From: KDD-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

Large Scale Data Mining: Challenges and Responses

Jaturon Chattratichat
Yike Guo

Janjao Sutiwaraphun

John Darlington
Harald Hining
Hing Wing To

Department of Computing,
Imperial College, London SW7 2BZ, U.K.

Abstract

Data mining over large data-sets is important due to
its obvious commercial potential. However, it is also
a major challenge due to its computational complex-
ity. Exploiting the inherent parallelism of data mining
algorithms provides a direct solution by utilising the
large data retrieval and processing power of parallel
architectures. In this paper, we present some results
of our intensive research on parallelising data mining
algorithms. In particular, we also present a methodol-
ogy for determining the proper parallelisation strategy
based on the idea of algorithmic skeletons and per-
formance modelling. This research aims to provide a
systematic way to develop parallel data mining algo-
rithms and applications. !

Parallelism in Data Mining Algorithms

Numerous algorithms have been previously developed
for data mining (Fayyad, Piatetsky-Shapiro, & Smyth
1996). The rich degree of inherent parallelism existing
in these algorithms allows some flexibility in choosing
the parallelisation scheme that most suited for a par-
ticular parallel machine. Two major methods for ex-
ploiting parallelism within data mining algorithms can
be identified as task parallelism and deta parallelism.
A brief summary of how the two approaches can be
used to parallelise different data mining algorithms is
given in Table 1.

In the task parallelism approach the computation is
partitioned amongst the processors of a parallel ma-
chine with each processor computing a distinct part of
a learning model before co-ordinating with the other
processors to form the global model. In the data paral-
lelism approach the training set is partitioned amongst
the processors with all processors synchronously con-
structing the same model; each operating on a different
portion of the data-set.

QOur practical experience with parallelising data min-
ing algorithms showed an interesting phenomenon.
While the parallelisation of certain data mining algo-
rithms shows a consistent performance behaviour when

erican Association for Artificial

1 Copyright ©1997, Am

C
b4

Intelligence (www.aaai.org). All rights reserved.

Moustafa Ghanem
Martin Kdhler
Dan Yang

[Algorithm | Task Parallelism | Data Parallelism |
Classification] Each branch ofthe | Training
Tree tree is formed into | set is partitioned
a task. across the proces-
sors. Processors
evaluate a node of
tree in parallel.
Neural Network divided | Network is dupli-
Network into sub-nets. The | cated
sub-nets are allo- | onto each proces-
cated across the | sor. Training set
Processors. it split across the
Processors.
Association | Itemset is divided | Data is
Rule across the proces- | distributed across
sors with selec- | the processors and
tive copying such | each node counts
that each proces- | and chooses candi-
sor can indepen- | dates
dently count and | synchronously.
choose candidates.

Table 1: Techniques for parallelising data mining algo-
rithms.

applied to different data-sets, this is not necessarily
true across all algorithms. For example, we have im-
plemented a task parallel feed-forward neural network
with back-propagation on the Fujitsu AP1000 MPP

machine (Ishihata et al. 1991). The performance of

the implementation illustrated in Figure 1 shows that
it is scalable across both processor numbers as well as
network size. This performance is also consistent when
the implementation is applied to various data-sets.

However, for other algorithms such as induction
based classification algorithms, there appears to be
no “ideal” scheme for their parallelisation. The per-
formance of the different parallelisation scheme varies
greatly with the characteristics of data-set to which the
algorithm is applied. It is these algorithms this paper
attempts to investigate.

Chattratichat 143

Execution times of the parallel back-prcpagaﬂon on AP1000
0 T ¥ T
. Topology 14‘32’20’3 —-—
400 % Topology:14*50*50*3 - 1
Yooy Topology:14*100"50*3 ~p--
BOFY 1
soo by B

250 Y

Execution time

2 4 6 8 10 12 14
Number of processors

Figure 1: Execution time of PNN on the AP1000.

Parallelising Classification Algorithms

Tn this section, we describe our experiments in par-
allelising a well known tree induction algorlthm;
C4.5 qulman 1530) The aim of these experiments

was to gain a deeper understanding of the different
narallelisation schemes for classification algorithms.

JA QUL QE LT A Ol1l BLLnllils UL Lidudois wa .,““.

C4.5 is a classification-rule learning system which
uses decigion trees as a model representation. The tree
models are inferred by using an 1nduct1ve learning ap-
proach applied to a training set. C4.5 attempts to find
the simplest decision tree that describes the structure
of the data-set by using heuristics based on informa-
tion theory. These decide which attribute to select for
any given node based on its information gain, i.e. its
ability to minimise the information needed to further
classify the cases in the resulting sub-trees. In our ex-
periments we have implemented both task and data

parallel versions of C4.5.

Task Parallel Implementations Several schemes
for exploiting task parallelism between the branches of
the decision tree exist. We adopted a Dynamic Task
Distribution Scheme (DTD) where a master processor
maintains a queue of idle slave processors. The sub-
trees generated at the root of the classification tree
are initially dispatched for execution on distinct slave
processors. Any slave processor expanding an internal
node can also allocate its generated branches to other
slaves by initiating a request to the master processor.

Data Parallel Implementations Two variations
of data parallel (DP) scheme can be used with C4.5.
Given a data-set with size N of k—dimensional data,
the entire work load of the algorithm can be charac-
terised by N x k. We have implemented two data paral-
lel C4.5 systems, the first (DP-rec) starts by distribut-
ing the data-set N across P processors such that each
processor is responsible for N/ P records each contain-
ing the full k attributes. The second scheme (DP-att)
distributes the k attributes across the processors such
that each processor is responsible for N records each
of k/P attributes.

In both schemes all the processors co-operate in

144 KDD-97

a SPMD (Single Program Multiple Data) fashion in
the computation required to expand a particular node.
Each processor begins by computing the same function
over its local portion of the data-set. The processors
then synchronise by exchanging their local information
to create a global view of the node computation. the
process continues until the full tree has been expanded.

The three schemes have very different execution
characteristics. The DTP scheme benefits from the
independence between the different tasks executed in
parallel but is sensitive to load balancing problems re-
sulting from poor distribution of data elements be-
tween branches of a tree. The DP-rec implementa-
tion suffers from high communication overheads as the
depth of the tree increases, but should perform well
with large data sets. The DP-attr scheme has the
advantages of being both load-balanced and requiring
minimal communications. [t is however not generally
scalable with the number of processors.

Performance Results The performance of the dif-
ferent implementations were compared using the Soy-
BEAN, MUSHROOM and C'ONNECT-4 training sets ob-
tained from the UCI Repository of Machine Learning
Database (Merz & Murphy 1998). Both the character-
istics of the different data-sets used in the experiments
and the measured execution time of the experiments
for a varying the number of processors from 2 to 16.
are shown in Figure 2. Note that k is the number of
attributes in record, ¢ is the number of classes and N
is the number of cases used in the training set.

The results mainly indicate that the choice of the
best parallelisation strategy highly depends on the
data-set being used. For the CONNECT-4 data-set the
DTD scheme offered the best performance. This can
be attributed to the dense shape of the generated tree
where the addition of more processors allows the ex-
ecution of more nodes in parallel. For the SOYBEAN
data-set, the DP-attr version offered the best perfor-
mance. This version outperforms the DP-rec scheme
due to the large number of classes and attributes which
govern the amount of data being exchanged in the DP-
rec scheme. In contrast using the MusHrooM data-set,
the DP-rec scheme offered the best performance where
the data set is characterised by a large training set and
low number of classes and attributes.

Structuring Parallel Data Mining

The experiments presented in the previous section
hlghhght some of the difficulties faced when develop-
ing efficient implementations of parallel data mining
programs where the choice between different paralleli-
sation methods depends on the characteristics of the
target machine architecture. This “dynamic” algorith-
mic behaviour is one of the major challenges for paral-
lelising data mining applications,

At Imperial College we have been developing a struc-
tured approach to parallel programming based on the

connect-4 (27558)

140
120
100
Connect 7
& w0
k=42, c=3. 2
£ e
N=27558.
40
20
0
o 5 10 5 20
Procassors {P)
s mushroom (24372)
DTD ——
DP-rec -+
4 DP-attr -~
Mushroom |~
k=22, c=2, & NK ________
N=24372 g 2 —_ °
{scaled-up).
1
0
o 2 4 & 10 12 14 16 18
Processors {P)
b
30 soybean (17075)
2
25 OP-at ot
Soybean o e
k=35, ¢=19. £ 0 el
Py
N=17075 E JRU
(scaled-up) v e
5 e L
0

o 2 4 2 14 16 18

6 8 10

Processars (P)
Figure 2: Execution time of different data-sets on the
AP1000

use of high-level skeletons (Darlington et al. 1995;
Darlington, Ghanem, & To 1993). The approach of-
fers a solution to the above challenge by making the
choice of the appropriate parallelisation strategy based
on the characteristics of the data-set much easier.

Structured Parallel Programming
At the heart of our structured parallel programming

nnnnnnnnn
skeletons. A skeleton can be viewed as a software tem-
plate that specifies a particular pattern of parallel com-
putation and communication. Fach skeleton captures
a widely used parallel method which is often common
to a wide range of applications. A parallel program
is first expressed by choosing a skeleton which reflects
the parallel structure of the program. The parame-
ters of the skeleton are then instantiated with problem
specific sequential function calls.

For example, The D&C skeleton captures the recur-
sive divide and conquer behaviour common to many
algorithms such as C4.5. These algorithms work by
splitting a large task into several sub-tasks, solving
the sub-tasks independently and then combining the
results. Since the sub-tasks are independent, they can
be executed on separate processors. A functional spec-
ification of the D&C skeleton is as follows:

DC(simple, solve, divide, combine, P) = “
if simple (P) then solve (P)
else
combine (n, Farm(simple, solve,
divide, combine S;}))
where
(n, S) = divide (P) S; € S

In this skeletons, the functions simple performs a triv-
iality test on a given task. If the task is trivial it is
then solved by the function solve. Otherwise the larger
tasks are divided by the function divide into a set of
sub-tasks S and a node n. These sub-tasks solved re-
cursively and the sub-results combined by the function
combine . The task parallel implementation of the D&C
skeleton is specified by the Farm skeleton which cap-
tures the behaviour of executing a set of independent
tasks in parallel.

By decomposing C4.5 into four basic functions a
task parallel tree construction procedure of C4.5 can
be structured as a special instance of the D&C skele-
ton. The functions are: class for computing the set of
class values of a data-set, select-attribute for selecting
attribute by computing the information gain and test
for partitioning the data by logical test on the selected
attribute. The algorithm can be specified thus:

Parallel-Tree-Construction (S) =
DC (simple, solve, divide, combine, S)
where
simple S = is-singleton (class (S))
solve § = class (S)
divide S = test (select-attribute (S))
combine n T = node(n, T)

Navigating using Performance Models

Skeletons are mainly used to provide a precise abstrac-
tion of computational behaviour of a paralle] imple-
mentations while hiding their implementation details.
The patterns of parallelism captured by each skele-
ton are quite general. The exact implementation of a
given skeleton may change from one parallel machine
to another to make use of a given machine’s features.
However the use of skeletons to express the control
structure of a parallel program enables the capturing
of the main features of a parallelisation strategy. This
provides a crucial aid in determining the appropriate
choice of hoth a parallelisation scheme and its under-
lying implementation.

One of the main advantages of the skeleton approach
is the ability to associate performance models with
each skeleton implementation and machine pair (Dar-
lington et al. 1996). This is due to the pre-design of
cach skeleton implementation which enables the devel-
opment of a performance formula predicting its tun-
time performance. For example, the performance of

Chattratichat 145

divide and conquer algorithms can be specified recur-
sively in terms of N the problem size, B, the branch-

1y M1 BCHIILs OL 4V, ull paLaliClll 8140, L2, bt JLalL

ing factor and the total execution times of division
and combination routines at a given node, Thode (I, B)
The performance of the task parallel implementation
is

TdC(N) = Tdc(X/B) + Tnode(N, B)
where
Tnode(N7 B) = Tdi'u(Nx B) +Tcomb(Na B) +Tt7‘iv (N7 B)

This performance model does not give absolute pre-
dictive execution times, but is designed to be sufficient
for distinguishing between the use of alternative imple-
mentations (Darlington ef al. 1996). Thus they can be
used to help the user navigate through the space of all
possible implementations, without the need to execute
the code. This property is the key to determine the
choice of right parallel implementation of a data min-
ing algorithm with respect to a particular application.

Structured Parallelisation of C4.5

As an example of using the skeletons approach the dif-
ferent parallelisation strategies for the C4.5 classifica-
tion algorithm can be implemented using the skeletons
shown in Figure 3. Each path in this option tree speci-
fies a possible implementation of the program in terms

of skeletons.

§ e $tutic Famm

et Centralised Dynumic Fam

Waork-stealing Dynamic Farn

s
Parullelism

Centralised
Directory

Task Quenie

PCa.s

Reconds

Dala
Parallelism

[T vl 3 “y 3
Level 1 Thavel 2 1A g

:;Clmlce of Skeleton ";Clmlcu of Skeleton
s(Applicution nnd Machine 2 Implementution
*Bpecific) “ (Muchine-Speelfic)

Chalee of Parallelisin

Figure 3: C4.5 parallelisation road map

For algorithms such as C4.5 where the characteris-
tics of the data-set affect the performance of the dif-
ferent implementations, the relationship between the
skeleton performance models and the data-set needs
to be developed. This can be done by examining the
size of the data-set (scale), the number of attributes of
the data (complexity), the ratio between the number
of continuous attributes and the number of discrete at-
tributes (structure of the data-set) and the characteris-
tics of the problem domain (structure of the tree). The

o QL WG cll

correlation between the performance models of parallel

146 KDD-97

data mining systems and the feature model of the data-
set provides a decision model of determining a proper
parallel implementation for a particular problem.

Conclusions

In this paper we have investigated the potential for
exploiting different parallelisation strategies for a clas-
sification algorithm. The results show that the per-
formance of the different implementation schemes was
highly susceptible to the properties of the training set
used. We have presented a methodology based on
skeletons and performance models which provides an
aid to the user for navigating the space of parallel im-
plementations of a given algorithm solving a particu-
lar problem. We are currently investigating the precise
modelling of the implementations and building up the
correlation between the performance of these imple-
mentations and the data features.

References

Darlington, J.; Guo, Y.; To, H. W.; and Yang, J.
1995. Functional skeletons for parallel coordination.
In Haridi, S.; Ali, K.; and Magnussin, P., eds., Furo-
Par’§5 Parallel Processing, 55-69. Springer-Verlag.
Darlington, J.; Ghanem, M.; Guo, Y.; and To, H. W.
1996. Guided resource organisation in heterogeneous
parallel computing. Submitted to the Journal of High
Performance Computing.

Darlington, J.; Ghanem, M.; and To, H. W. 1993.
Structured parallel programming, In Programming
Models for Massively Parallel Computers, 160-169.
IEEE Computer Society Press.

Fayyad, U. M.; Piatetsky-Shapiro, G.; and Smyth, P.
1996. From data mining to knowledge discovery: An
overview. In Fayyad, U. M.; Piatetesky-Shapiro, G.;
Smyth, P.; and Uthurusamy, R., eds., Advances in
Knowledge Discovery and Date Mining. MIT Press.

Ishihata, H.; Horie, T.; Inano, S.; Shimizu, T.; Kato,
S.; and Tkesaka, M. 1991. Third generation message
passing computer AP1000. In International Sympo-
stum on Supercomputing, 46-55.

Merz, C. J., and Murphy, P. M. 1996. UCI repository
of machine learning databases. University of Cali-
fornia,

Department of Information and Computer Science,
http://www ics.uci.edu/~mlearn/MLRepository.html.

----- n 10090 7 | JOR P PO N
Quinlan, J. R. 1893. 4.5 Programs for Machine

Learning. Morgan Kaufmann Publishers, Inc.

