
Using General Impressions to Analyze Discovered Classification Rules

Bing Liu, Wynne Hsu and Shu Chen

Department of Information Systems and Computer Science
National University of Singapore

Lower Kent Ridge Road, Singapore 119260
{liub, whsu, chenshu}@iscs.nus.edu.sg

Abstract
One of the important problems in data mining is the evalua-
tion of subjective interestingness of the discovered rules.
Past research has found that in many real-life applications it
is easy to generate a large number of rules from the data-
base, but most of the rules are not useful or interesting to
the user. Due to the large number of rules, it is difficult for
the user to analyze them manually in order to identify those
interesting ones. Whether a rule is of interest to a user de-
pends on his/her existing knowledge of the domain, and
his/her interests. In this paper, we propose a technique that
analyzes the discovered rules against a specific type of ex-
isting knowledge, which we call general impressions, to
help the user identify interesting rules. We first propose a
representation language to allow general impressions to be
specified. We then present some algorithms to analyze the
discovered classification rules against a set of general im-
pressions. The results of the analysis tell us which rules con-
form to the general impressions and which rules are unex-
pected. Unexpected rules are by definition interesting.

1. Introduction

The aim of data mining is to discover useful or interesting
rules (Fayyad, Piatesky-Shapiro, and Smyth 1996) for the
user. However, past applications have found that it is easy
to generate a large number of rules from a database, and
most of them are not useful to the user (e.g., Piatesky-
Shapiro and Matheus 1994a; Piatesky-Shapiro et al. 1994b;
Silberschatz and Tuzhilin 1996; Liu and Hsu 1996). The
presence of the huge number of rules makes it difficult for
the user to analyze them and to identify those that are of
interest to him/her. Some automated assistance is needed.

Identifying interesting rules from a set of discovered
rules is not a simple task because a rule could be interesting
to one user but not interesting to another. The interesting-
ness of a rule is essentially subjective (e.g., Piatesky-
Shapiro et al. 1994b; Klemetinen et al. 1994; Silberschatz
and Tuzhilin 1996; Liu and Hsu 1996) because it depends
on the user’s existing concepts about the domain, and
his/her interests. There is also an objective aspect of inter-
estingness, which is not studied here. Interested readers,
please refer to (Major and Mangano 1993; Silberschatz and
Tuzhilin 1996). Two main measures of subjective interest-

Copyright © 1997, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

ingness are unexpectedness (Silberschatz and Tuzhilin
1996) and actionability (Piatesky-Shapiro and Matheus
1994a). They are defined as follows:

Unexpectedness: Rules are interesting if they
“surprise” the user.
Actionability: Rules are interesting if the user can do
something with them to his/her advantage.

These two measures are not mutually exclusive
(Silberschatz and Tuzhilin 1996). Thus, subjectively inter-
esting rules can be classified into three categories: (1) rules
that are both unexpected and actionable; (2) rules that are
unexpected but not actionable, and (3) rules that are action-
able but expected. (1) and (2) can be handled by finding
unexpected rules, and (3) can be handled by finding the
rules that conform to the user’s existing concepts.

In (Liu and Hsu 1996), a fuzzy matching approach is re-
ported to analyze the discovered rules against the user’s
existing concepts. The existing concepts are expressed as a
set of expected fuzzy rules. A fuzzy matching algorithm is
then used to compare the discovered rules against the ex-
pected rules to help the user identify those interesting rules.
One limitation of this technique is that too much reliance is
being placed on the user’s ability to supply the set of fuzzy
expectations. In many situations, users do not know
enough about their domains to supply the expected rules.
Instead, we find that even if the users cannot supply the set
of fuzzy expectations, they do have certain general impres-
sions (GI) about their domains. This paper first proposes a
specification language for the user to specify his/her GIs
and then presents two matching algorithms to analyze the
discovered rules against the GIs (which can be correct,
partially correct or completely wrong). Through this analy-
sis, the user is able to find the interesting rules easily.

2. Preliminaries

Assume a human user has some previous concepts about
the domain represented by the database D. These concepts
can be correct, partially correct or entirely wrong. In this
work, we distinguish two types of existing concepts:
General impressions (GI): The user does not have detailed

concepts about the domain, but does have some vague
feelings. For example, in a housing loan domain, the
user may feel that having a high monthly salary in-
creases one’s chance of obtaining a loan.

From: KDD-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

Reasonably precise knowledge (RPK): The user has more
definite idea. For example, in the same loan domain, the
user may believe that if one’s monthly salary is over
$5,000, one will be granted a loan. Of course, the user
may not be so sure that it is exactly $5,000. There is a
fuzziness surrounding the value $5000 in his/her mind.

(Liu and Hsu 1996) studied the rule analysis against RPK.
This paper focuses on GIs. In the situation where one has
some RPK about certain aspects of the domain, but only
GIs about the others, a combined approach may be used.

In this paper, we analyze classification rules produced
by C4.5 (Quinlan 1992), which have the form:

at1 OP1 v1, …, atn OPn vn Class,
where ati is an attribute in D, vi is a possible value of ati,
OP {=, <, >, , }, and Class is a class value in D.

3. Representing General Impressions

We now present the specification language that allows a
user to express his/her general impressions (GIs) about a
domain. This specification focuses on representing the gen-
eral impressions related to classification rules. Two types
of GIs are defined: Type_1 GIs and Type_2 GIs.

Let A = {A1, ..., As} be the set of attributes in D, and C =
{C1, ..., Cm} be the set of possible classes in D.

Definition 1: An impression term (IPT) is of the form: a
ID, where a A, and ID {<, >, <<, |, [a set]} is an
impression descriptor. [a set] represents a subset of
values of a discrete (and/or nominal) attribute.

Definition 2: A Type_1 GI (T1) is of the following form,
a1 ID1, …, aw IDw Cj (or IPT1, …, IPTw Cj),

where I = {a1, …, aw} A, I , and ap aq if p q.

The meanings of T1s can be illustrated as follows:
a < Cj: This represents the impression that a smaller
value of a will result in a higher likelihood of being in
class Cj. It can be used to specify T1s such as “the
smaller the period of loan repayment is, the more likely
will the loan application be approved.”
a > Cj: This represents the impression that a larger
value of a will result in a higher chance of leading to
class Cj. For example, “the more savings there are, the
more likely will the loan application be approved.”
a << Cj: This represents the impression that if the
value of a is within some range, then class Cj is likely to
be the result. For example, “if one is neither too young
nor too old, then the loan application is likely to be ap-
proved.”
a | Csub: This represents the impression that there
exist some relationships between the attribute a and the
classes in Csub (C). However, the exact relationships
are not known. a | Csub is a short form for a | c1,
..., a | cf, where Csub = {c1, …, cf}. For example, “we
know that one’s number of years of work plays a part in
determining if a loan will be approved, but we do not
know how.”
a [S] Cj: This represents the impression that if the
value of a is an element in the set S, it is more likely to
lead to class Cj.

For convenience, we organize the T1s into L levels such
that each T1 at level z has z IPTs.

Each level-1 T1 expresses the user’s belief on how a
single attribute may affect a class. For example, in a
loan application domain, we may have the following
four T1s at level 1:

(1) saving > approved,
(2) age | {approved, not_approved},
(3) jobless {no} approved,
(4) jobless {yes} not_approved.

Level-2 and above T1s express the user’s beliefs on
how combinations of IPTs may affect the classes. Ex-
amples of level-2 T1s are:

(5) saving >, age << approved,
(6) saving >, jobless {yes} approved.

Note that (6) says that if one has sufficient saving, even
if he/she does not have a job, he/she may still be
granted a loan. This is possible because although
“jobless {yes}” is not favorable for one to obtain a loan
(refer to (4)), in the special circumstance where one has
a large amount of saving, one may still be granted a
loan. It is also possible that a combination of IPTs may
act antagonistically to lead to an unexpected class. For
example, IPT1 and IPT2 both lead to class Yes individu-
ally but their combination leads to class No. In such
situations, we say that the combined T1 shadows the
lower level T1s involving IPT1 and IPT2. Such excep-
tions can be expressed using level-2 and above T1s.
Type_1 GIs make the following assumption: If two or
more T1s lead to the same class and they have no com-
mon attributes, then their combinations (except those T1
combinations that are shadowed by some higher level
T1s) also lead to the same class. For example, with the
above 6 T1s, it is assumed that the following,

saving >, age <<, jobless {no} approved,
also holds. Hence, there is no need to specify the above
as a level-3 T1. Any impression that cannot be com-
posed with a proper combination of T1s are considered
unexpected. We say that a T1 is a minimal impression.
The assumption is justified because it conforms to hu-
man intuitions, and those exceptional cases can be ex-
pressed with higher level T1s.

Note that we have not considered the impression whose
left-hand side is empty, i.e., Cj. This impression means
that the user believes that there is only one valid class Cj for
D. This case is simple and we will not study it in the paper.

In the case where the user has more definite idea that a
specific combination of IPTs is sufficient to lead to some
class, then a Type_2 GI may be used.
Definition 3: A Type_2 GI (T2) is of the following form,

which has two parts separated by a “&”:
a1 ID1, …, ak IDk & ak+1 IDk+1, ..., aw IDw Cj,

where
(1) I = {a1, …, aw} A, I , and ap aq if p q.
(2) The first part (a1 ID1, …, ak IDk) is called the core

and must be non-empty 1, and the second part is

1 If there is no core, it should be specified as a Type_1 GI.

called the supplement. Let F1 () denote the
core and F2 denote the supplement. We have:
i) If F2 , we call such a T2 a maximal impres-

sion. It means that the user believes that (a1 ID1,
…, ak IDk) and any subset of {(ak+1 IDk+1), ...,
(aw IDw)} may lead to Cj. Anything more than
the F1 and F2 combination is unexpected.

ii) If F2 = , we call such a T2 an exact impres-
sion. It means that the user believes that (a1 ID1,
…, ak IDk) should lead to Cj. Anything more or
less is unexpected.

We now present the technique for analyzing a set of dis-
covered rules against T1s and T2s.

4. Matching and Ranking Discovered Rules
Against GIs

We first give a high-level view of the proposed technique
before presenting the computational details. This technique
consists of two main steps:
1. The user specifies all the general impressions (both T1s

and T2s) that he/she has about the domain using the
above specification language.

2. The system analyzes the discovered rules by matching
them against the T1s and T2s in various ways for find-
ing different types of interesting rules. The discovered
rules are then ranked according to the matching results.
With these rankings, identification of the interesting
rules becomes simple.

Note that this paper does not address issues such as whether
the discovered rules are consistent, whether subsumption
relations exist among them, etc. For such issues, see (Major
and Mangano 1993). This paper assumes that such analyses
have been done on the discovered rules and the GIs before
they are analyzed by our matching algorithms.

4.1 Matching and ranking discovered
rules against Type_1 GIs

Let X be the set of Type_1 GIs (T1s) and R be the set of
discovered rules. Our goal is to rank the rules in R in a
number of ways such that three types of interesting rules
can be identified.
1. Conforming rules: Both the conditions and the class of

Ri R match a subset of T1s in X.
To rank the rules in R according to their conformity

to T1s in X, we need to compare each Ri R with the
subset of T1s that lead to the same class as Ri. Let K be
this subset. Two cases can arise during the comparison:
(1). All the attributes used in Ri appear in X, i.e., no

unanticipated attributes. Unanticipated attributes
mean that the user did not know that these attrib-
utes are relevant to the classification.

(2). A subset of attributes in Ri do not appear in X, i.e.,
 some unanticipated attributes.

In (2), those conditions in Ri whose attributes do not
appear in X are first removed. The resulting rule is then
handled in the same way as in (1). Note that the rules

falling in (1) and (2) are ranked separately. For all the
rules falling in (1), there is only one ranking (according
to the degree of conformity). For rules falling in (2), we
impose a two-level ranking system. The rules are first
partitioned according to the number of unanticipated
attributes. Then, within each partition, the rules are
ranked as in (1). This two-level ranking system for (2)
also applies to the remaining two types of analysis.

We denote the number of attributes used in the con-
ditional part of Ri as N (assume all unanticipated attrib-
utes in Ri, if any, have been removed). The degree of
conforming match is defined as follows:

T1Cfmi = T1match(Ri, 1, K) N.
This formula uses the algorithm T1match(Ri, FirstT1,

K) below, which matches Ri against K. FirstT1 is the
index of the starting T1 in K. Since T1s are minimal im-
pressions, the algorithm basically tries to find a subset
of T1s (which have no common attributes) in K, whose
combined set of attributes is the same as that in Ri, that
gives the best match value. The rankings of the rules in
R are done according to those two cases ((1) and (2))
and by sorting them according to their T1Cfmi values in
a decreasing order.
Some notes about the algorithm:

The computation of this algorithm depends on the
number of T1 combinations in K that have the same
set of attributes as Ri. In the worse case, it is the
number of possible partitions of the set of attributes
in Ri (Roberts 1984). However, the number of T1s
specified by the user is typically small, and hence,
the number of possible partitions that can be formed
is also small. Thus, computational cost is low.

Algorithm T1match(Ri, FirstT1, K)
end := FALSE; nextT1 := FirstT1;
cval := 0; maxval := 0;
while (end = FALSE) do

nextT1 := find the next T1 in K whose set of
attributes is a subset of that in Ri and
return its index;

/* return 0 if nothing is found */
if nextT1 = 0 then end := TRUE
else split Ri into two parts, subR1 and subR2,

where subR2 contains the part of Ri

whose attributes are not in K[nextT1];
subCval := T1match(subR2, nextT1+1, K);
cval := subCval + match(subR1, K[nextT1]);
if cval > maxval then maxval := cval endif

endif
Increment nextT1

endwhile
return(maxval)

The above algorithm uses the procedure match,
which is specified as follows:

m a t c h r u l e T S m a t c h P I P Tj j

n

(,) (,)1
1

= ∑
where Pj is a condition of rule and is of the form: atj

OPj vj; n is the number of conditions in Rule; IPTj

(from T1) is of the form: aj IDj; and aj = atj. Smatch
is defined as:

procedure Smatch((a OP v), (a ID))
if OP = “=” then

if v ID then M := 1 else M := 0 endif
elseif (ID = “<<” and (OP = “<” or OP = “>”))

 or ((ID =“<” or ID =“>”) and OP = “<<”) then
M := 0.5 /* “ ” and “ ” for OP are considered

 the same as “>” and “<” respectively */
elseif ID “|” then

if OP = ID then M := 1 else M := 0 endif
else M := 0.2
endif
return(M)

Let us have an example of a conforming match. As-
sume we have the discovered rule,

jobless = no, saving > 10 approved,
and the 6 T1s in Section 3. Of the 6 T1s, only (1), (2),
(3), (5) and (6) have the class approved. Our rule
matches (6) partially (“saving > 10” matches “saving >”
but “jobless = no” does not match “jobless {yes}”). At
the same time, it matches completely the combined T1
formed using (1) and (3) (“saving > 10” matches
“saving >” in (1), “jobless = no” matches “jobless
{no}” in (3)). Since the algorithm looks for the best
match, the rule’s conforming match value is 1 (a com-
plete match).

2. Unexpected conclusion rules: The conditions of Ri

R match the conditions of a subset of T1s in X, but not
its class.

Since in this case we look for rules in R with unex-
pected conclusions, then

K = {x X | x has a different class from Ri}.
The degree of unexpected conclusion match is com-
puted with:

T1UexClui = T1match(Ri, 1, K) N.
Notice that T1match does not consider shadowing. The
reason is that in the event of a partial match, it is diffi-
cult for the system to know whether shadowing has oc-
curred. Instead, we display both the degrees of con-
forming match and unexpected conclusion match of
each rule in the ranking to alert the user (see the exam-
ple in Section 5).

Based on the context of the previous example, an un-
expected conclusion rule is,

jobless = no, saving > 10 not_approved,
because “saving >” in (1), “jobless {no}” in (3) both
lead to class approved, whereas the rule’s class is
not_approved.

3. Unexpected condition rules: It is not known from T1s
in X that the conditions of Ri R will lead to its class.

This is the opposite to finding conforming rules. Its
rankings are the reverse of the conforming rule rank-
ings.

Again, refer to the context of the previous example,
an unexpected condition rule is,

age < 20, saving < 10 approved,
because we have no T1 relating “age <” and “saving <”
to class approved. Hence, there is no match for the con-
ditional part, and we say that the rule is an unexpected
condition rule.

4.2 Matching and ranking discovered
rules against Type_2 GIs

Let Y be the set of Type_2 GIs (T2s). Following Section
4.1, we present the rankings for finding different kinds of
interesting rules. However, the rankings here are performed
with respect to each T2 in Y, which are different from the
rankings discussed for Type_1 GIs. Of course, the types of
rankings discussed in Section 4.1 can also be carried out
here. But they are less informative.

1. Conforming rules with respect to a T2 Y: Both the
conditions and the class of Ri R match those of the T2.

The degree of conforming match is computed using
the T2Match algorithm below. It takes in three parame-
ters, F1, F2 (which make up the T2, see below) and Q (a
set of discovered rules to be ranked) and produces a set
of values, T2Mi.

For conforming match, Q = {r R | r has the same
class as the T2}. Those discovered rules not in Q will
not be considered. The conforming match value is
T2Mi. The ranking of rules in Q is done by sorting them
according to their T2Mi values in a decreasing order.

1 Algorithm T2Match(F1, F2, Q)
2 for each Qi Q do
3 M := coreMatch(Hi, F1);
4 if M > 0 then
5 T M

M H F

F F H
i

i

i
2

2

1 2
: =

+
+

s u p M a tc h (,)

m a x ((| | | |) , | |)

6 endif
7 endfor

Notes about the algorithm:

We first explain the terms used in the algorithm. T2
(Y) is of the form:

a1 ID1, …, ak IDk & ak+1 IDk+1, ..., aw IDw Cj.
F1 denotes the core and F2 denotes the supplement.
A rule Qi Q is of the form:

at1 OP1 v1, ..., atn OPn vn Class.
Hi denotes the set of conditions of Qi, {(at1 OP1 v1),
..., (atn OPn vn)}.
Some Qis do not have T2Mi values (line 4), and they
are not ranked. When T2Mi has a value, it indicates
that Qi satisfies (as defined in coreMatch below) the
core (F1) of T2. This means that the set of attributes
in F1 is a subset of those in Hi. If Qi does not satisfy
the core of T2, it does not have a T2Mi value.
Procedures coreMatch and supMatch are listed be-
low. Due to space limitations, we are unable to pro-
vide explanations to these procedures.
procedure coreMatch(Hi, F1)

M := 0;
for each (ag IDg) F1 do

if (atm OPm vm) Hi s.t atm = ag then
P := Smatch((atm OPm vm), (ag IDg));
if (P = 0) or (M = 0.01) then M := 0.01
else M := M + P endif

else M := 0; EXIT-LOOP
endif

endfor
return(M)

procedure supMatch(Hi, F2)
M := 0;
for each (ag IDg) F2 do

if (atm OPm vm) Hi s.t atm = ag then
M := M + Smatch((atm OPm vm), (ag IDg))

endif
endfor
return(M)

Let w be the maximal size of the left-hand side of all
the T2s. The complexity of the whole computation is
O(|Y||R|w) if the ranking process is not considered.

2. Unexpected conclusion rules with respect to a T2
Y: The conditions of Ri R match those of the T2 but
not the class. For this ranking, we still use the T2Match
algorithm, but

Q = {r R | r has a different class from the T2}.
The match value of each Qi Q, is T2Mi.

3. Unexpected condition rules with respect to a T2 Y:
The class of Ri R matches that of the T2, but not its condi-
tions. This is the opposite to finding conforming rules.

With this, we have finished presenting the proposed tech-
nique. Before giving an example, let us answer the ques-
tion: Are the rankings optimal? This question assumes that
there exists an optimal ranking, which is doubtful. We be-
lieve that it is unlikely to have an optimal ranking due to
the subjective nature of interestingness. The important issue
is the ability to analyze the discovered rules against some
vague impressions, and through such analysis bring out
those conforming and unexpected rules to the attention of
the user. Our proposed ranking techniques have been tested
using 5 real-life databases (from which 18-183 rules are
produced) involving our industry partners.

5. An Example

We have conducted many tests with the proposed technique
using public domain databases and our real-life databases.
Since no existing technique is able to perform the task re-
ported here, we are unable to do a comparison. Below, we
provide an example to illustrate the use of our technique.

We choose the credit screening database created by Chi-
haru Sano in UCI ML repository for illustration because it
is easy to understand. This database has 125 cases, 10 at-
tributes and 2 classes Yes and No representing whether
credit is granted. The set of rules generated by C4.5 is:

R1: Age > 25, Savings > 7, YR_Work > 2 Yes
R2: Sex = Male, YR_Work > 2 Yes
R3: Jobless = No, Bought = pc Yes
R4: Bought = medinstru, Age <= 34 Yes
R5: Sex = Female, Age <= 25 No
R6: Savings <= 7, M_LOAN > 7 No
R7: YR_Work <= 2 No

5.1 Ranking using Type_1 GIs
The user specified T1s are as follows:

1. Jobless {No} Yes 2. Savings > Yes
3. Age > Yes 4. Age < No
5. YR_Work > Yes 6. YR_Work < No
7. Bought | {Yes, No} 8. M_LOAN | {Yes, No}

Conforming rankings: The numbers within [] are the
contributing T1s. The number before [] is the conform-
ing match value and after is the unexpected conclusion
match value (note that the match value 1.00 indicates a
complete match and 0.00 indicates no match). If both the
numbers are large, it could mean a possible shadowing.
In the rankings below, rules with very low match values
are removed to save space.
Rankings against impressions with Yes class:

Without unanticipated attribute ranking:
Rank 1 R1: Age>25, Savings >7, YR_Work>2 Yes

(1.00) [2,3,5] (0.00)
Rank 2 R3: Jobless = No, Bought = pc Yes

(0.60) [1, 7] (0.10)
With one unanticipated attribute ranking:

Rank 1 R2: Sex = Male, YR_Work > 2 Yes
(1.00) [5] (0.00)

From this ranking we see that Sex also plays a role
which was not known previously.

Rankings against impressions with No class:
Without unanticipated attribute ranking:

Rank 1 R7: YR_Work <= 2 No
(1.00) [6] (0.00)

With one unanticipated attribute ranking:
Rank 1 R5: Sex = Female, Age <= 25 No

(1.00) [4] (0.00)
Unexpected conclusion rankings: The number before []
is the unexpected conclusion match value and after is the
conforming match value.
Rankings against impressions with Yes class: None
Rankings against impressions with No class:

Without unanticipated attribute ranking:
Rank 1 R4: Bought = medinstru, Age <= 34 Yes

(0.60) [4,7] (0.10)
This rule’s conclusion is unexpected to some extent as
it is against the user’s impression, Age < No.

No rule in the unanticipated attribute ranking.
Unexpected condition rankings: The number before []
is the conforming match value and after is the unex-
pected conclusion match value of each rule.
Rankings against impressions with Yes class:

Without unanticipated attribute ranking:
Rank 1 R4: Bought = medinstru, Age <= 34 Yes

(0.10) [4, 7] (0.60)
This rule’s condition, Age <= 34, is unexpected because
the user does not expect that (Age <) leads to class Yes.

No rule in the unanticipated attribute ranking.
Rankings against impressions with No class:

Without unanticipated attribute ranking:
Rank 1 R6: Savings <= 7, M_LOAN > 7 No

(0.10) [8] (0.10)
This rule’s condition, Savings <= 7, is unexpected be-
cause the user does not know that little saving will lead
to class No.

No rule in the unanticipated attribute ranking.

5.2 Ranking using Type_2 GIs
Here, we use only one T2 GI in the example as the rankings
are against each GI separately. The user specified T2 is:

Age > & YR_Work >, Jobless {No} > Yes

Conforming ranking: The number in () is the con-
forming match value.
Rank 1 R1: Age>25, Savings>7, YR_Work>2 Yes (0.67)
Clearly, R1 is to some extent conforming.

Unexpected conclusion ranking:
There is no unexpected conclusion rule.

Unexpected condition ranking: The number in () is
also the conforming match value.
Rank 1 R4: Bought = medinstru, Age <= 34 Yes (0.00)

With these rankings, the user can simply check the few
rules at the top of the lists to confirm or to deny his/her GIs,
and to find those unexpected rules. When the number of
rules is large the above rankings will be of great help to the
user in his/her analysis of the discovered rules.

6. Related Work

Although many classification rule induction systems can
make use of domain knowledge or theory in the discovering
process, their purpose is to use the domain theory to help
produce more accurate rules (e.g., Ortega and Fisher 1995;
Evans and Fisher 1994) or improve the rule explainability
(Clark and Matwin 1993). Clearly, they are different from
our work, which aims to help the user analyze the discov-
ered rules in order to identify those interesting ones.

In data mining, subjective interestingness (e.g., Piatesky-
Shapiro and Matheus 1994a; Piatesky-Shapiro et al. 1994b;
Major and Mangano 1993; Klemetinen et al. 1994) has
long been identified as an important problem. (Piatesky-
Shapiro and Matheus 1994a) studied the issue in a health
care application. The system (called KEFIR) analyzes the
health care information to uncover interesting deviations.
However, KEFIR does not perform rule comparison. Its
approach is also application-specific. It is clearly different
from our work. Our system compares discovered rules
against the user’s GIs. It is also application independent.

(Silberschatz and Tuzhilin 1996) proposed to use belief
systems to describe unexpectedness. A number of formal
approaches to beliefs were presented. However, these ap-
proaches require the user to provide complex belief infor-
mation, such as conditional probabilities, which are diffi-
cult to obtain in practice. It does not handle GIs. The paper
also suggested to use an interestingness engine to help the
discovery system produce interesting rules in the first place.
This is an ideal approach. However, the approach requires
the user to supply all his/her existing knowledge to the
system in advance, which is difficult in most situations.
This is analogous to the problem of knowledge acquisition
in expert systems (Boose 1993). Our post-processing tech-
nique encourages interactive and iterative analysis of the
discovered rules. The iterative approach is not suitable for
the interestingness engine technique because a knowledge
discovery process is normally computational intensive.

(Liu and Hsu 1996) reported a technique for rule analy-
sis against user’s expectations. It requires the user to pro-
vide reasonably precise knowledge, which was found to be
difficult for the user to supply in many applications. The
proposed technique overcomes this shortcoming.

7. Conclusion

This paper studies the problem of analyzing discovered
rules against a particular form of existing concepts, namely
general impressions (GIs). A specification scheme for rep-
resenting GIs is proposed and two matching algorithms for
analyzing discovered rules are presented. This technique is
useful for solving the interestingness problem.

Acknowledgments
We would like to thank H-Y. Lee, H-L. Ong, A. Pang, K-H
Ho and P-S Lai for many discussions, for providing us the
databases, and for their help in the testing of our system.

References
Boose, J. 1993. A survey of knowledge acquisition tech-

niques and tools. In B. Buchanan & D. Wilkins (ed.)
Knowledge Aacquisition and Learning, 39-56.

Clark, P., and Matwin, S. 1993. Using qualitative models to
guide induction learning. ICML-93, 49-56.

Evans, R., and Fisher, D. 1994. Overcoming process delays
with decision tree induction. IEEE Expert 9(1):60-66.

Fayyad, U., Piatesky-Shapiro, G., and Smyth, P. 1996.
From data mining to knowledge discovery in databases.
AI Magzine, 37-54.

Kamber, M., and Shinghal, R. 1996. Evaluating the inter-
estingness of characteristic rules. KDD-96, 263-266.

Klemetinen, M., Mannila, H., Ronkainen, P., Toivonen,
H., and Verkamo, A.I. 1994. Finding interesting rules
from large sets of discovered association rules. Pro-
ceedings of the Third International Conference on In-
formation and Knowledge Management, 401-407.

Liu, B., and Hsu, W. 1996. Post-analysis of learned rules.
AAAI-96, 828-834.

Liu, B., Hsu, W., and Chen, S. 1997. Discovering con-
forming and unexpected classification rules. IJCAI-97
Workshop on Intelligent Data Analysis in Medicine and
Pharmacology, August 23, Nagoya, Japan.

Liu, B., Ku, L-P., and Hsu, W. 1997. Discovering interest-
ing holes in data. To appear in IJCAI-97, August 23-29,
Nagoya, Japan.

Major, J., and Mangano, J. 1993. Selecting among rules
induced from a hurricane database. KDD-93, 28-41.

Ortega, J., and Fisher, D. 1995. Flexibly exploiting prior
knowledge in empirical learning. IJCAI-95, 1041-1047.

Piatesky-Shapiro, G., and Matheus, C. 1994a. The inter-
estingness of deviations. KDD-94, 25-36.

Piatetsky-Shapiro, G., Matheus, C., Smyth, P., and Uthu-
rusamy, R. 1994b. KDD-93: progress and challenges ...,
AI magazine, Fall, 1994, 77-87.

Quinlan, R. 1992. C4.5: program for machine learning.
Morgan Kaufmann.

Roberts, F. 1984. Applied combinatorics. Pentice Hall.
Silberschatz, A., and Tuzhilin, A. 1996. What makes pat-

terns interesting in knowledge discovery systems. IEEE
Trans. on Know. and Data Eng. 8(6): 970-974.

