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Abstract 
In Wirth t Reinartz (1996), we introduced the early 
indicator method, a multi-strategy approach for the 
efficient prediction of various aspects of the fault profile 
of a set of cars in a large automotive database. While 
successful, the initial implementation was limited in 
various ways. In this paper, we report recent progress 
focusing on performance gains we achieved through 
proper process-based database support. We show how 
intelligent management of the information collected during 
a KDD process can both make the task of the user easier 
and speed up the execution. The central idea is to use an 
object oriented schema as the central information directory 
to which data, knowledge, and processes can be attached. 
Furthermore, it enables the automatic exploitation of 
previously stored results. Together with the query-shipping 
strategy, this achieves efficiency and scalability in order to 
analyze huge databases. 
While we demonstrate the usefulness of our solution in the 
context of the early indicator method, the approach is 
generally applicable and useful for any integrated, 
comprehensive KDD system. 

Introduction 
In Wirth & Reinartz (1996), we introduced a multi- 
strategy approach for the efficient prediction of various 
aspects of the fault profile of a set of cars in a large 
automotive database. We addressed the following 
problem: Do there exist sub populations of cars, so called 
early indicator cars (EICs), which behave like the whole 
population of cars at a later point in time for certain 
aspects? If yes, how can they be characterized by easily 
observable attributes? 
The EIC approach was prototypically implemented and 
the feed-back of the domain experts was positive. 
Nevertheless, the initial implementation was limited in 
various ways: 
l The database access and the different techniques for 

the various steps were only loosely coupled. The 
prototype consisted of a multitude of database 
operations and algorithms connected by additional 
data transformation steps. In particular, most of the 
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effort had to be spent on putting together operations 
for the pre-processing phase, which made 
experimentation with different data sets and 
parameters very costly. 
The same or similar results (e.g., data sets, 
distributions, etc.) were computed several times from 
the original large database. Since this involved many 
joins over several tables, re-computing again was very 
time-consuming. If the user wanted to avoid this re- 
computation, he had to store and manage the results 
himself. But then it was hard to keep an overview of 
the various data sets, the parameters used in 
constructing the data sets, and - most importantly - the 
results which were derived from the data sets. 
During the process of detecting EICs, documentation 
of the experiments and results had been neglected 
because of the considerable overhead and the lack of a 
adequate methodology. This made it very hard to 
remember which experiments had been carried out, 
which features had been computed, and which results 
or experience had been gained. 

These issues are quite common in other KDD projects as 
well. Therefore, we started to develop a general purpose 
KDD system, CITRUS (Wirth et al., 1997), to address 
these and other issues. We chose the existing commercial 
knowledge discovery tool CLEMENT~NE (Shearer, 1996) as 
a starting point. It integrates multiple data mining 
algorithms and tools for data access, visualization, and 
data preprocessing. To perfom a multi step discovery task, 
e.g., consisting of multiple preprocessing steps before a 
learning algorithm, the user simply has to connect 
corresponding nodes for the steps according to the data 
flow on the drawing pane, edit the parameters through 
pop-up dialoques, and start the execution of the resulting 
graph (“stream” in CLEMENTINE terminology). 
Here, we report recent progress in CITRUS, focusing on 
the role database support can play to achieve more 
comfortable data handling, significant speed up, and 
improved documentation facilities. In the next two 
sections, we discuss how an object-oriented schema can 
simplify the modeling of streams and the management of 
results. In section 4 we describe the optimized execution 
of streams to achieve significant speed-up. Finally, we 
discuss the realization of the ideas presented in this paper 
and conclude. 
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Simplifying the Modeling of the Streams stream consists of four nodes, a source-node which 
chooses the object-set Car as an initial data set, a select- 

Most of the difficulties with modelling the derivation node which specifies the car-type and the production 
processes arise during the data preparation phase, which is period, a restrict-node which restricts the multi-valued 
usually the most time consuming phase in a KDD project attribute garage.fault to radiator problems which 
(cf. Famili et al., 1997). The necessary streams in our occurred within a given time of operation, as well as a 

number of application scenario are very complex and difficult to 
model because of complex preprocessing of the data. 
Figure 1 depicts a stream fraction for computing some of 
the new features, namely the number of radiator faults 

group-aggregate-node which computes the 
faults and the average costs. 

11 pidate 1 type = 701 and c-id 
01/01/94-31/w/94 

Figure 1: Stream fraction for the selection and construction of relevant features of T, 

which occurred within 365 days of operation, and the 
average costs, for a set of cars at a certain time (data set 
T,). Altogether, more than 60 nodes were needed to 
compute all desired features. 
We claim that an object-oriented data model together with 
a set of generic, set-oriented operators can simplify and 
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Figure 2: Object-oriented stream for computing new 
features for T, 

speed up the modelling of streams significantly. The 
generic operators represent different ways to focus on 
relevant data, e.g, to select objects or attribute values 
which meet a given condition, or to combine multiple 
objects or attribute values. To follow the relationships 
between object types path-expressions can be used. 
Figure 2a) and b.) show the object-oriented schema 
(arrows indicate complex attributes, double arrows 
represent multi-valued attributes), and the resulting 
object-oriented stream corresponding to figure 1. The 
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Storage and Access to Results 
In order to manage all the information generated during 
the KDD process, e.g., data sets, attributes, streams, 
graphs, rule-sets, etc., we use the object-oriented schema 
as the central information directory to’ which data, 
knowledge and streams can be attached to. The evolution 
of the information directory is done completely 
automatically at execution time, with each operator 
leaving a trace within the schema. The direction of the 
trace and, thus, the place of the anchoring point for 
attaching information, is determined by using operator 
specific subsumption mechanisms. 
We explain our solution with an example. Initially, the 
schema might be the one shown in figure 3a). At 
execution time the select-node is matched against subsets 
of the initial data set, namely Car. Since Car has no 
subsets, a new data set Car-701 is introduced as a direct 
subset of Car (b). Along with the new schema element the 
derivation history is recorded. This is done by attaching 
the derivation step - which includes the selection 
condition needed for the matching - to the subset relation. 
Then the restrict and the group-aggregate operator lead to 
the introduction of new attributes rad-!ault and avg-c as 
well as operators (c,d). Finally, an additional distribution- 
node, which computes the distribution of the costs for 
radiator faults is mapped against the schema. Again, the 
matching fails and the schema is extended by elements 
which reflect the knowledge and the derivation step. 
The mechanism of repeated subsumption and schema 
evolution makes it possible to reconstruct streams and 
provide a fairly detailed documentation of all the 
intermediate results. It also represents a powerful way to 
retrieve already discovered results by simply specifying a 
stream and mapping it against the schema. If the matching 
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of the last node in the stream succeeds, the requested 
knowledge has already been discovered and can be 
returned without having to execute the stream on the raw 
data. 

Outimized Execution of Streams 
1 

In demanding applications like EIC one is often faced 

the materialization information of Car-701 and then at 
the information of its - in this case unique - superset Car. 
If different mappings are possible the most efficient 
alternative will be chosen by estimating the execution 
costs. 
Figure 4 shows a possible execution plan for our example 
if the result of the Restr-onerator was materialized earlier 
in the table Car-70f-rad fault. IMPORT-DBMS 
contains the SQL-statement which will be sent to the 
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Figure 3: Mapping streams against the object-oriented schema 

with data sets which easily reach volumes of tens of giga 
bytes and streams consisting of many data (memory) 
extensive operations. Instead of requiring the data to be 
stored in object-oriented database systems (Breitner et al. 
(1995)), we rely on RDBMS as a powerful platform for 
storing and accessing data. Our efforts for an efficient 
execution strategy of streams is driven by two basic ideas: 
query-shipping and automatic usage of materializations. 
Instead of loading the data entirely into the system for the 
execution (data-shipping) we use, similar to IDEA 
(Selfridge et al., 1996) and INLEN (Kerschberg et al., 
1992), the functionality of the uuderlying RDBMS. For 
the execution, a stream is partly replaced by adequate 
SQL queries which can be out-sourced and answered 
efficiently by the RDBMS. To do this, object-oriented 
stream fractions must be mapped to relational 
counterparts. This is done by traversing the schema, and, 
for each derived object type or derived attribute, 
successively transforming the corresponding derivation 
operations to the relational model (e.g., path expressions 
are mapped to join sequences) until the resulting SQL- 
statement for the corresponding schema elements (stream) 
is based on existing tables. 
During this mapping of a stream, profitable 
materializations of intermediate results from streams 
executed earlier are considered automatically. Like the 
above mentioned knowledge pieces, the information about 
the availability of such materializations is simply attached 
to the corresponding schema elements. Thus, to find the 
relevant ones for our example in Figure 3 we first look at 

RDBMS. The corresponding result is used as input for (an 
internally realized) DISTR-program which creates a 
distribution for the values of avg-c. 

~1 
Figure 4: Execution plan for the example stream 

Realization in Citrus 
To realize the functionality mentioned in the previous 
sections, we extended CLEMENTINE by a new component, 
called Information Management Component (iMC). The 
typical information processing loop is as follows: First, a 
stream is modeled using the visual programming interface 
of CLEMENTINJZ which is then passed to the IMC where it 
is executed. Finally, the result is returned and presented 
to the user using appropriate visualizations of 
CLEMENTINJZ. The execution itself can be divided into 
three principal steps: schema mapping, plan generation 
and plan execution, Figure 5 shows the client-server 
architecture. 
Schema mapping is done by the schema manager, and 
returns the schema objects, i.e., attributes, sets of objects, 
and knowledge pieces corresponding to the stream nodes. 
When streams with new process-nodes are to be executed, 
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the schema will evolve to cover newly derived attributes, 
object sets or results. 
Following the schema mapping, the stream optimizer 
takes the stream and the corresponding schema objects as 
input and generates an optimized execution plan, which 
can contain both SQL-statements and external functions 
with no counterparts in RDBMS. In the simplest case the 
execution plan consists of a single ‘load-file’ instruction. 
This applies when the result has already been computed 
and stored during previous stream executions. 
Last but not least, the actual plan execution is done by the 
execution engine, which takes an execution plan from the 
stream optimizer and executes it by using the query 
shipping strategy. The parts of the stream which have no 
SQL counterpart have to be executed by the execution 
engine by means of internal operators or external 
programs (e.g., like C4.5). 

Concluding Remarks 
In this paper we presented several approaches integrated 
into the IMC module of CITRUS to overcome many 
problems arisen due to the lack of an appropriate 
information management during a real world KDD 
process. We addressed these problems in the context a 
real application. Although the first prototype of the IMC 
is quite powerful a lot remains to be done. More 
sophisticated subsumption mechanisms and enhancements 
of the retrieval and documentation facilities are necessary. 
Furthermore, we are currently trying to automate the 
materialization of intermediate results to further shift the 
responsibility for execution efficiency from the user to the 
system. The idea is to analyze the process history 
condensed in the schema in order to estimate the future 
relevance of a data set, and manage the materializations 
on the basis of this measure. 

Figure 5: Visual Programming Interface and Information Management Component 
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