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Abstract 

Applications of inductive learning algorithms to real- 
world data mining problems have shown repeatedly 
that using accuracy to compare classifiers is not ade- 
quate because the underlying assumptions rarely hold. 
We present a method for the comparison of classifier 
performance that is robust to imprecise class distri- 
butions and misclassification costs. The ROC convex 
hull method combines techniques from ROC analy- 
sis, decision analysis and computational geometry, and --I--,- LT.-.- L- 11~. ..-.,I--.,- -f --~-I---! aaapss r;nem 50 cne parr;iculars 01 analyzing iearned 
classifiers. The method is efficient and incremental, 
minimizes the management of classifier performance 
data, and allows for clear visual comparisons and sen- 
sitivity analyses. 

Introduction 
When mining data with inductive methods, we often 
experiment with a wide variety of learning algorithms, 
using different algorithm parameters, varying output 
threshold values, and using different training regimens. 
Such experimentation yields a large number of classi- 
fiers to be evaluated and compared. In order to com- 
pare the performance of classifiers it is necessary to 
know the conditions under which they will be used; 
using accuracy alone is inadequate because class distri- 
butions and misclassification costs are rarely uniform. 

Decision-theoretic principles may be used if the class 
and cost distributions are known exactly. Unfortu- 
nately, on real-world problems target cost and class 
distributions can rarely be specified precisely, and they 
are often subject to change. For example, in fraud de- 
tection we cannot ignore either type of distribution, 
nor can we assume that our distribution specifications 
are static or precise. We need a method for the man- 
agement and comparison of multiple classifiers that is 
robust to imprecise and changing environments. 

We introduce the ROC convex hull method, which 
combines techniques from ROC analysis, decision anal- 
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ysis and computational geometry. The method decou- 
ples classifier performance from specific class and cost 
distributions, and may be used to specify the subset of 
methods that are potentially optimal under any cost 
and class distribution assumptions. 

The ROC convex hull method is efficient, so it facil- 
itates the comparison of a large number of classifiers. 
It minimizes the management of classifier performance 
data, because it can specify exactly those classifiers 
that are potentially optimal, and it is incremental, eas- 
ily incorporating new and varied classifiers. 

The Inadequacy of Accuracy 
A tacit assumption in the use of classification accuracy 
as an evaluation metric is that the class distribution 
among examples is constant and relatively balanced. In 
the real world this is rarely the case. Classifiers are 
often used to sift through a large population of normal 
or uninteresting entities in order to find a relatively 
small number of unusual ones, for example, looking 
for defrauded customers or checking an assembly line 
for defective parts. Because the unusual or interesting 
class is rare among the general population, the class 
distribution is very skewed (Ezawa, Singh, & Norton 
1996; Fawcett & Provost 1996). 

As the class distribution becomes more skewed, eval- 
uation based on accuracy breaks down. Consider a 
domain where the classes appear in a 999:l ratio. A 
simple rule, always classify as the maximum likelihood 
class, gives a 99.9% accuracy. Presumably this is not 
satisfactory if a non-trivial solution is sought. Skews of 
lo2 are common in fraud detection and skews greater 
than lo6 have been reported in other classifier learning 
applications (Clearwater & Stern 1991). 

Evaluation by classification accuracy also tacitly as- 
sumes equal error costs-that a false positive error 
is equivalent to a false negative error. In the real 
world this is rarely the case, because classifications lead 
to actions which have consequences, sometimes grave. 
Rarely are mistakes evenly weighted in their cost. In- 
deed, it is hard to imagine a domain in which a learn- 
ing system may be indifferent to whether it makes a 
false positive or a false negative error. In such cases, 
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accuracy maximization should be replaced with cost 
minimization. 

The problems of unequal error costs and uneven class 
distributions are related. It has been suggested that 
high-cost instances can be compensated for by increas- 
ing their prevalence in an instance set (Breiman et al. 
1984). Unfortunately, little work has been published 
on either problem. There exist several dozen articles 
(Turney 1996) in which techniques are suggested, but 
little is done to evaluate and compare them (the article 
of Pazzani et al. (1994) being the exception). The lit- 
erature provides even less guidance in situations where 
distributions are imprecise or can change. 

Evaluating and Visualizing Classifier 
Performance 

To discuss classifier evaluation we use the following 
terminology. Let {p,n) be the positive and negative 
instance classes, and let {Y,N} be the classifications 
produced by a classifier. Let p(pJI) be the posterior 
probability that instance I is positive. The true posi- 
tive rate, TP, of a classifier is: 

TP =PW!P) = 
positives correctly classified 

> >~, .>. total positives 

The false positive rate, FP, of a classifier is: 

FP = p(YJn) M 
negatives incorrectly classified 

total negatives 

Let c(classification, class) be a two-place error cost 
function where c(Y, n) is the cost of a false positive 
error and c(N, p) is the cost of a false negative error’. 
If a classifier produces posterior probabilities, decision 
analysis gives us a way to produce cost-sensitive clas- 
sifications from the classifier (Weinstein & Fineberg 
1980). Classifier error frequencies can be used to ap- 
proximate probabilities (Pazzani et al. 1994). For an 
instance I, the decision to emit a positive classification 
is: 

[l - P(PIOI .4Y, 4 < ~(~11) .c(N, PI 

Regardless of whether a classifier produces proba- 
bilistic or binary classifications, its normalized cost on 
a test set can be evaluated empirically as: 

Cost = FP . c(Y, n) + FN . c(N, p) 

Given a set of classifiers, a set of examples, and a pre- 
cise cost function, most work on cost-sensitive classifi- 
cation uses an equation such as this to rank the classi- 
fiers according to cost and chooses the minimum. How- 
ever, as discussed above, such analyses assume that the 
distributions are precise and static. 

Receiver Operating Characteristic (ROC) graphs 
have long been used in signal detection theory to de- 
pict tradeoffs between hit rate and false alarm rate 

‘Error costs include benefits not realized. 
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Figure 1: An ROC graph of four classifiers 

(Egan 1975). ROC analysis has been extended for use 
in visualizing and analyzing the behavior of diagnostic 
systems (Swets 1988), and is used for visualization in 
medicine (Beck & Schultz 1986). 

We will use the term ROC space to denote the clas- 
sifier performance space used for visualization in ROC 
analysis. On an ROC graph, TP is plotted on the Y 

- 1-s axis and f+ Y is piotted on the x axis. ‘These statistics 
vary together as a threshold on a classifier’s continuous 
output is varied between its extremes, and the result- 
ing curve is called the ROC curve. An ROC curve 
illustrates the error tradeoffs available with a given 
classifier. Figure 1 shows a plot of the performance 
of four classifiers, A through D, typical of what we see 
in the creation of alarms for fraud detection (Fawcett 
& Provost 1996). 

For orientation, several points on an ROC graph 
should be noted. The lower left point (0,O) represents 
the strategy of never alarming, the upper right point 
(1,1) represents the strategy of always alarming, the 
point (0,l) represents perfect classification, and the 
line y = x (not shown) represents the strategy of ran- 
domly guessing the class. Informally, one point in ROC 
space is better than another if it is to the northwest 
(TP is higher, FP is lower, or both). An ROC graph 
allows an informal visual comparison of a set of clas- 
sifiers. In Figure 1, curve A is better than curve D 
because it dominates in all points. 

ROC graphs illustrate the behavior of a classifier 
without regard to class distribution or error cost, and 
so they decouple classification performance from these 
factors. Unfortunately, while an ROC graph is a valu- 
able visualization technique, ROC analysis does a poor 
job of aiding the choice of classifiers. Only when one 
ciassifier cieariy dominates another over the entire per- 
formance space can it be declared better. Consider the 
classifiers shown in Figure 1. Which is best? The an- 
swer depends upon the performance requirements, i.e., 
the error costs and class distributions in effect when the 
classifiers are to be used. 

Some researchers advocate choosing the classifier 



that maximizes the product (1 - FP) - TP. Geomet- 
rically, this corresponds to fitting rectangles under ev- 
ery ROC curve and choosing the rectangle of greatest 
area- This and other approaches that calculate average 
performance over the entire performance space (Swets 
1988; Beck & Schultz 1986) may be appropriate if costs 
and class distributions are completely unknown and a 
single classifier must be chosen to handle any situa- 
tion. However, they will choose a suboptimal classifier 
in many situations. 

The ROC Convex Hull Method 
In this section we combine decision analysis with ROC 
analysis and adapt them for comparing the perfor- 
mance of a set of learned classifiers. The method is 
based on three high-level principles. First, the ROC 
space is used to separate classification performance 
from class and cost distribution information. Sec- 
ond, decision-analytic information is projected onto 
the ROC space. Third, we use the convex hull in ROC 
space to identify the subset of methods that are poten- 
tially optimal. 

Iso-performance lines 
By separating classification performance from class 
and cost distribution assumptions, the decision goal 
can be projected onto ROC space for a neat visualiza- 
tion. Formally, let the prior probability of a positive 
example be p(p), so the prior probability of a negative 
example is p(n) = 1 -p(p). Costs of false positive and 
false negative errors are given by c(Y, n) and c(N, p), 
respectively. The expected cost of a classification by 
the classifier represented by a point (TP,FP) in ROC 
space is: 

P(P) * (1 -TP).c(N,p) + dn).FP.c(Y,n) 

Therefore, two points, (TPl,FPl) and (TPz,FPz), 
have the same performance if 

TP2 - TP1 dn)4Y, 4 
FP2 - FP1 = P(P)~>P) 

This equation defines the slope of an iso-performance 
line, i.e., all classifiers corresponding to points on the 
line have the same expected cost. Each set of class and 
cost distributions defines a family of iso-performance 
lines. Lines “more northwest”-having a larger TP- 
intercept-are better because they correspond to clas- 
sifiers with lower expected cost. 

The ROC convex hull 
Because in most real-world cases the target distribu- 
tions are not known precisely, it is valuable to be able 
to identify what subset of classifiers is potentially op- 
timal. Each possible set of distributions defines a fam- 
ily of iso-performance lines, and for a given family, 
the optimal methods are those that lie on the “most- 
northwest” iso-performance line. Thus, a classifier is 
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Figure 2: The ROC convex hull identifies potentially 
optimal classifiers. 
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Figure 3: Lines Q and p show the optimal classifier 
under different sets of conditions. 

potentially optimal if and only if it lies on the north- 
west boundary (i.e., above the line y = x) of the convex 
hull (Barber, Dobkin, & Huhdanpaa 1993) of the set 
of points in ROC space. Space limitations prohibit a 
formal proof, but one can see that if a point lies on the 
conwex hull, then there exists a line through that point 
such that no other line with the same slope through 
any other point has a larger TP-intercept, and thus 
the classifier represented by the point is optimal under 
any distribution assumptions corresponding the that 
slope. If a point does not lie on the convex hull, then 
for any family of iso-performance lines there is another 
point that lies on an iso-performance line with the same 
slope but larger TP-intercept, and thus the classifier 
cannot be optimal. 

We call the convex hull of the set of points in ROC 
space the ROC convex hull of the corresponding set 
of classifiers. Figure 2 shows the curves of Figure 1 
with the ROC convex hull drawn (CH, the border be- 
tween the shaded and unshaded areas). D is clearly not 
optimal. Surprisingly, B can never be optimal either 
because none of the points of its ROC curve lies on the 
convex hull. We can also remove from consideration 
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any points of A and C that do not lie on the hull. 
Consider these classifiers under two distribution sce- 

narios. In each, negative examples outnumber posi- 
tives by 1O:l. In scenario AA, false positive and false 
negative errors have equal cost. In scenario a, a false 
negative is 100 times as expensive as a false positive 
(e.g., missing a case of fraud is much worse than a 
false alarm). Each scenario defines a family of iso- 
performance lines. The lines corresponding to scenario 
A have slope 10; those for B have slope &. Figure 3 
shows the convex hull and two iso-performance lines, 
cx and p. Line a is the “best” line with slope 10 that 
intersects the convex hull; line p is the best line with 
slope h that intersects the convex hull. Each line iden- 
tifies the optimal classifier under the given distribution. 

Generating the ROC Convex Hull 
We call the comparison of classifier performance based 
on the ROC convex hull and iso-performance lines the 
ROC convex hull method. 

1. For each classifier, plot TP and FP in ROC space. 
For continuous-output classifiers, vary a threshold 
over the output range and plot the ROC curve. 

9 l7:ns-l tha PAIIIIPV hnll nf thn nnt nf nn;ntc ,.m-.vrxnmt- Y. I lll.2 IJIIC lr”Il.YOn LlUll “L “I.b ObU “I p”IIIYu LtiyrulGuu- 
ing the predictive behavior of all classifiers of inter- 
est. For n classifiers this can be done in O(n log(n)) 
time by the QuickHull algorithm (Barber, Dobkin, 
& Huhdanpaa 1993). 

3. For each set of class and cost distributions of inter- 
est, find the slope (or range of slopes) of the corre- 
sponding iso-performance lines. 

4. For each set of class and cost distributions, the op- 
timal classifier will be the point on the convex hull 
that intersects the iso-performance line with largest 
TP-intercept. Ranges of slopes specify hull seg- 
ments. 

Using the ROC Convex Hull 
Figures 2 and 3 demonstrate how the subset of clas- 
sifiers that are potentially optimal can be identified 
and how classifiers can be compared under different 
cost and class distributions. We now demonstrate ad- 
ditional benefits of thq method. 

Comparing a variety of classifiers 
The ROC convex hull method accommodates both bi- 
nary and continuous classifiers. Binary classifiers are 
represented by individual points in ROC space. Con- 
tinuous classifiers produce numeric outputs to which 
threshoids can be appiied, yieiding a series of (FP, TP) 

pairs comprising an ROC curve. Each point may or 
may not contribute to the ROC convex hull. Figure 4 
depicts the binary classifiers E, F and G added to the 
previous hull. E may be optimal under some circum- 
stances because it extents the convex hull. Classifiers 
F and G will never be because they do not extend it. 

0.2 0.4 0.6 0.8 1.0 
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Figure 4: Classifier E may be optimal because it ex- 
tends the ROC convex hull. F and G cannot because 
they do not. 

New classifiers can be added incrementally to an 
ROC convex hull analysis, as demonstrated above with 
the addition of classifiers E,F, and G. Each new clas- 
sifier either extends the existing hull or does not. In 
the former case the hull must be updated accordingly, 
but in the iatter case the new classifier can be ignored. 
Therefore, the method does not require saving every 
classifier (or saving statistics on every classifier) for re- 
analysis under different conditions-only those points 
on the convex hull. No other classifiers can ever be op- 
timal, so they need not be saved. Every classifier that 
does lie on the convex hull must be saved. 

Changing distributions and costs 

Class and cost distributions that change over time 
necessitate the reevaluation of classifier choice. In 
fraud detection, costs change based on workforce and 
reimbursement issues; the amount of fraud changes 
monthly. With the ROC convex hull method, com- 
paring under a new distribution involves only calculat- 
ing the slope(s) of the corresponding iso-performance 
lines and intersecting them with the hull, as shown in 
Figure 3. 

The ROC convex hull method scales gracefully to 
any degree of precision in specifying the cost and class 
distributions. If nothing is known about a distribution, 
the ROC convex hull shows all classifiers that may be 
optimal under any conditions. Figure 2 showed that, 
given classifiers A, B, C and D of Figure 1, only A and 
C can ever be optimal. 

--_. _ 
With compiete information, the method identifies 

the optimal classifier(s). In Figure 3 we saw that clas- 
sifier A (with a particular threshold value) is optimal 
under scenario A and classifier C is optimal under sce- 
nario Z?. Next we will see that with less precise in- 
formation, the ROC convex hull can show the set of 
possibly optimal classifiers. 
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Sensitivity analysis 
Imprecise distribution information defines a range of 
slopes for iso-performance lines. This range of slopes 
intersects a segment of the ROC convex hull, which 
facilitates sensitivity analysis. For example, if the seg- 
ment defined by a range of slopes corresponds to a 
single point in ROC space or a small threshold range 
for a single classifier, then there is no sensitivity to the 
distribution assumptions in question. Consider a sce- 
nario similar to A and a in that negative examples are 
10 times as prevalent as positive ones. In this scenario, 
the cost of dealing with a false alarm is between $5 and 
$10, and the cost of missing a positive example is be- 
tween $500 and $1000. This defines a range of slopes 
for iso-performance lines: $ _< m 5 5. Figure 5a 
depicts this range of slopes and the corresponding seg- 
ment of the ROC convex hull. The figure shows that 
the choice of classifier is insensitive to changes within 
this range (and tuning of the classifier’s threshold will 
be relatively small). Figure 5b depicts a scenario with 
a wider range of slopes: i 5 m < 2. The figure shows 
that under this scenario the choice of classifier is very 
sensitive to the distribution. Classifiers A, C and E 
each are optimal for some subrange. 

A narticularlv intsrestinp nueqtinn in anv damain is. _- r..-IT---.lmwJ ----1---LJ--- o x--L1---- __. _.-. ~ -- ---..___ A> 
When is a “do nothing” strategy better than any of my 
available classifiers? Consider Figure 5c. The point 
(0,O) corresponds to doing nothing, i.e., issuing nega- 
tive classifications regardless of input. Any set of cost 
and class distribution assumptions for which the best 
hull-intersecting iso-performance line passes through 
the origin (e.g., line Q) defines a scenario where this 
null strategy is optimal. In the example of Figure 5c, 
the range of scenarios is small for which the null strat- 
egy is optimal; the slopes of the lines quantify the 
range. 

Limit at ions and Implications 
In this paper, we have simplified by assuming there are 
only two classes and that costs do not vary within a 
given type of error. The first assumption is essential 
to the use of a two dimensional graph; the second as- 
sumption is essential to the creation of iso-performance 
lines. Furthermore, the method is based upon the max- 
imization of expected value as the decision goal. Other 
decision goals are possible (Egan 1975). For example, 
the Neyman-Pearson observer strategy tries to maxi- 
mize the hit rate for a fixed false-alarm rate. In our 
framework, a Neyman-Pearson observer would find the 
vertical line corresponding to the given FP rate, and 
intersect it with a “non-decreasing” hull, rather than 
Al-- ^^- __^__ L...,, ,---I - -^--^ IAL L~-‘~~-L~I1- IP---2Ll-\ Idle c;“.lI”tx m.l11 \anu IIIUYB Itxb II”~-l‘“IIbally, ,I y”sal”la,. 
Also, methods such as these should consider statisti- 
cal tests for comparing performance curves, so that the 
user has confidence that differences in performance are 
significant. 

The tradeoff between TP and FP rates is simi- 
lar to the tradeoff between precision and recall, com- 

monly used in Information Retrieval (Bloedorn, Mani, 
& MacMillan 1996). However, precision and recall do 
not take into account the relative size of the popula- 
tion of “uninteresting” entities, which is necessary to 
deal with changing class distributions.2 

Existing cost-sensitive learning methods are brittle 
with respect to imprecise or changing distributions. 
These methods can be categorized into four categories: 
(i) the use of cost distribution in building a classifier, 
e.g., for choosing splits in a decision tree or for build- 
ing rule sets (Breiman et al. 1984; Pazzani et al. 1994; 
Provost & Buchanan 1992); (ii) the use of the cost 
distribution in post-processing the classifier, e.g., for 
pruning a decision tree (Breiman et al. 1984; Pazzani 
et al. 1994), for finding rule subsets (Catlett 1995; 
Provost & Buchanan 1995), or for setting an output 
threshold; (iii) estimate the probability distribution 
and use decision-analytic combination (Pazzani et al. 
1994; Catlett 1995; Duda & Hart 1973); and (iv) search 
for a bias with which a good classifier can be learned 
(Turney 1995; Provost & Buchanan 1995). Of these, 
only probability estimation methods (iii) can handle 
changes in cost (or class) distribution without modi- 
fying the classifier. However, no single method domi- 
nates all others, so the ROC convex hull is still needed 
for comparison. As future work, we propose the devel- 
opment of methods that search explicitly for classifiers 
that extend the ROC convex hull. 

Conclusion 
The ROC convex hull method is a robust, efficient 
solution to the problem of comparing multiple clas- 
sifiers in imprecise and changing environments. It is 
intuitive, can compare classifiers both in general and 
under specific distribution assumptions, and provides 
crisp visualizations. It minimizes the management of 
classifier performance data, by selecting exactly those 
classifiers that are potentially optimal; thus, only these 
data need to be saved in preparation for changing con- 
ditions. Moreover, due to its incremental nature, new 
classifiers can be incorporated easily, e.g., when trying 
a new parameter setting. 

It has been noted many times that costs and class 
distributions are difficult to specify precisely. Classi- 
fier learning research should explore flexible systems 
that perform well under a range of conditions, perhaps 
for part of ROC space. We hope that our method for 
analysis of classifiers can help free researchers from the 
need to have precise class and cost distribution infor- 
mation. 

2Thanks to Peter Turney for an enlightening discussion 
on the application of this approach to IR. 
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Figure 5: Sensitivity analysis using the ROC convex hull: (a) low sensitivity (only C can be optimal), (b) high 
sensitivity (A, E, or C can be optimal), (c) doing nothing is the optimal strategy 
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