Using Artificial Intelligence Planning to Automate Science Data Analysis for Large Image Databases

Steve Chien, Forest Fisher, Helen Mortensen
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive, Pasadena, CA 91109-8099

Edisanter Lo, Ronald Greeley
Department of Geology
Arizona State University
P.O. Box 871404, Tempe, AZ 85287-1404

Abstract

This paper describes the use of AI planning techniques to represent scientific, image processing, and software tool knowledge to automate knowledge discovery and data mining (e.g., science data analysis) of large image databases. In particular, we describe two fielded systems. The Multimission VICAR Planner (MVP) which has been deployed for 2 years and is currently supporting science product generation for the Galileo mission. MVP has reduced time to fill certain classes of requests from 4 hours to 15 minutes. The Automated SAR Image Processing system (ASIP) which is currently in use by the Dept. of Geology at ASU supporting aeolian science analysis of synthetic aperture radar images. ASIP reduces the number of manual inputs in science product generation by 10-fold.

Introduction

Recent breakthroughs in imaging technology have led to an explosion of available data in image format. However, these advances in imaging technology have brought with them a commensurate increase in the complexity of image processing and analysis technology. When analyzing newly available image data to discover patterns or to confirm scientific theories, a complex set of operations is often required. First, before the data can be used it must often be reformatted, cleaned, and many correction steps must be applied. Then, in order to perform the actual data analysis, the user must manage all of the analysis software packages and their requirements on format, required information, etc.

Furthermore, this data analysis process is not a one-shot process. Typically a scientist will set up some sort of analysis, study the results, and then use the results of this analysis to modify the analysis to improve it. This analysis and refinement cycle may occur many times - thus any reduction in the scientist effort or cycle time can dramatically improve scientist productivity.

Unfortunately, this data preparation and analysis process is both knowledge and labor intensive. Consider the task of producing a mosaic of images of the moon from the Galileo mission (corrected for lighting, transmission errors, and camera distortions). Consider also that our end goal is to perform geological analyses - i.e., to study the composition of the surface materials on the moon. One technique used to do this is to construct a ratio image - an image whose values are the ratio of the intensity of the response at two different bandwidths (e.g., the ratio of infra-red response and visible green response). In order to correctly be able to produce this science product for analysis, requires knowledge of a wide range of sources including:

- the particular science discipline of interest (e.g., atmospheric science, planetary geology),
- image processing and the image processing libraries available,
- where and how the images and associated information are stored (e.g., calibration files), and
- the overall image processing environment to know how to link together libraries and pass information from one program to another.

It takes many years of training and experience to acquire the knowledge necessary to perform these analyses. Needless to say, these experts are in high demand. One factor which exacerbates this shortage of experts is the extreme breadth of knowledge required. Many users might be knowledgeable in one or more of the above areas but not in all the areas. In addition, the status quo requires that users possess considerable knowledge about software infrastructure. Users must know how to specify input parameters (format, type, and options) for each software package that they are using and must often expend considerable effort in translating information from one package to another.

Using automated planning technology to represent and automate many of these data analysis functions en-
ables novice users to utilize the software libraries to mine the data (p. 50 (Fayyad96)). It also allows users who may be expert in some areas but less knowledgeable in other to use the software tools to mine the data.

The remainder of this article is organized as follows. First, we provide a brief overview of the key elements of AI planning. We then describe two fielded planning systems for science data analysis. We describe the MVP system - which automates elements of image processing for science data analysis for data from the Galileo mission. We then describe the ASIP system - which automates elements of image processing for science data analysis of synthetic aperture radar (SAR) images.

The principle contributions of this article are twofold. First, we identify software tool reconfiguration as an area where AI planning technology can significantly extend KDD capabilities. Second, we describe two systems demonstrating the viability and impact of AI planning on the KDD process.

Artificial Intelligence Planning Techniques

We have applied and extended techniques from Artificial Intelligence Planning to address the knowledge-based software reconfiguration problem in general, and two applications in science data analysis (e.g., data mining) in specific. In order to describe this work, we first provide a brief overview of the key concepts from planning technology.

Planning technology relies on an encoding of possible actions in the domain. In this encoding, one specifies for each action in the domain: preconditions, postconditions, and subactivities. Preconditions are requirements which must be met before the action can be taken. These may be pieces of information which are required to correctly apply a software package (such as the image format, availability of calibration data, etc. Postconditions are things that are made true by the execution of the actions, such as the fact that the data has been photometrically corrected (corrected for the relative location of the lighting source) or that 3-dimensional topography information has been extracted from an image. Substeps are lower level activities which comprise the higher level activity. Given this encoding of actions, a planner is able to solve individual problems, where each problem is a current state and a set of goals. The planner uses its action models to synthesize a plan (a set of actions) to achieve the goals from the current state.

Planning consists of three main mechanisms: subgoal, task decomposition, and conflict analysis. In subgoal, a planner ensures that all of the preconditions of actions in the plan are met. This can be done by ensuring that they are true in the initial state or by adding appropriate actions to the plan. In task decomposition, the planner ensures that all high level (abstract) activities are expanded so that the lower level (subactivities) are present in the plan. This ensures that the plan consists of executable activities. Conflict analysis ensures that different portions of the plan do not interfere with eachother.

The Multimission VICAR Planner (MVP)

MVP (Chien96) partially automates generation of image processing procedures from user requests and a knowledge-based model of VICAR image processing area using Artificial Intelligence (AI) automated planning techniques. In VICAR image processing, the actions are VICAR image processing programs, the current state is the current state of the image files of interest, and the specification of the desired state corresponds to the user image processing goals.

The VICAR environment (Video Image Communication and Retrieval) supports image processing for: JPL flight projects including VOYAGER, MAGELLAN, and GALILEO, and CASSINI; other space imaging missions such as SIR-C and LANDSAT; and numerous other applications including astronomy, earth resources, land use, biomedicine, and forensics with a total of over 100 users. VICAR allows individual processing steps (programs) to be combined into more complex image processing scripts called procedure definition files (PDFs). The primary purpose of VICAR is for encoding PDFs for science analysis of image data from JPL missions.

An Example of MVP Usage

In order to illustrate how MVP assists in VICAR planetary image processing, we now provide a typical example of MVP usage to ground the problem and the inputs and outputs required by MVP. The three images, shown at the left of Figure 1 are of the planet Earth taken during

Figure 1: Raw and Processed Image Files

1This name is somewhat misleading as VICAR is used to process considerable non-video image data such as MAGELLAN synthetic aperture radar (SAR) data.
the Galileo Earth 2 flyby in December 1992. However, many corrections and processing steps must be applied before the images can be used. First, errors in the compression and transmission of the data from the Galileo spacecraft to receivers on Earth has resulted in missing and noisy lines in the images. Line fillin and spike removals are therefore desirable. Second, the images should be map projected to correct for the spatial distortion that occurs when a spherical body is represented on a flat surface. Third, in order to combine the images, we need to compute common points between the images and overlay them appropriately. Fourth, because we are combining multiple images taken with different camera states, the images should be radiometrically corrected before combination.

MVP enables the user to input image processing goals through a graphical user interface with most goals as toggle buttons on the interface. A few options require entering some text, usually function parameters that will be included as literals in the appropriate place in the generated VICAR script. Figure 2 shows the processing goals input to MVP. Using the image processing goals

radiometric correction
missing line fillin
no limbs present in images
display man nav residual error
mosaic images
display automatic nav residual error
smooth mosaic seams using DN
pixel spike removal
uneven bit weight correction
perform automatic navigation
map project with parameters

Figure 2: Example Problem Goals

and its model of image processing procedures, MVP constructs a plan of image processing steps to achieve the requested goal. Figure 3 shows the plan structure for a portion of the overall image processing plan.

In this graph, nodes represent image processing actions (programs) and required image states to achieve the larger image processing goal. This plan is translated into a VICAR script which, when run, performs the desired image corrections and constructs a mosaicked image of the three input files. Figure 4 shows the MVP-generated VICAR code corresponding to this subplan which performs image navigation 3 for a Galileo image. The finished result of the image processing task is shown at the right in Figure 1. The three original images now appear as a single mosaicked image, map projected with missing and corrupted lines filled in.

Thus MVP allows the user to go directly from high level image processing goals to an executable image processing program. By insulating the user from many of the details of image processing, productivity is enhanced. The user can consider more directly the processing goals relevant to the end science analysis of the image, rather than being bogged down in the details such as file format, normalizing images, etc.

MVP does not always fully automate this planetary imaging task. In typical usage, the analyst receives a request, determines which goals are required to fill the request, and runs MVP to generate a VICAR script. The analyst then runs this script and then visually inspects the produced image(s) to verify that the script has properly satisfied the request. In most cases, upon inspection, the analyst determines that some parameters need to be modified subjectively or goals reconsidered in context. This process typically continues several iterations until the analyst is satisfied with the image product.

Analysts estimate that MVP reduces effort to generate an initial PDF for an expert analyst from 1/2 a day to 15 minutes and reduces the effort for a novice analyst from several days to 1 hour- representing over an order of magnitude in speedup. The analysts also judged that the quality of the PDFs produced using MVP are comparable to the quality of completely manually derived PDFs.

3Image navigation is the process of determining the matrix transformation to map from the 2-dimensional (line, sample) coordinate space of an image to a 3-dimensional coordinate space using information on the relative position of the imaging device (spacecraft position) and a model of the target being imaged (e.g., the planetary body).
Automating SAR Processing

ASIP automates synthetic aperture radar (SAR) image processing based on user request and a knowledge-base model of SAR image processing using AI automated planning techniques. ASIP enables construction of an aerodynamic roughness image/map (z0 map) from raw SAR data - thus enabling studies of Aeolian processes.

The aerodynamic roughness length (z0) is the height above a surface at which a wind profile assumes zero velocity. z0 is an important parameter in studies of atmospheric circulation and aeolian sediment transport (in laymans terms: wind patterns, wind erosion patterns, and sand/soil drift caused by wind) (Greeley87; Greeley91). Estimating z0 with radar is important because it enables large areas to be mapped quickly to study aeolian processes, as opposed to the slow painstaking process of manually taking field measurements (Blumberg95). The final science product is a VICAR image called a z0 map that the scientists use to study the aeolian processes.

ASIP is an end-to-end image processing system automating data abstraction, decomposition, and (radar) image processing sub-systems, and integrates a number of SAR and z0 image processing sub-systems. Using a knowledge base of SAR processing actions and a general-purpose planning engine, ASIP reasons about the parameter and sub-system constraints and requirements: extracting needed parameters from image format and header files as appropriate (freeing the user from these issues). These parameters, in conjunction with the knowledge-base of SAR processing steps, and a minimal set of required user inputs (entered through a graphical user interface (GUI)), are then used to determine the processing plan. ASIP represents a number of processing constraints (e.g., that only some subset of all possible combinations of polarizations are legal as dependent on the input data). ASIP also represents image processing knowledge about how to use polarization and frequency band information to compute parameters used for later processing of backscatter to aerodynamic roughness length conversion - thus freeing the user from having to understand these processes.

Figure 5 shows an aerodynamic roughness length map of a site near Death Valley, California generated using the ASIP system (the map uses the L band (24 cm) SAR with HV polarization). Each of the greyscale bands indicated signifies a different approximate aerodynamic roughness length. This map is then used to study aeolian processes at the Death Valley site.

Since the ASIP system has been fielded, it has proven to be very useful in the use of generating aerodynamic roughness maps with three major benefits. First, ASIP has enabled a 10 fold reduction in the number of manual inputs required to produce an aerodynamic roughness map. Second, ASIP has enabled a 30% reduction in CPU processing time to produce such a map (by producing more efficient plans). Third, and most significantly ASIP has enabled scientists to process their own data (previously programming staff were required). By enabling scientists to directly manipulate that data and reducing processing overhead and turnaround, science is directly enhanced.

Conclusions

This paper has described knowledge-based reconfiguration of data analysis software using AI planning techniques. This represents an important area where AI planning can significantly enhance KDD processes. As evidence of this potential, we described two fielded planning systems that enhance KDD: the MVP system, which automates image processing to support Galileo image data science analysis; and the ASIP system which automates production of aerodynamic roughness maps to support geological science analysis.

References


