
Process-Based Database Support for the Early Indicator Method

Christoph Breitner, Jiirg Schliisser
University of Karlsruhe

Institute for Program Structures and Data
Organization

76128 Karlsruhe, Germany
{breitner,joerg}@ira.uka.de

Abstract
In Wirth t Reinartz (1996), we introduced the early
indicator method, a multi-strategy approach for the
efficient prediction of various aspects of the fault profile
of a set of cars in a large automotive database. While
successful, the initial implementation was limited in
various ways. In this paper, we report recent progress
focusing on performance gains we achieved through
proper process-based database support. We show how
intelligent management of the information collected during
a KDD process can both make the task of the user easier
and speed up the execution. The central idea is to use an
object oriented schema as the central information directory
to which data, knowledge, and processes can be attached.
Furthermore, it enables the automatic exploitation of
previously stored results. Together with the query-shipping
strategy, this achieves efficiency and scalability in order to
analyze huge databases.
While we demonstrate the usefulness of our solution in the
context of the early indicator method, the approach is
generally applicable and useful for any integrated,
comprehensive KDD system.

Introduction
In Wirth & Reinartz (1996), we introduced a multi-
strategy approach for the efficient prediction of various
aspects of the fault profile of a set of cars in a large
automotive database. We addressed the following
problem: Do there exist sub populations of cars, so called
early indicator cars (EICs), which behave like the whole
population of cars at a later point in time for certain
aspects? If yes, how can they be characterized by easily
observable attributes?
The EIC approach was prototypically implemented and
the feed-back of the domain experts was positive.
Nevertheless, the initial implementation was limited in
various ways:
l The database access and the different techniques for

the various steps were only loosely coupled. The
prototype consisted of a multitude of database
operations and algorithms connected by additional
data transformation steps. In particular, most of the

Copyright 0 1997, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

Riidiger Wirth
Daimler-Benz AG, Research and Technology FSS/E,

P. 0. Box 23 60,
D-89013 Ulm, Germany

wirth@dbag.ulm.DaimlerBenz.COM

effort had to be spent on putting together operations
for the pre-processing phase, which made
experimentation with different data sets and
parameters very costly.
The same or similar results (e.g., data sets,
distributions, etc.) were computed several times from
the original large database. Since this involved many
joins over several tables, re-computing again was very
time-consuming. If the user wanted to avoid this re-
computation, he had to store and manage the results
himself. But then it was hard to keep an overview of
the various data sets, the parameters used in
constructing the data sets, and - most importantly - the
results which were derived from the data sets.
During the process of detecting EICs, documentation
of the experiments and results had been neglected
because of the considerable overhead and the lack of a
adequate methodology. This made it very hard to
remember which experiments had been carried out,
which features had been computed, and which results
or experience had been gained.

These issues are quite common in other KDD projects as
well. Therefore, we started to develop a general purpose
KDD system, CITRUS (Wirth et al., 1997), to address
these and other issues. We chose the existing commercial
knowledge discovery tool CLEMENT~NE (Shearer, 1996) as
a starting point. It integrates multiple data mining
algorithms and tools for data access, visualization, and
data preprocessing. To perfom a multi step discovery task,
e.g., consisting of multiple preprocessing steps before a
learning algorithm, the user simply has to connect
corresponding nodes for the steps according to the data
flow on the drawing pane, edit the parameters through
pop-up dialoques, and start the execution of the resulting
graph (“stream” in CLEMENTINE terminology).
Here, we report recent progress in CITRUS, focusing on
the role database support can play to achieve more
comfortable data handling, significant speed up, and
improved documentation facilities. In the next two
sections, we discuss how an object-oriented schema can
simplify the modeling of streams and the management of
results. In section 4 we describe the optimized execution
of streams to achieve significant speed-up. Finally, we
discuss the realization of the ideas presented in this paper
and conclude.

Breitner 131

From: KDD-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

Simplifying the Modeling of the Streams stream consists of four nodes, a source-node which
chooses the object-set Car as an initial data set, a select-

Most of the difficulties with modelling the derivation node which specifies the car-type and the production
processes arise during the data preparation phase, which is period, a restrict-node which restricts the multi-valued
usually the most time consuming phase in a KDD project attribute garage.fault to radiator problems which
(cf. Famili et al., 1997). The necessary streams in our occurred within a given time of operation, as well as a

number of application scenario are very complex and difficult to
model because of complex preprocessing of the data.
Figure 1 depicts a stream fraction for computing some of
the new features, namely the number of radiator faults

group-aggregate-node which computes the
faults and the average costs.

11 pidate 1 type = 701 and c-id
01/01/94-31/w/94

Figure 1: Stream fraction for the selection and construction of relevant features of T,

which occurred within 365 days of operation, and the
average costs, for a set of cars at a certain time (data set
T,). Altogether, more than 60 nodes were needed to
compute all desired features.
We claim that an object-oriented data model together with
a set of generic, set-oriented operators can simplify and

car garage

I: Car

I
1

m@iz&(zJ Source Sel

!, distribution(avg_cost)

t e=701and !
0 /01&l-31/12/94 : Yp

avg(rad_fauit.cost)

garage.fault.problem = ‘radiator’
and oaraoe.r date-o date<365

Figure 2: Object-oriented stream for computing new
features for T,

speed up the modelling of streams significantly. The
generic operators represent different ways to focus on
relevant data, e.g, to select objects or attribute values
which meet a given condition, or to combine multiple
objects or attribute values. To follow the relationships
between object types path-expressions can be used.
Figure 2a) and b.) show the object-oriented schema
(arrows indicate complex attributes, double arrows
represent multi-valued attributes), and the resulting
object-oriented stream corresponding to figure 1. The

4-- Tg

Storage and Access to Results
In order to manage all the information generated during
the KDD process, e.g., data sets, attributes, streams,
graphs, rule-sets, etc., we use the object-oriented schema
as the central information directory to’ which data,
knowledge and streams can be attached to. The evolution
of the information directory is done completely
automatically at execution time, with each operator
leaving a trace within the schema. The direction of the
trace and, thus, the place of the anchoring point for
attaching information, is determined by using operator
specific subsumption mechanisms.
We explain our solution with an example. Initially, the
schema might be the one shown in figure 3a). At
execution time the select-node is matched against subsets
of the initial data set, namely Car. Since Car has no
subsets, a new data set Car-701 is introduced as a direct
subset of Car (b). Along with the new schema element the
derivation history is recorded. This is done by attaching
the derivation step - which includes the selection
condition needed for the matching - to the subset relation.
Then the restrict and the group-aggregate operator lead to
the introduction of new attributes rad-!ault and avg-c as
well as operators (c,d). Finally, an additional distribution-
node, which computes the distribution of the costs for
radiator faults is mapped against the schema. Again, the
matching fails and the schema is extended by elements
which reflect the knowledge and the derivation step.
The mechanism of repeated subsumption and schema
evolution makes it possible to reconstruct streams and
provide a fairly detailed documentation of all the
intermediate results. It also represents a powerful way to
retrieve already discovered results by simply specifying a
stream and mapping it against the schema. If the matching

132 KDD-97

of the last node in the stream succeeds, the requested
knowledge has already been discovered and can be
returned without having to execute the stream on the raw
data.

Outimized Execution of Streams
1

In demanding applications like EIC one is often faced

the materialization information of Car-701 and then at
the information of its - in this case unique - superset Car.
If different mappings are possible the most efficient
alternative will be chosen by estimating the execution
costs.
Figure 4 shows a possible execution plan for our example
if the result of the Restr-onerator was materialized earlier
in the table Car-70f-rad fault. IMPORT-DBMS
contains the SQL-statement which will be sent to the

/...” /./
--.

/_.“~ -..___
. ...-“’

. . ..-. 4 4
. . ..__._

-......
. ..-... ---. F.YI, ppl
r

Figure 3: Mapping streams against the object-oriented schema

with data sets which easily reach volumes of tens of giga
bytes and streams consisting of many data (memory)
extensive operations. Instead of requiring the data to be
stored in object-oriented database systems (Breitner et al.
(1995)), we rely on RDBMS as a powerful platform for
storing and accessing data. Our efforts for an efficient
execution strategy of streams is driven by two basic ideas:
query-shipping and automatic usage of materializations.
Instead of loading the data entirely into the system for the
execution (data-shipping) we use, similar to IDEA
(Selfridge et al., 1996) and INLEN (Kerschberg et al.,
1992), the functionality of the uuderlying RDBMS. For
the execution, a stream is partly replaced by adequate
SQL queries which can be out-sourced and answered
efficiently by the RDBMS. To do this, object-oriented
stream fractions must be mapped to relational
counterparts. This is done by traversing the schema, and,
for each derived object type or derived attribute,
successively transforming the corresponding derivation
operations to the relational model (e.g., path expressions
are mapped to join sequences) until the resulting SQL-
statement for the corresponding schema elements (stream)
is based on existing tables.
During this mapping of a stream, profitable
materializations of intermediate results from streams
executed earlier are considered automatically. Like the
above mentioned knowledge pieces, the information about
the availability of such materializations is simply attached
to the corresponding schema elements. Thus, to find the
relevant ones for our example in Figure 3 we first look at

RDBMS. The corresponding result is used as input for (an
internally realized) DISTR-program which creates a
distribution for the values of avg-c.

~1
Figure 4: Execution plan for the example stream

Realization in Citrus
To realize the functionality mentioned in the previous
sections, we extended CLEMENTINE by a new component,
called Information Management Component (iMC). The
typical information processing loop is as follows: First, a
stream is modeled using the visual programming interface
of CLEMENTINJZ which is then passed to the IMC where it
is executed. Finally, the result is returned and presented
to the user using appropriate visualizations of
CLEMENTINJZ. The execution itself can be divided into
three principal steps: schema mapping, plan generation
and plan execution, Figure 5 shows the client-server
architecture.
Schema mapping is done by the schema manager, and
returns the schema objects, i.e., attributes, sets of objects,
and knowledge pieces corresponding to the stream nodes.
When streams with new process-nodes are to be executed,

Breitner 133

the schema will evolve to cover newly derived attributes,
object sets or results.
Following the schema mapping, the stream optimizer
takes the stream and the corresponding schema objects as
input and generates an optimized execution plan, which
can contain both SQL-statements and external functions
with no counterparts in RDBMS. In the simplest case the
execution plan consists of a single ‘load-file’ instruction.
This applies when the result has already been computed
and stored during previous stream executions.
Last but not least, the actual plan execution is done by the
execution engine, which takes an execution plan from the
stream optimizer and executes it by using the query
shipping strategy. The parts of the stream which have no
SQL counterpart have to be executed by the execution
engine by means of internal operators or external
programs (e.g., like C4.5).

Concluding Remarks
In this paper we presented several approaches integrated
into the IMC module of CITRUS to overcome many
problems arisen due to the lack of an appropriate
information management during a real world KDD
process. We addressed these problems in the context a
real application. Although the first prototype of the IMC
is quite powerful a lot remains to be done. More
sophisticated subsumption mechanisms and enhancements
of the retrieval and documentation facilities are necessary.
Furthermore, we are currently trying to automate the
materialization of intermediate results to further shift the
responsibility for execution efficiency from the user to the
system. The idea is to analyze the process history
condensed in the schema in order to estimate the future
relevance of a data set, and manage the materializations
on the basis of this measure.

Figure 5: Visual Programming Interface and Information Management Component

References
Brachman, R.J., Selfiidge, L., Terven, L., Altman, B.,
Halper, F., Kirk, T., Lazar, A., McGuiness, D., &
Resnick, L. (1993). Integrated Support for Data
Archaeology. Proceedings I993 AAAI Workshop on
v-.,,lnrlnn n;,,,.,,,, ;- nntlrhrrnnn - iw-313 ‘xr‘“*“cr;u,tj;r; ucJL”YGry ‘r‘uw‘uvwL)GJ) pp. A;I,-~l~.

Breitner, C., Freyberg, A., & Schmidt, A. (1995). Toward
a Flexible and Integrated Environment for Knowledge
Discovery. Workshop on Knowledge Discovery and
Temporal Reasoning in Deductive and Object-Oriented
Databases, KDOOD, Singapore, pp. 28-35.

Famili, A., Shen, W-M., Weber, & R. Simoudis, E.
(1997). Data Preprocessing and Intelligent Data Analysis.
Intelligent Data Analysis, Voll I No.1.
Kerschberg, L., Michalski, R.S., Kaufman, K.A., &
Riberio, J.S. (1992). Mining for Knowledge in Databases:
The INLEN Architecture, Initial Implementation and First
Results. Journal of Intelligent Information Systems I (I),
pp. 85-l 13.

Selfridge, P.G., Srivastava, D., & Wilson, L.O. (1996).
IDEA: Interactive Data Exploration and Analysis, Intl.
Conf Management of Data (SIGMOD), pp. 24-34.

Shearer, C. (1996). User Driven Dam Mining. Unicorn
Data Mining Conference, London.
Wirth, R., & Reinartz, T.P. (1996). Detecting Early
Indicator Cars in an Automotive Database: A Multi-
Ctrotianxr Annmot.h Pmronnl;nn~ nCtho 7”d 1-t ~m,Cnmmo~ “wur”gJ cspp”UUAI. a ‘“cccu4Ic~* “J Y.IC. Y A,&‘. tivryc.r C,“c,,c

on Knowledge Discovery and Data Mining, pp. 76-81.
Wirth, R. Shearer, C., Grimmer, U., Reinartz, T.P.,
Schloesser, J., Breitner, C., Engels, R., Lindner, G.
(1997). Towards Process-Oriented Tool Support for KDD,
Proc. of 1st intern. Conference on Principles of KDD,
Springer Verlag.

134 KDD-97

