
Large Scale Data Mining: Challenges and Responses

Jaturon Chattratichat John Darlington Moustafa Ghanem
Yile Guo Harald Hiining Martin Ktjhler

Janjao Sutiwaraphun Hing Wing To Dan Yang

Department of Computing,
Imperial College, London SW7 2BZ, U.K.

Abstract

Data mining over large data-sets is important due to
its obvious commercial potential, However, it is also
a major challenge due to its computational complex-
ity. Exploiting the inherent parallelism of data mining
algorithms provides a direct solution by utilising the
large data retrieval and processing power of parallel
architectures. In this paper, we present some results
of our intensive research on paralielising data mining
algorithms. In particular, we also present a methodol-
ogy for determining the proper parallelisation strategy
based on the idea of algorithmic skeletons and per-
formance modelling. This research aims to provide a
systematic way to develop parallel data mining algo-
rithms and applications. ’

Parallelism in Data Mining Algorithms
Numerous algorithms have been previously developed
for data mining (Fayyad, Piatetsky-Shapiro, & Smyth
, nnc\ n-1.- ..:-1. A ̂ ,....^^ -P :.,L.,,,,* -nnn ,,,,;nm ^“;,+;,,,.
IYYU). I Ilt: llCll uc:grcr; “I IIIIItxGIIb palculGlmul LuDUllltj
in these algorithms allows some flexibility in choosing
the parallelisation scheme that most suited for a par-
ticular parallel machine. Two major methods for ex-
ploiting parallelism within data mining algorithms can
be identified as task parallelism and dafa parallelism.
A brief summary of how the two approaches can be
used to parallelise different data mining algorithms is
given in Table 1.

In the task parallelism approach the computation is
partitioned amongst the processors of a parallel ma-
chine with each processor computing a distinct part of
a learning model before co-ordinating with the other
processors to form the global model. In the data paral-
lelism approach the training set is partitioned amongst
the processors with all processors synchronously con-
structing the same model; each operating on a different
portion of the data-set.

Our practical experience with parallelising data min-
ing algorithms showed an interesting phenomenon.
While the parallelisation of certain data mining algo-
rithms shows a consistent performance behaviour when ’ &pyJvrieht fi31997. .A_r?leric~- A_ssc&&ion for Artificial o-s- v--- >
Intelligence (www.aaai.org). All rights reserved.

Algorithm
Classificatior
Tree

Neural
Network

Association
Rule

Task Parallelism
Each branch of the
tree is formed into
a task.

Network divided
into sub-nets. The
sub-nets are allo-
cated across the
processors.

Itemset is divided
a.cross the proces-
sors with selec-
tive copying such
that each proces-
sor can indepen-
dently count and
choose candidates.

Data Parallelism
Training
set is partitioned
across the proces-
sors. Processors
evaluate a node of
tree in parallel.
Network is dupli-
cated
onto each proces-
sor. Training set
it split a.cross the
nrocessors.
Data is
distributed across
the processors and
each node counts
and chooses candi-
dates
synchronously.

-1

Table 1: Techniques for parallelising data mining a.lgo-
rithms.

applied to different data-sets, this is not necessarily
true across all algorithms. For example, we have im-
plemented a task parallel feed-forward neural network
with back-propagation on the Fujitsu APlOOO MPP sLzc&np, fTchihat.n d nl 1441). The nerfmmnnre of \“L”L’-“y .,” -“. ~-~~ I____ - __-1
the implementation illustrated in Figure 1 shows that
it is scalable across both processor numbers as well as
network size. This performance is also consistent when
the implementation is applied to various data-sets.

However, for other algorithms such a.s induction
based classification algorithms, there appears to be
no “ideal” scheme for their parallelisation. The per-
formance of the different parallelisation scheme varies
greatly with the characteristics of data-set to which the
algorithm is applied. It is these algorithms this paper
attempts to investigate.

Chattratichat 143

From: KDD-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

Execution times of the PaKtllBl back-pr0PagHOn 0” API ooo
450

s,
400 i ‘,

Topology:14’3P20’3 +--

\ ‘;
Topology:14’50’50*3 -+-- -

350 .\ ‘.,,
Topology:14*100’50*3 ‘-W-”

\ :b,
300. \ .,

; ‘...
250 . . .

i “b.,,
200 - l,, I.

‘3. ~ ,.

D---Q ~ .._.. o Q ~ ..,I
~~‘.~~~~~~+~~-.*.....L__ * .__._ + ___,_ + ___. ~_t ._____ c _____.

7
01 I

2 4 6 6 10 12 14
Number of processors

Figure 1: Execution time of PNN on the AP1000.

Parallelising Classification Algorithms

In this section, we describe our experiments in par-
allelising a well known tree induction algorithm;
C4.5 (Quinlan 1993). The aim of these experiments
was to gain a deeper understanding of the different
parallelisation schemes for classifica.tion algorithms.

C4.5 is a classification-rule learning system which
IIQO,C rlwisinn ~IVPE as 2 mode! representat!;t!ion. Tile tree L&vu., U”“IL.IVII “I”.><2
models are inferred by using an inductive learning ap-
proach applied to a training set. C4.5 attempts to find
the simplest decision tree that describes the structure
of the data-set by using heuristics based on informa-
tion theory, These decide which attribute to select for
any given node based on its information gain, i.e. its
ability to minimise the information needed to further
classify the cases in the resulting sub-trees. In our ex-
periments we have implemented both task and data
pa.rallel versions of C4.5.
Task Parallel Implementations Several schemes
for exploiting task parallelism between the branches of
the decision tree exist. We a.dopted a Dynamic Ta.sk
Distribution Scheme (DTD) where a master processor
maintains a queue of idle slave processors. The sub-
trees generated at the root of the classification tree
are initially dispatched for execution on distinct slave
processors. Any slave processor expanding an internal
node can also allocate its generated branches to other
slaves by initiating a request to the master processor.

Data Parallel Implementations Two variations
of data parallel (DP) scheme can be used with C4.5.
Given a d&a-set with size N of t-dimensional data,
the entire work load of the algorithm can be charac-
terised by N x k. We have implemented two data paral-
lel C4.5 systems, the first (DP-ret) starts by distribut-
ing the data-set N across P processors such that each
processor is responsible for N/P records each contain-
ing the full k attributes. The second scheme (DP-att)
distributes the L attributes across the processors such
that each processor is responsible for N records each
of k/P attributes.

In both schemes all the processors co-operate in

a SPMD (Single Program Multiple Data) fa.shion in
the computation required to expand a particular node.
Each processor begins by computing the same function
over its local portion of the data-set. The processors
then synchronise by exchanging their local information
to create a global view of the node computation. the
process continues until the full tree has been expanded.

The three schemes have very different execution
characteristics. The DTP scheme benefits from the
independence between the different ta.sks executed in
parallel but is sensitive to 1oa.d ba.lancing problems re-
sulting from poor distribution of da.ta elemerns I:)(‘-
tween branches of a. tree. The DP-ret i1111~I~117r’1lt,il.-

tion suffers from high communication overheads as the
depth of the tree increa.ses, but, shoulcl perform we1 I
with large data sets. The DP-attr scheme has the
advantages of being both load-balanced and requiring
minimal communicat~ions. It is however not, generally
scalable with the number of processors.

Performance Results The performance ol’ lhe dif-
ferent implementa.tions were compa.red using the SOY-
BEAN, MUSHROOM and (~NNECT-4 trainiq sels oh-
tamed from the IICI Repository of Machine Learning
Database (‘Merz k Murphy 1996). Both the chara,ct.er-
istics of the different data-sets used in the experimems
and the measured execution time of the experiments
for a varying the number of processors from 2 to 16.
are shown in Figure 2. Note that k is the number of
attributes in record, c is the number of classes and N
is the number of cases used in the training set.

The results mainly indicate that the choice of the
best pa.rallelisation strategy highly depends on the
data-set being used. For the CONNECT-4 data-set the
DTD scheme offered the best performance. This can
be attributed to the dense shape of the generated tree
where the a.ddition of more processors a.llows the ex-
ecution of more nodes in para.llel. For the SOYBEAN
data-set, the DP-attr version offered the best perfor-
mance. This version outperforms the DP-ret scheme
due to the large number of classes and attributes which
govern the amount of data being exchanged in the DP-
ret scheme. In contrast using the MUSHROOM da.ta-set,
the DP-ret scheme offered the best performance where
the data set is characterised by a large training set and
low number of classes and attributes.

Structuring Parallel Data M ining
The experiments presented in the previous section
highlight some of the difficulties faced when develop-

.~ ~~ 1 1. ing efficient impiemen-ca~lons of paraiiei data mining
programs where the choice between different pa.ralleli-
sation methods depends on the characteristics of the
target machine architecture. This “dynamic” algorith-
mic behaviour is one of the major challenges for paral-
lelising data mining applications.

At Imperial College we have been developing a struc-
tured approach to parallel programming based on the

144 KDD-97

Connect
k=42, c=3.
N=27558.

Mushroom
k22, c=2,
N=24372
(scaled-up).

Soybean
k=35, c=19.
N=170'75
(scaled-up)

Figure 2: Execution time of different data-sets on the
APlOOO

use of high-level skeletons (Darlington et al. 1995;
Darlington, Ghanem, & To 1993). The approach of-
fers a solution to the above challenge by making the
choice of the appropriate parallelisation strategy based
on the characteristics of the data-set much easier.

Structured Parallel Programming
At the heart of our structured parallel programming
n,.v.,r,nnL :, CL,.. n,...In,\n+ -cm n,-.+ ,c.,..,&.F:,,,-l l,:nl. l.-...*l qJp’“aL” 1u bIIG L”rlLcz,Jb “I a 31;b “I ~J’~U’;““~U ‘lltjll-II;“I;I

skeletons. A skeleton can be viewed as a software tem-
plate that specifies a particular pattern of parallel com-
putation and communication. Each skeleton captures
a widely used parallel method which is often common
to a wide range of applications. A parallel program
is first expressed by choosing a skeleton which reflects
the parallel structure of the program. The parame-
ters of the skeleton are then instantiated with problem
specific sequential function calls.

For example, The D&C skeleton captures the recur-
sive divide and conquer behaviour common to many
a.lgorithms such as C4.5. These algorithms work by
splitting a large ta.sk into several sub-tasks, solving
the sub-tasks independently and then combining the
results. Since the sub-tasks are independent, they can
be executed on separate processors. A functional spec-
ification of the D&C skeleton is as follows:

DC(simple, solve, divide, combine, P) =
if simple (P) then solve (P)
else

combine (n, Farm(simple, solve,
divide, combine Si))

where
(n, S) = divide (P) Si E S

In this skeletons, the functions simple performs a triv-
iality test on a given ta.sk. If the task is trivial it is
then solved by the function solve. Otherwise the larger
tasks are divided by the function divide into a set of
sub-tasks S and a node n. These sub-tasks solved re-
cursively and the sub-results combined by the function
combine . The task parallel implementation of the D&C
skeleton is specified by the Farm skeleton which cap-
tures the behaviour of executing a set of independent
tasks in parallel.

By decomposing C4.5 into four basic functions a.
task parallel tree construction procedure of C4.5 can
be structured as a. special instance of the D&C skele-
ton. The functions are: class for computing the set of
class values of a data-set, select-attribute for selecting
attribute by computing the information gain and test
for partitioning the data. by logical test on the selected
attribute. The algorithm can be specified thus:

Parallel-nee-Construction (S) =
DC (simple, solve, divide, combine, S)
where

simple S = is-singleton (class (S))
solve S = class (S)
divide S = test (select-attribute (S))
combine n T = node(n, T)

Navigating using Performance Models
Skeletons are mainly used to provide a precise abstrac-
tion of computational behaviour of a parallel imple-
mentations while hiding their implementa.tion deta.ils.
The natkernn nf nardlelism ca.nt.nred hv ea.& &ek- II~~ -___- -_ =--- --------- --I- ----- -.J
ton are quite general. The exact implementation of a
given skeleton may change from one parallel machine
to another to make use of a given machine’s features.
However the use of skeletons to express the control
structure of a parallel program enables the capluring
of the main features of a pa.rallelisation stra.tegy. This
provides a crucial a.id in determining the appropria.te
choice of hot811 a. parallelisa.tion scheme and it,s unclcr-
lying implementation.

One of the main advantages of the skeleton a.pproach
is the ability to associate performance models wit811
each skeieton impiementation a.nd machine pa.ir (Dar-
lington et al. 1996). Tl zis is due to the pre-design of
each skeleton implementation which enables the devel-
opment of a performance formula predicting its tun-
time performance. For example, the performance of

Chattratichat 145

divide and conquer algorithms can be specified recur-
&VPIV in tormc2 rrf N the nlmhl~m &p, -, I--- _ _______ !? the hra.n& ,x”‘,‘J 111 YCLIIII> VI L. , U.-V r A--I “.--

ing factor and the total execution times of division
and combination routines at a given node, Tnode(N, B).
The performance of the task parallel implementation
is

where

This performance model does not give absolute pre-
dictive execution times, but is designed to be sufficient
for distinguishing between the use of alternative imple-
mentations (Darlington et al. 1996). Thus they can be
used to help the user navigate through the space of all
possibie impiementations, without the need to execute
the code. This property is the key to determine the
choice of right parallel implementation of a data min-
ing algorithm with respect to a particular application.

Structured Parallelisation of C4.5
AC an PY~III~~P ef 1~~1111r t.he &e]ef;om a.pproa& the dif- 2 II, 1-A “‘.uA’-Lc-- 0 ---- .-
ferent parallelisation strategies for the C4.5 classifica-
tion a.lgorithm ca.n be implemented using the skeletons
shown in Figure 3. Each pa,th in this option tree speci-
fies a possible implementation of the program in terms
of skeletons.

!-

Figure 3: C4.5 parallelisation road map

For a.lgorithms such a.s C4.5 where the characteris-
tics of the data-set affect the performance of the dif-
ferent implementations, the rela.tionship between the
skeleton performance models and the data-set needs
to be developed. This can be done by examining the
size of the da.&set (scale), the number of attributes of
the data (complexity), the ratio between the number
of continuous attributes and the number of discrete at-
tributes (structure of the data-set) and the characteris-
ticn of the nrohlem domain (structure of the tree). The d- _I - _ 1-- _ r-- -----
correlation between the performance models of parallel

data mining systems and the feature model of the da.ta-
set provides a decision model of determining a. oroner 1 m-1.
parallel implementation for a particular problem.

Conclusions
In this paper we have investigated the potential for
exploiting different parallelisation strategies for a clas-
sification algorithm. The results show that the per- - : -2 formance of the dlfterent implementation schemes was
highly susceptible to the properties of the training set
used. We have presented a methodology based on
skeletons and performance models which provides an
aid to the user for navigating the space of parallel im-
plementations of a given a.lgorithm solving a particu-
lar problem. We are currently investigating the precise
modelling of the implementations and building up the
correlation between the performance of these imple-
mentations and the data features.

References
Darlington, J .; Guo, Y.; To, H. W .; and Yang, J,
1995. Functional skeletons for parallel coordination.
In Haridi, S.; Ali, I(.; and Magnussin, P., eds., Euro-
n--1nr n ..,.... 11.1 n-.-- .-. r(~‘f. yil rur’ulcci rroces:szng, 55-69. Springer-Verlag.
Darlington, J.; Ghanem, M.; Guo, Y.; and To, H. W.
1996. Guided resource organisation in heterogeneous
parallel computing. Submitted to the Jour& of High,
Performance Computing.
Darlington, J.; Ghanem, M.; and To, H. W. 1993.
Structured parallel programming. In Programming
Models for Massively Parallel Computers, 160-169.
IEEE Computer Society Press.
Fayyad, U. M.; Piatetsky-Shapiro, G.; and Smyth, P.
1996. From da.ta mining to knowledge discovery: An
overview. In Fayyad, U. M.; Piatetesky-Sha.piro, G.;
Smyth, P.; and Uthurusamy, R., eds., Advances in
Knowledge Discovery and Datu Mining. MIT Press.
Ishihata, H.; Horie, T.; Inano, S.; Shimizu, T.; Kate,
S.; and Ikesaka, M. 1991. Third generation message
passing computer APlOOO. In Interlaational Sympo-
&urn on Supercomputing, 46-55.
Merz, C. J., and Murphy, P. M. 1996. UC1 repository
of machine learning databases. University of Ca.li-
fornia,
Department of Information and Computer Science,
http://www.ics.uci.edu/“l?lllearll/MLRepository.~~t~~ll.
fL.:..1-..
yulLu*u, J. R. 1993.

f-7, r l-l-&-..- __^^ I'... nc. -1 '~.
bi+.;, r7’UQ’l’UlllS JO7’ M UCIl.Z’JLC

Lennzing. Morgan Kaufmann Publishers, Inc.

146 KDD-97

