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Abstract 

Data mining over large data-sets is important due to 
its obvious commercial potential, However, it is also 
a major challenge due to its computational complex- 
ity. Exploiting the inherent parallelism of data mining 
algorithms provides a direct solution by utilising the 
large data retrieval and processing power of parallel 
architectures. In this paper, we present some results 
of our intensive research on paralielising data mining 
algorithms. In particular, we also present a methodol- 
ogy for determining the proper parallelisation strategy 
based on the idea of algorithmic skeletons and per- 
formance modelling. This research aims to provide a 
systematic way to develop parallel data mining algo- 
rithms and applications. ’ 

Parallelism in Data Mining Algorithms 
Numerous algorithms have been previously developed 
for data mining (Fayyad, Piatetsky-Shapiro, & Smyth 
, nnc\ n-1.- ..:-1. A ̂ ,....^^ -P :.,L.,,,,* -nnn ,,,,;nm ^“;,+;,,,. 
IYYU). I Ilt: llCll uc:grcr; “I IIIIItxGIIb palculGlmul LuDUllltj 
in these algorithms allows some flexibility in choosing 
the parallelisation scheme that most suited for a par- 
ticular parallel machine. Two major methods for ex- 
ploiting parallelism within data mining algorithms can 
be identified as task parallelism and dafa parallelism. 
A brief summary of how the two approaches can be 
used to parallelise different data mining algorithms is 
given in Table 1. 

In the task parallelism approach the computation is 
partitioned amongst the processors of a parallel ma- 
chine with each processor computing a distinct part of 
a learning model before co-ordinating with the other 
processors to form the global model. In the data paral- 
lelism approach the training set is partitioned amongst 
the processors with all processors synchronously con- 
structing the same model; each operating on a different 
portion of the data-set. 

Our practical experience with parallelising data min- 
ing algorithms showed an interesting phenomenon. 
While the parallelisation of certain data mining algo- 
rithms shows a consistent performance behaviour when ’ &pyJvrieht fi31997. .A_r?leric~- A_ssc&&ion for Artificial o-s- v--- > 
Intelligence (www.aaai.org). All rights reserved. 

Algorithm 
Classificatior 
Tree 

Neural 
Network 

Association 
Rule 

Task Parallelism 
Each branch of the 
tree is formed into 
a task. 

Network divided 
into sub-nets. The 
sub-nets are allo- 
cated across the 
processors. 

Itemset is divided 
a.cross the proces- 
sors with selec- 
tive copying such 
that each proces- 
sor can indepen- 
dently count and 
choose candidates. 

Data Parallelism 
Training 
set is partitioned 
across the proces- 
sors. Processors 
evaluate a node of 
tree in parallel. 
Network is dupli- 
cated 
onto each proces- 
sor. Training set 
it split a.cross the 
nrocessors. 
Data is 
distributed across 
the processors and 
each node counts 
and chooses candi- 
dates 
synchronously. 

-1 

Table 1: Techniques for parallelising data mining a.lgo- 
rithms. 

applied to different data-sets, this is not necessarily 
true across all algorithms. For example, we have im- 
plemented a task parallel feed-forward neural network 
with back-propagation on the Fujitsu APlOOO MPP sLzc&np, fTchihat.n d nl 1441). The nerfmmnnre of \“L”L’-“y .,” -“. ~-~~ I____ - __-1 
the implementation illustrated in Figure 1 shows that 
it is scalable across both processor numbers as well as 
network size. This performance is also consistent when 
the implementation is applied to various data-sets. 

However, for other algorithms such a.s induction 
based classification algorithms, there appears to be 
no “ideal” scheme for their parallelisation. The per- 
formance of the different parallelisation scheme varies 
greatly with the characteristics of data-set to which the 
algorithm is applied. It is these algorithms this paper 
attempts to investigate. 
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Figure 1: Execution time of PNN on the AP1000. 

Parallelising Classification Algorithms 

In this section, we describe our experiments in par- 
allelising a well known tree induction algorithm; 
C4.5 (Quinlan 1993). The aim of these experiments 
was to gain a deeper understanding of the different 
parallelisation schemes for classifica.tion algorithms. 

C4.5 is a classification-rule learning system which 
IIQO,C rlwisinn ~IVPE as 2 mode! representat!;t!ion. Tile tree L&vu., U”“IL.IVII “I”.><2 
models are inferred by using an inductive learning ap- 
proach applied to a training set. C4.5 attempts to find 
the simplest decision tree that describes the structure 
of the data-set by using heuristics based on informa- 
tion theory, These decide which attribute to select for 
any given node based on its information gain, i.e. its 
ability to minimise the information needed to further 
classify the cases in the resulting sub-trees. In our ex- 
periments we have implemented both task and data 
pa.rallel versions of C4.5. 
Task Parallel Implementations Several schemes 
for exploiting task parallelism between the branches of 
the decision tree exist. We  a.dopted a Dynamic Ta.sk 
Distribution Scheme (DTD) where a master processor 
maintains a queue of idle slave processors. The sub- 
trees generated at the root of the classification tree 
are initially dispatched for execution on distinct slave 
processors. Any slave processor expanding an internal 
node can also allocate its generated branches to other 
slaves by initiating a request to the master processor. 

Data Parallel Implementations Two variations 
of data parallel (DP) scheme can be used with C4.5. 
Given a d&a-set with size N of t-dimensional data, 
the entire work load of the algorithm can be charac- 
terised by N x k. We  have implemented two data paral- 
lel C4.5 systems, the first (DP-ret) starts by distribut- 
ing the data-set N across P processors such that each 
processor is responsible for N/P records each contain- 
ing the full k attributes. The second scheme (DP-att) 
distributes the L attributes across the processors such 
that each processor is responsible for N records each 
of k/P attributes. 

In both schemes all the processors co-operate in 

a SPMD (Single Program Multiple Data) fa.shion in 
the computation required to expand a particular node. 
Each processor begins by computing the same function 
over its local portion of the data-set. The processors 
then synchronise by exchanging their local information 
to create a global view of the node computation. the 
process continues until the full tree has been expanded. 

The three schemes have very different execution 
characteristics. The DTP scheme benefits from the 
independence between the different ta.sks executed in 
parallel but is sensitive to 1oa.d ba.lancing problems re- 
sulting from poor distribution of da.ta elemerns I:)(‘- 
tween branches of a. tree. The DP-ret i1111~I~117r’1lt,il.- 

tion suffers from high communication overheads as the 
depth of the tree increa.ses, but, shoulcl perform we1 I 
with large data sets. The DP-attr scheme has the 
advantages of being both load-balanced and requiring 
minimal communicat~ions. It is however not, generally 
scalable with the number of processors. 

Performance Results The performance ol’ lhe dif- 
ferent implementa.tions were compa.red using the SOY- 
BEAN, MUSHROOM and (~NNECT-4 trainiq sels oh- 
tamed from the IICI Repository of Machine Learning 
Database (‘Merz k Murphy 1996). Both the chara,ct.er- 
istics of the different data-sets used in the experimems 
and the measured execution time of the experiments 
for a varying the number of processors from 2 to 16. 
are shown in Figure 2. Note that k is the number of 
attributes in record, c is the number of classes and N 
is the number of cases used in the training set. 

The results mainly indicate that the choice of the 
best pa.rallelisation strategy highly depends on the 
data-set being used. For the CONNECT-4 data-set the 
DTD scheme offered the best performance. This can 
be attributed to the dense shape of the generated tree 
where the a.ddition of more processors a.llows the ex- 
ecution of more nodes in para.llel. For the SOYBEAN 
data-set, the DP-attr version offered the best perfor- 
mance. This version outperforms the DP-ret scheme 
due to the large number of classes and attributes which 
govern the amount of data being exchanged in the DP- 
ret scheme. In contrast using the MUSHROOM da.ta-set, 
the DP-ret scheme offered the best performance where 
the data set is characterised by a large training set and 
low number of classes and attributes. 

Structuring Parallel Data M ining 
The experiments presented in the previous section 
highlight some of the difficulties faced when develop- 

.~ ~~ 1 1. ing efficient impiemen-ca~lons of paraiiei data mining 
programs where the choice between different pa.ralleli- 
sation methods depends on the characteristics of the 
target machine architecture. This “dynamic” algorith- 
mic behaviour is one of the major challenges for paral- 
lelising data mining applications. 

At Imperial College we have been developing a struc- 
tured approach to parallel programming based on the 
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Figure 2: Execution time of different data-sets on the 
APlOOO 

use of high-level skeletons (Darlington et al. 1995; 
Darlington, Ghanem, & To 1993). The approach of- 
fers a solution to the above challenge by making the 
choice of the appropriate parallelisation strategy based 
on the characteristics of the data-set much easier. 

Structured Parallel Programming 
At the heart of our structured parallel programming 
n,.v.,r,nnL :, CL,.. n,...In,\n+ -cm n,-.+ ,c.,..,&.F:,,,-l l,:nl. l.-...*l qJp’“aL” 1u bIIG L”rlLcz,Jb “I a 31;b “I ~J’~U’;““~U ‘lltjll-II;“I;I 

skeletons. A skeleton can be viewed as a software tem- 
plate that specifies a particular pattern of parallel com- 
putation and communication. Each skeleton captures 
a widely used parallel method which is often common 
to a wide range of applications. A parallel program 
is first expressed by choosing a skeleton which reflects 
the parallel structure of the program. The parame- 
ters of the skeleton are then instantiated with problem 
specific sequential function calls. 

For example, The D&C skeleton captures the recur- 
sive divide and conquer behaviour common to many 
a.lgorithms such as C4.5. These algorithms work by 
splitting a large ta.sk into several sub-tasks, solving 
the sub-tasks independently and then combining the 
results. Since the sub-tasks are independent, they can 
be executed on separate processors. A functional spec- 
ification of the D&C skeleton is as follows: 

DC(simple, solve, divide, combine, P ) = 
if simple (P) then solve (P) 
else 

combine (n, Farm(simple, solve, 
divide, combine Si)) 

where 
(n, S) = divide (P) Si E S 

In this skeletons, the functions simple performs a triv- 
iality test on a given ta.sk. If the task is trivial it is 
then solved by the function solve. Otherwise the larger 
tasks are divided by the function divide into a set of 
sub-tasks S and a node n. These sub-tasks solved re- 
cursively and the sub-results combined by the function 
combine . The task parallel implementation of the D&C 
skeleton is specified by the Farm skeleton which cap- 
tures the behaviour of executing a set of independent 
tasks in parallel. 

By decomposing C4.5 into four basic functions a. 
task parallel tree construction procedure of C4.5 can 
be structured as a. special instance of the D&C skele- 
ton. The functions are: class for computing the set of 
class values of a data-set, select-attribute for selecting 
attribute by computing the information gain and test 
for partitioning the data. by logical test on the selected 
attribute. The algorithm can be specified thus: 

Parallel-nee-Construction (S) = 
DC (simple, solve, divide, combine, S) 
where 

simple S = is-singleton (class (S)) 
solve S = class (S) 
divide S = test (select-attribute (S)) 
combine n T = node( n, T) 

Navigating using Performance Models 
Skeletons are mainly used to provide a precise abstrac- 
tion of computational behaviour of a parallel imple- 
mentations while hiding their implementa.tion deta.ils. 
The natkernn nf nardlelism ca.nt.nred hv ea.& &ek- II~~ -___- -_ =--- --------- --I- ----- -.J 
ton are quite general. The exact implementation of a 
given skeleton may change from one parallel machine 
to another to make use of a given machine’s features. 
However the use of skeletons to express the control 
structure of a parallel program enables the capluring 
of the main features of a pa.rallelisation stra.tegy. This 
provides a crucial a.id in determining the appropria.te 
choice of hot811 a. parallelisa.tion scheme and it,s unclcr- 
lying implementation. 

One of the main advantages of the skeleton a.pproach 
is the ability to associate performance models wit811 
each skeieton impiementation a.nd machine pa.ir (Dar- 
lington et al. 1996). Tl zis is due to the pre-design of 
each skeleton implementation which enables the devel- 
opment of a performance formula predicting its tun- 
time performance. For example, the performance of 
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ing factor and the total execution times of division 
and combination routines at a given node, Tnode(N, B). 
The performance of the task parallel implementation 
is 

where 

This performance model does not give absolute pre- 
dictive execution times, but is designed to be sufficient 
for distinguishing between the use of alternative imple- 
mentations (Darlington et al. 1996). Thus they can be 
used to help the user navigate through the space of all 
possibie impiementations, without the need to execute 
the code. This property is the key to determine the 
choice of right parallel implementation of a data min- 
ing algorithm with respect to a particular application. 

Structured Parallelisation of C4.5 
AC an PY~III~~P ef 1~~1111r t.he &e]ef;om a.pproa& the dif- 2 II, 1-A “‘.uA’-Lc-- 0 ---- .- 
ferent parallelisation strategies for the C4.5 classifica- 
tion a.lgorithm ca.n be implemented using the skeletons 
shown in Figure 3. Each pa,th in this option tree speci- 
fies a possible implementation of the program in terms 
of skeletons. 

!- 

Figure 3: C4.5 parallelisation road map 

For a.lgorithms such a.s C4.5 where the characteris- 
tics of the data-set affect the performance of the dif- 
ferent implementations, the rela.tionship between the 
skeleton performance models and the data-set needs 
to be developed. This can be done by examining the 
size of the da.&set (scale), the number of attributes of 
the data (complexity), the ratio between the number 
of continuous attributes and the number of discrete at- 
tributes (structure of the data-set) and the characteris- 
ticn of the nrohlem domain (structure of the tree). The d- _I - _ 1-- _ r-- ----- 
correlation between the performance models of parallel 

data mining systems and the feature model of the da.ta- 
set provides a decision model of determining a. oroner 1 m-1. 
parallel implementation for a particular problem. 

Conclusions 
In this paper we have investigated the potential for 
exploiting different parallelisation strategies for a clas- 
sification algorithm. The results show that the per- - : -2 formance of the dlfterent implementation schemes was 
highly susceptible to the properties of the training set 
used. We have presented a methodology based on 
skeletons and performance models which provides an 
aid to the user for navigating the space of parallel im- 
plementations of a given a.lgorithm solving a particu- 
lar problem. We are currently investigating the precise 
modelling of the implementations and building up the 
correlation between the performance of these imple- 
mentations and the data features. 
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