and the covariance matrix Cj prescribes how the 
data belonging to component j are typically dispersed 
or scattered around ~~j: The flexibility of this model 
has led to its widespread application, particularly in 
applied statistics (McLachlan and Basford 1988), and 
more recently in machine learning and knowledge dii- 
covery (Cheeseman and Stutz 1996). 

In particular, given an “unlabelled” data set D = 
kb”r gN}, and assuming that the number of clus- 
ters k and the functional forms of the component den- 
sities gj in Equation 1 are fixed, estimate the model 
parameters &. Given &k, one can then calculate the 
probability that data point 4 belongs to class Uj (by 
Bayes’ rule): 

where e^ denotes an estimate of the true parameter 8. 
Here, &j = fi(Uj), i.e., an estimate of the marginal or 
prior for each cluster. Since the mixture likelihood (or 
posterior) surface (as a function of the parameters) can 
have many local maxima, and no closed form solution 
for the global maximum exists, parameter estimation 
for mixtures is non-trivial. Much of the popularity of 
mixture models in recent years is due to the existence of 
efficient iterative estimation techniques (in particular, 
the expectation-maximization (EM) algorithm). 

Choosing the Number of Clusters k 
Above we have assumed that k, the number of clus- 
ters, is known a priori. While there may be situations 
where k is known, one would often like to determine k 
from the data if possible. Prior work on automatically 
finding k can roughly be divided into three categories. 

The classical approach is based on hypothesis test- 
ing, where hypothesis k states that the underlying den- 
sity is a mixture of k components. As discussed in Tit- 
terington, Smith and Makov (1985, Section 5.4), these 

techniques are largely unsatisfactory due to the “fail- 
ure of standard regularity conditions” on the mixture 
likelihood function. 

A second approach is the full Bayesian solution 
where the posterior probability of each value of k is 
calculated given the data, priors on the mixture pa- 
rameters, and priors on k itself. A potential difficulty 
with this approach is the computational complexity of 
integrating over the parameter space to get the pos- 
terior probabilities on k. The AutoClass algorithm 
(Cheeseman and Stutz 1996) uses various approxima- 
tions to get around the computational issues. Sampling 
techniques have also been applied to this problem with 
some success (cf. Diebolt and Robert 1994). 

A third method (related to the Bayesian approach, 
see Chickering and Heckerman, 1996) is that of pe- 
nalized likelihood (such as the Bayesian Informa- 
tion Criterion (BIC) and various coding-based (e.g., 
MDL/MML) criteria). A penalty term is added to 
the log-likelihood to penalize the number of param- 
eters (e.g., Sclove 1983). A significant problem here 
is that the general assumptions underlying the asymp- 
totic optimality of the penalized criteria do not hold 
in the mixture modelling context (Titterington, Smith 
and Makov, Section 5.4). 

In theory, the full Bayesian approach is fully opti- 
mal and probably the most useful of the three meth- 
ods listed above. However, in practice it is cumber- 
some to implement, it is not necessarily straightfor- 
ward to extend to non-Gaussian problems with depen- 
dent samples, and the results will be dependent in a 
non-transparent manner on the quality of the under- 
lying approximations or simulations. Thus, there is 
certainly room for exploring alternative methods. 

Cross-Validated Likelihood for 
Choosing k 

Let f(z) be the “true” probability density function for 
:. Let D={gl,..., gN} be a random sample from f. 
Consider that we fit a set of finite mixture models with 
k components to D, where k ranges from 1 to k,,,. 
Thus,- we have an indexed set of estim$ed models, 
f&l%& 15 k I knax, where each fk(g.(+k) has been 
fitted to data set D. 

The data log-likelihood for the kth model is defined 
as 

Lk(D) = 106@fk(i?&@k)) = &.)g f&,&). 
kl id 

(3) 
Assume that the parameters for the kth mixture model 
were estimated by maximizing this likelihood as a func- 
tion of @.k, keeping the data D fixed (standard maxi- 
mum likelihood estimation). We then get that Lk (D) is 
a non-decreasing function of k since the increased flex- 
ibility of more mixture components allows better fit 
to the data (increased likelihood). Thus, Lk(D) can 
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not directly provide any clue as to the true mixture 
structure in the data, if such structure existsl. 

Imagine that we had a large test data set Dtest which 
is not used in fitting any of the models. Let &(Dteet) 
be the log-likelihood as defined in Equation 3, where 
the models are fit to the training data D but the liieli- 
hood is evaluated on Dtwt. We can view thii likelihood 
as a function of the “parameter” k, keeping all other 
parameters and D fixed. Intuitively, thii “test like- 
lihood” should be a more useful estimator (than the 
training data likelihood) for comparing mixture mod- 
els with different numbers of components. 

However, in practice, we can not afford, or do 
not have available, a large independent test set such 
as Dtest. Let &’ be a cross-validation estimate of 
&I,(Dtest)-we discuss in the next section the particu- 
lars of how tikv is calculated. What can er tell us 
about how close the model fk(zl&) is to the true 
data-generating density f? Following Silverman (1986, 
p.53) and Chow, Geman, and Wu (1983) , it can be 
shown under appropriate assumptions that 

+r] = -E[JfWog fk;QE] +c (4) 

where C is a constant independent of k and fk(gl&k), 
and the expectation E is taken with respect to all ran- 
dom samples of size Nt generated from the true density 
f(a). Nt is the amount of data used to train the model, 
which in a cross-validation setup will be less than N. 

The term in square brackets is the Kullback- 
Leibler (K-L) information distance between f (2) and 
fk(&@kh namely r(f,fk(&k))- I(f,fk(&k)) is strictly 
positive unless f = fk(&k). Thus, the k which mini- 
mizes I(f, f&(&k)) tells us which of the mixture mod- 
els is closest to the true density f. From Equation 4, 
& is an approximately unbiased estimator (within a 
constant) of the expected value of the K-L distance 
-I(f, fk($k)). Given that f (and r(f, fk(6k))) is un- 
known, maximizing &kv over k is a reasonable esti- 
mation strategy and is the approach adopted in this 
paper. 

A Monte Carlo Cross-Validated 
Clustering Algorithm 

Choosing a Particular Cross-Validation 
Method 
There are several possible cross-validation methods 
one could use to generate &. v-fold cross validation 

22s v 
consists of partitioning the data into v disjoint 
. = 1 yields the well-known “leave-one-out” 

cross validated estimator, but thii is well-known to 
suffer from high variance. v = 10 has been a popu- 
lar choice in practice (e.g., the CART algorithm for 

‘naditionally this is the departure point for penalized 
likelihood and likelihood ratio testing methods. 

decision tree classification). In Monte Carlo cross val- 
idation (MCCV) the data are partitioned M times into 
disjoint train and test subsets where the test subset is 
a fraction p of the overall data (Burman 1989, Shao 
1993). The key distinction between MCCV and vCV 
is that in MCCV the diierent test subsets are cho- 
sen randomly and need not be disjoint. Typically ,f3 
can be quite large, e.g., 0.5 or larger, and hundreds or 
thousands of runs (M) can be averaged. In the regres- 
sion context it was shown by Shao (1993) that keeping 
/3 relatively large reduces estimation variability in the 
test data (compared to vCV methods). Intuitively, the 
MCCV estimates should be unbiased (being an aver- 
age of M individually unbiased estimates) and have 
desirable variance properties: however, there are few 
theoretical results available on MCCV in general and 
none on MCCV in a likelihood estimation context. 

Specification of the MCCV Algorithm 
The algorithm operates as follows. The outer loop 
consists of M cross-validation runs over M randomly- 
chosen train/test partitions. For each partition, k is 
varied from 1 to km, and the EM algorithm is used to 
fit the k components to the training data. 

The EM algorithm is initialized using a variant of the 
k-means algorithm, which is itself initialized randomly. 
To avoid local minima, the k-means algorithm is run t 
times (default value is t = 10) from different starting 
points and the highest likelihood solution used to begin 
the EM estimation. The EM estimation is constrained 
away from singular solutions in parameter space by 
limiting the diagonal elements of the component co- 
variance matrices Ej to be greater than c (default value 
is c = 0.001~ where 0 is the standard deviation of the 
unclustered data in the relevant dimension). The EM 
algorithm iterates until the change in likelihood is less 
than 6 (default value is 6 = 10m6), or up to a prespec- 
ified maximum number of iterations (default is 30), 
whichever occurs first. Keeping the maximum number 
of EM iterations small allows for quicker execution of 
the algorithm: the intuition is that since we are av- 
eraging multiple cross-validation runs, it is sufficient 
that the EM estimates be somewhere near a peak in 
the likelihood surface-this assumption warrants fur- 
ther investigation. 

Each of the fitted models with k components are 
then applied to the unseen data in the test partition, 
and the test-data log-likelihood (Equation 3) is calcu- 
lated for each. As indicated earlier, this is repeated M 
times, and the M cross-validated estimates are aver- 
aged for each k to arrive at er,, 1 < 1% 5 k,,. Sim- 
ilarly the standard deviation over the M runs can be 
calculated for each k, indicating the variability of the 
likelihood estimates. 

The data analyst can plot the &iv as a function of k 
along with the standard deviations to see what the data 
says about the number of clusters. Another approach 
is to roughly calculate the posterior probabilities for 
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each k, where one effectively assumes equal priors on 
the values of k: 

The distribution of p(klD) is essential to interpreting 
the results in the following sense. If one of the p(klD)‘s 
is near 1, then there is strong evidence for that particu- 
lar number of clusters. If the p(klD)‘s are more spread 
out, then the data are not able to resolve the cluster 
structure, although “bunching” about a particular k 
value may allow one to focus on a sub-range of k. It is 
not recommended that the procedure be implemented 
as a “black-box” where simply the maximum k value 
is reported. 

The complexity of the EM algorithm for fixed k 
is O(kdLNE) where Q is the diiensionality of the 
data, and E denotes the average number of iterations 
of the EM algorithm. Thus, the overall computa- 
tional complexity of the MCCV clustering algorithm 
is O(Mk~,&NE), i.e., linear in the number of sam- 
ples N if one assumes that E does not depend on N. 

Experimental Results 
Overall Experimental Methodology 
The MCCV algorithm was evaluated on both simu- 
lated and real data sets. Unless stated otherwise, the 
algorithm was run with M = 20 (the number of runs) 
and p = 0.5 (the fraction of data left out in each run). 
The value of M = 20 was chosen for pragmatic rea- 
sons to reduce simulation time (the MCCV procedure 
is currently coded in MATLAB which is not particu- 
larly efficient). The value of p = 0.5 was based on some 
initial experimentation which suggested that keeping 
the cross-validation train and test partitions roughly 
the same size gave better results than the more “tra- 
ditional” 90/10 type partitions. Other details of these 
experiments are omitted here due to lack of space. 

Three other methods were compared to MCCV: 
AutoClass ~2.0 (from the authors at NASA Ames), 
vCV (with v = lo), and BIC (using the standard 
(qk/2) log N penalty term where qk is the number of 
parameters in the mixture model with k components). 
The v-CV and BIC methods used the same version of 
the EM algorithm as MCCV. The maximum number 
of classes for each of the algorithms (km,) was set to 
8 or 15, depending on the true number of classes in the 
data. 

It is important to note that all of the algorithms have 
random components. The initialization of the EM al- 
gorithm (used by each of the clustering algorithms) for 
fIxed k is based on randomly choosing k initial clus- 
ter means. The cross-validation algorithms contain 
further randomness in their choice of particular parti- 
tions of the data. Finally, the simulated data sets can 
be regenerated randomly according to the probability 
model. An ideal set of experiments would average over 
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(a) 2-class data. 

(b) 3-class data. 

(c) Cclass data. 

Figure 1: 2-d scatterplots of simulated data. 
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all of these sources of randomness. Thus, although the 
experiments in principle could be more extensive (for 
example, by averaging results over multiple simulated 
realiiations of the simulated problems for a given N) 
they nonetheless provide clear insight into the general 
behavior of the algorithms. 

Experiments were run on relatively small-sample, 
low-dimensional data sets (Figures 1 and 2). From 
a data mining viewpoint this may seem uninteresting. 
In fact, the opposite is true. Small sample sizes axe 
the most challenging problems for methods which seek 
to extract structure from data (since the MCCV algo- 
rithm scales roughly linearly with sample size, scaling 
up to massive data sets does not pose any particu- 
lar problems). The focus on low-dimensional problems 
was driven by a desire to evaluate the method on prob- 
lems where the structure can easily be visualized, the 
availability of well-known data sets, and the use (in 
this paper) of full-covariance Gaussian models (which 
scale poorly with dimensionality from an estimation 
viewpoint). For all data sets the classes are roughly 
equiprobable. 

Finally due to space limitations we only summarize 
the experimental results obtained, namely, provide the 
value of k: which maximizes the relevant criterion for 
each algorithm. Note that, as discussed in the previ- 
ous section, this is not the recommended way to use 
the MCCV algorithm: rather the full posterior prob- 
abilities and variances for each k should be reported 
and interpreted by the user. 

Details of Experiments on Simulated Data 
Table 1 contains a brief summary of the experimental 
results on simulated data. 

Experiment 1 consisted of a “control” experiment: 
data from a single 2diiensional Gaussian (with C = I 
(the identity matrix)). BIC, AutoClass, and MCCV 
correctly determined the presence of only a single class. 
vCV on the other hand exhibited considerable vari- 
ability and incorrectly detected multiple clusters. In 
general, across different experiments, the vCV method 
(with v=lO) was found to be an unreliable estimator 
compared to the other methods. 

The second simulation problem consists of 2 Gaus- 
sian clusters in 2 dimensions, both with covariance ma- 
trices Cl = C2 = I and means ~1 = (0,0),~2 = (0,3). 
There is considerable overlap of the clusters (Figure 
l(a)) making this a non-trivial problem. MCCV finds 
evidence of only one cluster with N = 100, but for N = 
600,120O it correctly finds both clusters. This conser- 
vative tendency of the MCCV algorithm (whereby it 
finds evidence to support fewer clusters given less data) 
is pleasing and was noted to occur across different data 
sets. BIC and AutoClass detected the same number of 
clusters as MCCV: vCV was consistently incorrect on 
this problem. 

The 3-Class problem (Figure l(b)) follows the sim- 
ulated Gaussian structure (in two dimensions) used in 
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(a) 2d iris data. 

(b) 2d diabetes data. 
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(c) Vowel data. 

Figure 2: 2-d scatterplots of real data. 
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Table 1: Experimental results on simulated data. 

Problem Sample Size BIC AC vCV MCCV Truth ’ 
l-Class z”db 1 1 2 1 1 

1 1 1 1 1 
800 1 1 5 1 1 

2-Class 100 1 1 4 1 2 
600 2 2 3 2 2 
1200 2 2 3 2 2 ’ 

3-Class 100 3 3 4 3 3 
600 3 3 3 3 3 
1200 3 3 4 3 3 

CClass 100 2 3 5 3 4 
500 3 4 5 4 4 
1000 4 4 6 4 4 

Banfield and Raftery (1993). Two of the clusters are 
centred at (0,O) but are oriented in “orthogonal” di- 
rections. The third cluster overlaps the “tails” of the 
other two and is centred to the right. MCCV, BIG 
and AutoClass each correctly detected 3 clusters: once 
again, vCV was not reliable. 

The final simulation problem (Figure l(c)) contains 
4 classes and is taken from Ripley (1994) where it was 
used in a supervised learning context (here, the original 
class labels were removed). vCV is again unreliable. 
Each of BIC, MCCV and AutoClass “zero-in” on the 
correct structure given enough data, with BIC appear- 
ing to require more data to find the correct structure. 

Real Data Sets 
Below we discuss the application of MCCV (and the 
comparison methods) to several real data sets. Table 2 
contains a brief summary of the results. Each of these 
data sets has a known classification: the clustering al- 
gorithms were run on the data with the class label 
information removed. Note that unlike the simulated 
examples, the number of classes in the original clsssi- 
fied data set is not necessarily the “correct” answer for 
the clustering procedure, e.g., it is possible that the a 
particular class in the original data is best described 
by two or more “sub-clusters,” or that the clusters are 
in fact non-Gaussian. 
Iris Data The classic “iris” data set contains 150 
Cdimensional measurements of plants classified into 
3 species. It is well known that 2 of the species are 
overlapped in the feature-space and the other is well- 
separated from these 2 (Figure 2(a)). MCCV indi- 
cates 2 clusters with some evidence of 3. AutoClass 
found 4 clusters and BIC found 2 (the fact that vCV 
found 3 clusters is probably a fluke). It is quite possible 
that the clusters are in fact non-Gaussian and, thus, 
do not match the clustering model (e.g., the measure- 
ments have limited precision, somewhat invalidating 
the Gaussian assumption). Given these caveats, and 

the relatively small sample size, each of the methods 
are both providing useful insight into the data. 

Diabetes Data Reaven and Miller (1979) analyzed 
3-dimensional plasma measurement data for 145 sub- 
jects who were clinically diagnosed into three groups: 
normal, chemically diabetic, or overtly diabetic. This 
data set has since been analyzed in the statistical 
clustering literature by Symons (1981) and Banfield 
and Raftery (1993). When viewed in any of the 2- 
dimensional projections along the measurement axes, 
the data are not separated into obvious groupings: 
however, some structure is discernible (Figure 2(b)). 
The MCCV algorithm detected 3 clusters in the data 
(as did uCV and AutoClass). BIC incorrectly detected 
4 classes. It is encouraging that the MCCV algorithm 
found the same number of classes as that of the original 
clinical classification. We note that the “approximate 
weight of evidence” clustering criterion of Banfield and 
Raftery (1993) (based on a Bayesian approximation) 
was maximized at Ic = 4 clusters and indicated evi- 
dence of between 3 to 6 clusters. 

Speech Vowel Data Peterson and Barney (1952) 
measured the location of the first and second promi- 
nent peaks (formants) in 671 estimated spectra from 
subjects speaking various vowel sounds. They classi- 
fied the spectra into 10 different vowel sounds based on 
acoustic considerations. This data set has since been 
used in the neural network literature with the best 
cross-validated classification accuracies being around 
80%. As can be seen in Figure 2(c) the classes are 
heavily overlapped. Thus, this is a relatively difficult 
problem for methods which automatically try to find 
the correct number of clusters. AutoClass detected 5 
clusters, while MCCV detected 7, with some evidence 
between 6 and 9 clusters. BIC completely underesti- 
mated the number of clusters at 2. Given the relatively 
small sample size (one is fitting each cluster using only 
roughly 30 sample points), the MCCV algorithm is do- 
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Table 2: Experimental results on non-simulated data. 

Problem Sample Size BIC AC vCV MCCV “Truth” [ 
Iris 150 2 4 3 2 3 

Diabetes 145 4 3 3 3 3 
Vowels 671 2 5 8 7 10 

ing well to indicate the possibility of a large number of 
clusters, 

Discussion 
The MCCV method performed roughly as well as Au- 
toClass on the particular data sets used in this paper. 
The BIC method performed quite well, but overall was 
not as reliable as MCCV or AutoClass. vCV (with 
v=lO) was found to be largely unreliable. Further ex- 
perimentation on more complex problems may reveal 
some systematic differences between the Bayesian (Au- 
toclass) and cross-validation (MCCV) approaches, but 
both produced clear insights into the structure of the 
data sets used in the experiments in this paper. 

We note in passing that Chickering and Heckerman 
(1996) have investigated a problem which is equivalent 
to that addressed in this paper, except that the feature 
vector x is now discrete-valued and and the individ- 
ual features are assumed independent given the (hid- 
den) class variable. Chickering and Heckerman empir- 
ically evaluated the performance of AutoClass, BIC, 
and other approximations to the full Bayesian solution 
on a wide range of simulated problems. Their results 
include conclusions which are qualitatively similar to 
those reported here: namely that the AutoClass ap- 
proximation to the full Bayesian solution outperforms 
BIC in general and that BIC tends to be overly conser- 
vative in terms of the number of components it prefers. 

The theoretical basis of the MCCV algorithm war- 
rants further investigation. For example, MCCV is 
somewhat similar to the bootstrap method. A useful 
result would be a characterization (under appropriate 
assumptions) of the basic bias-variance properties of 
the MCCV likelihood estimate (in the mixture context) 
as a function of the leaveout fraction 0, the number 
of cross-validation runs M, the sample size N, and 
some measure of the problem complexity. Prescriptive 
results for choosing p automatically (as developed in 
Shao (1993) in a particular regression context) would 
be useful. For example, it would be useful to justify in 
theory the apparent practical utility of /? = 0.5. 

On the practical front, clearly there is room for im- 
provement over the basic algorithm described in this 
paper. The probabilistic cluster models can easily be 
extended beyond the full-covariance model to incor- 
porate, for example, the geometric shape and Pois- 
son “outlier” models of Banfield and Raftery (1993) 
and Celeux and Govaert (1995), and the discrete vari- 
able models in AutoClass. Diagnostic tests for detect- 
ing non-Gaussianity could also easily be included (cf. 
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McLachlan and Bssford (1988), Section 2.5) and would 
be a useful practical safeguard. 

Some obvious improvements could also be made to 
the search strategy. Instead of “blindly” searching over 
each possible value of k from 1 to Lax a more intel- 
ligent search could be carried out which “zeros-in” on 
the range of k which has appreciable posterior proba- 
bility mass (the current implementation of the Auto 
Class algorithm includes such a search algorithm). 

Data-driven methods for automatically selecting the 
leave-out fraction method /I are also a possibility, or 
possibly averaging results over multiple values of @. 
When the data are few relative to the number of clus- 
ters present, it is possible for the cross-validation parti- 
tioning to produce partitions where no data from a par- 
ticular cluster is present in the training partition. This 
will bias the estimate towards lower k values (since the 
more fractured the data becomes, the more likely this 
“pathology” is to occur). A possible solution is some 
form of data-driven stratified cross-validation (Kohavi 
(1995) contains a supervised learning implementation 
of this idea). 

Both the EM and MCCV techniques are amenable 
to very efficient parallel implementations. For large 
sample sizes N, it is straightforward to assign l/p of 
the data to p processors working in parallel which com- 
municate via a central processor. For large numbers of 
cross-validation runs M, each of p processors can in- 
dependently run M/p runs. 

Finally we note that our attention was initially 
drawn to this problem in a time-series clustering con- 
text using hidden Markov models. In this context, the 
general MCCV methodology still applies but because 
of sample dependence the cross-validation partition- 
ing strategy must be modified-this is currently under 
development. The MCCV approach to mixtures de- 
scribed here can also be applied to supervised learning 
with mixtures: the MCCV procedure provides an auto- 
matic method for determining how many components 
to use to model each class. Other extensions to learn- 
ing of graphical models (Bayesian networks) and image 
segmentation are also possible. 

Conclusions 
MCCV clustering appears to be a useful idea for 
determining cluster structure in a probabilistic clus- 
tering context. Experimental results indicate that 
the method has significant practical potential. The 
method complements Bayesian solutions by being sim- 
pler to implement and conceptually easier to extend to 



more complex clustering models than Gaussian mix- 
tures. 
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