
Mininw Mlrltivzarid-e Time C&w Cc?nsnr lkta 1-n l?isr.nver Rehavinr -.-------~ s.....--J- I -- e-J- -------L----.-. L.-s-u-d- --r-J- J- -m-1- 1 -a. -v-s-. --a.

Envelopes

Dennis DeCoste
Monitoring and Diagnosis Technology Group

Jet Propulsion Laboratory / California Institute of Technology
4800 Oak Grove Drive; Pasadena, CA 91109

http://www-aig.jpl.nasa.gov/home/decoste/,decoste~aig.jpl.nasa.gov

Abstract

This paper addresses large-scale regression tasks
using a novel combination of greedy input se-
lection and asymmetric cost. Our primary goal
is learning envelope functions suitable for au-
tomated detection of anomalies in future sen-
sor data. We argue that this new approach
can be more effective than traditional techniques,
such as static red-line limits, variance-based error
bars, and general probability density estimation.

Introduction 1
This paper explores the combination of a specific fea-
ture selection technique and an asymmetric regression
cost function which appears promising for efficient, in-
cremental data-mining of large multivariate data.

Motivating this work is our primary target appli-
cation of automated detection of novel behavior, such
as spacecraft anomalies, based on expectations learned
by data-mining large data bases of historic perfor-
mance. In common practice, anomaly detection re-
lies heavily on two approaches: limit-checking (check-
ing sensed values against typically-constant, manually-
predetermined “red-line” high and low limits) and
discrepancy-checking (comparing the difference be-
tween predicted values and sensed values). Whereas
red-lines tend to be cheap but imprecise (i.e. missed
alarms), prediction approaches tend to be expensive
and overly precise (i.e. false alarms).

The framework developed in this paper provides
a means to move incrementally from (loose) red-line
quality to (tight) prediction-quality expectation mod-
els, given suitable volumes of representative historic
training data. We independently learn two function
nn..rrw;mnt:r\no - rr\nwnonm+;nm thn hmt orrrrmd not;- o,~pl”*rnrau”uo - ~r;p’~ucx~“‘~‘F, UIIG l.JcsJ” bUIJ.GII” cxl”I-
mates of the high and low input-conditional bounds on
the sensor’s value. In the extreme initial case where the
only input to these functions is a constant bias term,
the learned bounds will simply reflect expected max-
imum and minimum values. As additional input fea-

‘Copyright @ 1997, A merican Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

tures (e.g. sensors or transforms such as lags or means)
are seiected, these iimit functions converge inwards.

A key underlying motivation is that a fault typi-
cally manifests in multiple ways over multiple times.
Thus, especially in sensor-rich domains common to
data-mining, some predictive precision can often be
sacrificed to achieve low false alarm rates and efficiency
(e.g. small input/weight sets).

The following section presents a simple formulation
for learning envelopes. The next two selections intro-
duce our feature selection method and asymmetric cost
function, respectively. We then present performance
nn 3 rml wnrlrl NASA a-amnlo "LA u ruru&-.rv--u &.&_ uaA y'.cy.-~y- ".

Bounds Estimation
We define the bounds estimation problem as follows:
Definition 1 (Bounds estimation) Given a set of
patterns P, each SpeCifying VdUeS for inpUtS xl, xd

and target y generated from the true underlying func-
tion y = f(zl, Xg) + E, learn high and low ap-
proximate bounds yy~ = fL(x:1,xl) and yH =
fH(xl, .-., xh), such that ye 5 y 5 yH generally holds
for each pattern, according to given cost functions.
We allow any 1 5 1 5 d, 1 5 h 5 d, d 2 1, D 2 0,
making explicit both our expectatron that some criti-
cal inputs of the generator may be completely missing
from our patterns and our expectation that some pat-
tern inputs may be irrelevant or useful in determining
only one of the bounds. 2 We also make the standard
assumption that the inputs are noiseless whereas the
target has Gaussian noise defined by E.

To simplify discussion, we will usually discuss learn-
ing only high bounds ye; the low bounds case is es-
sentially symmetric. An alarm occurs when output yH
is beiow the target y, and i3, non-alarm occurs when
yH 2 y. We will call these alarm and non-alarm pat-
terns, denoted by sets P, and P, respectively, where
N = IPI = I’p,l+ IP,l.

‘We assume ~1 is a constant bias input of 1 which is
always provided. For meaningful comparisons, other in-
puts with effective weight of zero are not counted in these
dimensionality numbers D,d,h, and 1.

DeCoste 151

From: KDD-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

This paper focusses on linear regression to perform
bounds estimation, both for simplicity and because our
larger work stresses heuristics for identifying promising
explicit nonlinear input features, such as product terms
(e.g. (SM91)). N evertheless, the concepts discussed
here should be useful for nonlinear regression as well.

Let X be a n/-row by d-column matrix 3 of (sensor)
inputs where each column represents a

(7
articular input

x; and the p-th row is a row-vector X P specifying the
values of each input for pattern p. Similarly, let Z be a
h/-row by z-column design matrix, where each column
i represents a particular basis function 4 gi(xi, xd)
and each row is the corresponding row-vector Z(P). For
each function approximation, such as f~, there is a
corresponding design matrix ZH of zh columns and
containing row-vectors ZH (‘). Let WH represent a zh-
row column-vector of weights and yH represent a N-
row column-vector of outputs such that ye = ZHWH,
and similarly for others (i.e. for f~ and f~).

The simplest and perhaps most popular way to es-
timate bounds is to use variance-based error bars.
This requires estimating the input-conditional means
yM = fM(xl,..., 2,) (i 5 m 5 d) and the input-
mn&t.innnl varianroa fr Thp hmlnrlq fnr enrh nat.- Y...-..-Y.Y..w. vuA--*““Y Y . A>.” YUUI-UY &.,I/ VWVAI y-Y

tern can then be computed as yH = yM + k * IS
and YL = YM - k * C, with k=2 yielding 95% confi-
dence intervals under ideal statistical conditions. Stan-
dard linear regression via singular value decomposi-
tion (SVD) can find least-squared estimates yM =
ZMWM and variance can be estimated as follows
(Bis95): A = a1 + fi Cpep ZM(~)(ZM(~))~ and

(cT~)(~) = $ + ZE)A-l(Z$$)T, where ,8 reflects intrin-
sic noise and a is a small factor ensuring the Hessian
A is positive definite.

However, as the following artificial examples will il-
lUSi%k, estimating ye and yH by estimating yM Using

all d inputs and standard sum of squares cost functions
is problematic for large high-dimensional data sets.

Artificial Example

For simple illustration, we will discuss our techniques
in terms of the following simple example. We gener-
ated N=lOO patterns for d = 10 inputs: bias input
xi = 1 and 9 other inputs x2, ~10 randomly from
[O,l]. As in all later examples, we normalized each col-
umn of ZM (except the first (bias) column) to have
mean 0 and variance 1. First consider the case where
ZM = XM - i.pwh@e no feature selection is used.
~i”.w.n 1 orrmm.-:,nn ,..L-in +.,-.I+~ ..dwrr cwn &LUG I DUlllllla*LlLlGJ cncuuy,r? IchYUllrO uulug u YU on
all inputs. Note that this can yield significant weight

3We use the convention of upper-case bold (X) for ma
trices, lower-case bold (x) for column-vectors, and normal
(E) for scalars and other variables. We use XC’) to refer to
the r-th row-vector of X.

4By convention, gr is the constant bias input 21 = 1.

to irrelevant terms (e.g. ~ii), when attempting to fit
nonlinear terms (e.g. ~3 * ~5) in the target. 5

RUN: Pn=1,Pa=1,Rn=2,Ra=2,d=1O,N=lOO,SVD.fit,useAllInputs
target = 5 + x4 + 2*x7 + x9 + x3*x5
RESULT = 5*x1+0.076*x2+0.081*x3+1*x4+0.06*x5-0.012*x6+

2*x7+0.028*x8+1.1*x9-0.024*x10-0.11*x11
non-alarms: 47, error: n-hz0.02, mean=0.85, max=2.4

alarms: 53, error: min=-2, mean=-0.75, max=-0.048

Figure 1: No feature selection.

Feature Selection
We are concerned with regression tasks for which the
potential design matrix dimensionality is typically in
the hundreds or more, due to large numbers of raw sen-
sors and basis function transforms (e.g. time-lagged
values and time-windowed mins and maxs). Despite
the relative cheapness of linear regression, its complex-
ity is still quadratic in the number of input features
O(n/ * .z~). Therefore, we desire a design matrix Z
much smaller than the potential size, and even much
smaller than the input matrix X of raw sensors. Stan-
dard dimensionality-reduction methods, such as princi-
pal component analysis, are often insufficient. Sensors
are often too expensive to be redundant in all contexts.

crementally add hidden units to neural networks (e.g.
(FL90)) similar attention to incremental selection of
inputs per se is relatively rare. The statistical method
of forward subset selection (Orr96) is one option. How-
ever, efficient formulations are based on orthogonal
least squares, which is incompatible with the asym-
metric cost function we will soon present.

Instead, we adopt the greedy methods for incremen-
tal hidden unit addition to the problem of input selec-
tion. Since input units have no incoming weights to
train, this amounts to using the same score function as
those methods, without the need for any optimization.
The basic idea is that each iteration selects the candi-
date unit (or basis function, in our case) U whose out-
puts u covary the most with the current error residuals
e. Falhman (FL90) proposed using the standard co-
variance definition, to give a simple sum over patterns,
with mean error E and mean (hidden) unit output ti:
Sl = 1 CPEp(e(p) - G) (u(P) - ti)]. Kwok recently pro-
posed a normalized refinement (KY94) S2 = $$$.
Like Kwok, we have found score S2 to work somewhat

‘better than Sl. We note that Kwok’s score is very sim-
ilar to that of forward subset selection based on orthog-
onal least squares: S3=((y~)Tti)z, where the 0 terms
represent outputs of U maie&thogonal to the exist-
ing columns in the current design matrix. Although
Kwok did not note this relation, it appears that S2’s
scoring via covariance with the error residual provides
essentially the same sort of orthogonality.

5For SVD fits, we report “alarm” statistics as if YH=YM,
to illustrate the degree of error symmetry. Actual alarms
would be based on error bars.

1.52 KDD-97

We start with a small design matrix ZM that con-
tains at least the bias term (gl), plus any arbitrary ba-
sis functions suggested by knowiedge engineers (none
for examples in this paper). At each iteration round,
we compute the column-vector of current error resid-
uals e = y&I - y for all patterns and add to ZM the
input U with the highest 52 score.

Artificial Example Using Feature Selection
The result of our feature selection method on our ar-
tificial example is summarized in Figure 2. Note that
while the most relevant inputs are properly selected
first, the nonlinear term in the target causes ~3 to be
selected - even though its resuiting weight does not
(and cannot, using linear estimation alone) reflect the
true significance of ~3.

RUN: Pn=l,Pa=l,Rn=2,Ra~2,d=lO,N=lOO,SVD.fit
target = 5 + x4 + 2*x7 + x9 + x3*x5

- Selection cycle 1: avg train errc7.9, alarms=47, non=53:
fit = 5*x1
validation errors: avg err=7.35503, alarms=51, non=49:
8core8: x7:67 x4:32 x9:25 x11:8.6 x5:4.3 x3:4.0 x8:1.1 x10:0.8

- Selection cycle 2: avg train errz3.3, alarms=51, non=49:
fit = 5*x1+2.2*x7
validation errors: avg err=2.8254, alarms=53, non=47:
““̂ ..^“. .xl.El .,“.A’) .,l.c. 1 “ll.3 c. .,P., d .,,fl.7 n .7.x., cl u6.l 1 mb”LTm* c.U.“U .%T.TY _“.U.L .%A.L.Y.” nY.l.7 A*“.“.- A.,....” --.A...

- Selection cycle 3: avg train err=2, alarms=57, non=43:
fit = 5*x1+2.1*x7+1.2*x9
validation errors: avg errz1.70093, alarms=50, non=50:
scores: x4:67 x8:3.9 x2:2.8 x3:2.2 x6:2.0 x1:1.3 x11:0.9 x5:0.3

- Selection cycle 4: avg train err=l, alarms=55, non=45:
At = 5*x1+2*x7+1.1*x9+1*x4
validation errors: avg err=0.975131, alarms=51, non=49:
scores: x3:3.4 x11:2.9 x5:1.3 x2:0.8 x1:0.6 x9:0.5 x6:0.1 x4:0.06

- Selection cycle 5: avg train err=l, alarms=55, non=45:
fit = 5*x1+2*x7+1.1*x9+1*x4+0.092*x3
validation errors: avg err=0.956103, alarms=51, non=49:
scores: x5:2.2 x11:1.9 x9:0.7 x1:0.7 x6:0.7 x2:0.6 x3:0.3 x7:0.3

- Selection cycle 6: avg train err=l, alarms=53, non=47:
fit = 5*x1+2*x7+1.1*x9+1*x4+0.093*x3+0.054*x5
validation errors: avg err=0.965555, alarms=51, non=49:

-ii-- S 1 UY: vaiidation error worse ,., retract iast cyciei
me,

. . - J

Figure 2: Feature selection: nonlinear target
Error bars for ol=l.Oe-20 and /3=10; target in bold.

Asymmetric Cost Function
Probability density estimation (PDE) approaches
(e.g. ,pyw~ are more general than error bars
(e.g. TT-------.- nnl7 :- -,-- _^_^ ^__ (” VVY3)). nowever, run IS mau IIIUL~ a-
pensive, in terms of both computation and amounts
of training data required to properly estimate the
input-conditional probabilities across the entire out-
put range. For example, consider learning worst and
best case complexity bounds for quicksort (i.e. 0(N2)
and !I(NEgiV)). The variances between the expected
case and the worst and best cases are not symmetric,
making error bars inappropriate. Whereas PDE would
learn more than is required for the bounds estimation
task per se.

Our basic intuition is that the cost function should
discourage outputs below (above) the target for learn-
ing high (low) bounds. l!L LL- L--1-

To do this, ;iiie SpllX bIlt: LLMK

of bounds estimation into two independent regressions
over the same set of patterns P - one to learn the
expected high bound f~ and one to learn the expected
low bound f~. Figure 3 defines respective asymmetric
cost functions for errors EH and EL over P.

1
PH,(YH - y) RHn ifyH>y eH=

RHa eL=
{

PL, (YL - Y) RL 72 ifyL$Y

PH, (YH - Y) if yH < y pL,(YL-Y) RL a ifyL>y

EH=~C~~~~X~E~H~=~C~~~I~HI~EL=~C~~~~L~

Figure 3: Asymmetric high/low cost functions.
ParameterS:PH,,P~,,P~,, PL,ZO; RH,, Rx,, RL,,RL,'L~.

We can favor non-alarms (i.e. looseness) over alarms
(incorrectness) by making PH, > PH,, . This is analo-
gous to the use of nonstandard loss functions to per-
form risk minimization in classification tasks (Bis95).

The special symmetric case of PH, = PH, = PL, =
PL,=~ and RH,,=RH,=RL,,=RL,=~ gives standard
least-squares regression. Thus, in the limit of suffi-
cient inputs and training patterns, both bounds can
converge to the standard means estimation (i.e. f~).
Efficient Training

Our asymmetric cost function is incompatible with
standard linear regression methods based on SVD. In-
stead, we batch optimization via Newton’s method
(Bis95): w-~(t) = w~(t - 1) - A-lg for each epoch
t, where g is the z-row vector gradient of elements
g and A is the z x z Hessian matrix of elements
&. Fo

= 1,:
r each pattern p E P: yH = crCl wizi,

ZH ‘r’ = [zl, zzjT, and wH = [wl, wZjT.
For our specific cost function EH, the elements of the

gradient at each epoch can be computed by averaging
over alarm and non-alarm patterns, as follows :
@g 6w; = ti[PH,RH, &pn IYH - YIRH"-'% -

PH,~~H,&,~P~IYH -Y\RHa-lzil
With ep = IyH - yI for each pattern p,

the elements of A are partial derivatives of g:
& = ~~[PH,RH,, Cp~p~[(RH,l)epRH,-2ZiZj]+

P R T _ I(R -1le RH~:2zi~j]] - Ha--H, uptpa L\ II, , r”
For RH,, = RH, = 2, A simplifies to: .-i&L= swi hJj
&PHn[&PnZiZjl + $-pH,[&&'a z&l*

We start with initial weights w(0) given by SVD.
Those initial weights are particularly useful for learn-
ing tighter low bounds with PH,, =O, where initial zero
weights would immediately satisfy our asymmetric cost
function. We run Newton until convergence (i.e. all el-
ements in gradient g near zero) or 100 epochs reached
(rare even for large multi-dimensional data).

DeCoste 153

Spot-Checking for R and P Parameters
Instead of attempting to find optimal values for R,P
parameters, we currently spot-check generally use-
ful combinations, such as: RH, E {1,2}, RHO E
{2,10,20}, P& E {l,o.l, .ol, .ool, 1+5, ldo,1d5},
PH, E { 1, 1000). We train to obtain weight vectors for
each combination and then select the weights giving
smallest cost (using common set of reference parame-
ters, such as &.f, = 2, .&I, = 2, PH, = 0.0001, &I, =
1) on validation data. For large data sets, training first
with various R and P on small random subsets often
quickly identifies good values for the whole set.
Feature Selection With Asymmetric Cost
Our earlier definition of feature selection score S2 as-
sumed a symmetric cost function. ‘We want to prefer
features likely to reduce the most costly errors, while
still measuring covariance with respect to the true er-
ror residuals e = ye - y, not the asymmetric errors.
This leads to our following weighted form of S2:

s2, = -qHnl Cp& (e(p)u(p92 +-@a\ &pa @p)u(p92
-%4 Cp& (u(p))2 Em cp#a (UW ’

Artificial Example Using Asymmetric Cost
Figure 4 summarizes results using both selection and
asymmetric cost, for the best spot-checked R,P values.
The high bound here is much tighter than in Figure 2.

RUN: Pn=O.O1,Pa=1,Rn=2,Ra=2,d=lO,~=lOO,HI.bound
target= 5 +x4+2*x7+x9+x3*x5

- Selection cvcle 1: aw train errz0.34. alarms=5. non=95:
fit = 9.6*x1” -
validation errors: avg errz0.352449, alarmsz3, non=97:
scores: x7:134 x9:49 x4:48 x11:11 x3:3.8 x6:3.3 x8:2.1 x2:2.0

- Selection cycle 2: avg train errz0.15, alarms=5, non=95:
fit = 7.8%1+2.2*x7
validation errors: avg err=0.145489, alarms=5, non=95:
scores: x9:77 x4:63 x8:7.6 x3:5.1 x10:3.8 x6:3.0 x11:3.0 x5:1.2

- Selection cycle 3: avg train err=0.093, alarms=5, non=95:
fit = 7.2*x1+2.5*x7+1.2*x9
-.-I. 1-A!- viLuaamon &rors: avg err=O.i38962, aiWms=5, iiOiiz95:
scores: x4:79 x7:16 x2:5.4 x8:4.6 x3:2.1 x6:0.7 x11:0.6 x1:0.3

- Selection cycle 4: avg train err=0.038, alarms=9, non=91:
fit = 6.6*x1+1.9*x7+1.1*x9+1*x4
validation errors: avg err=0.0541614, alarms=5, non=95:
scores: x1:4.8 x11:2.2 x7:1.7 x9:1.7 x6:0.9 x4:0.8 x2:0.5 x10:0.4

- Selection cycle 5: avg train err=0.037, aIarms=lO, non=90:
fit = 6.5*x1+1.9*x7+1*x9+1*x4-0.14*x11
validation errors: avg err=0.0549278, alarms=7, non=93:

cYiY3P~ ,.,&-j&iQp* errcr w2rg y-y.. ... r&r& l=& I-“Pl.=l _~ -_-.

Figure 4: Feature selection and asymmetric cost.

Real-World Example: TOPEX
Figure 5 summarizes learning a high bound for high-
dimensional time-series data. This data set consists
A 1 nnn ~~~~~~~~~~~~ na++nv~n rrf F;G cpnlpnvcI nf thp N A ,q A "I A""" UUb~~D"I"~ J+w""III" "4 "V UU&I""L" "a "I&" AIL*vIA

TOPEX spacecraft. This result was obtained for the
predictive target being the value of $19 in the next
pattern and with cost parameters PH, =le-15, PH, =l,

RH, =2, R~,=10. The first selected non-bias input
was, quite reasonably, the target sensor itself. Note
that the weight of the bias (L-Q) tends to drop as ad-
ditional features are selected to take over its early role
in minimizing the alarm error.

- Selection cycle 1: avg train err=8.4e-15, alarmsz7, non=992:
fit = 2.6*x1
scores: x19:2929 x51:560 x43:541 x56:468 x47:435 x41:384 x42:293

- Seiection cycie 2: avg train err=6.6e-i5, aiarms=i, 1~~893:
fit = 2.3*x1+0.16*x19
scores: x19:2995 x43:585 x51:578 x56:500 x47:449 x41:409 x42:322

- Selection cycle 3: avg train err=5.9e-15, alarms=l, non=998:
fit= 2.2*x1+0.2*x19+0.028*x43
scores: x19:2906 x51:511 x43:491 x56:476 x47:375 x41:337 x17:281

- Selection cycle 4: avg train err=3.9e-15, alarms=l, nonz998:
fit = 1.8*x1+0.31*x19+0.075*x43-0.22*x51
scores: x19:2139 x56:236 x17:198 x52:104 x55:77 x23:72 x45:61

- Seiection cycie 5: avg train err=3.Qe-i5, aiarms=i, non=QQ&
fit = 1.8*x1+0.31*x19+0.075*x43-0.22*x51+0.00029*x56
scores: x19:2133 x56:234 x17:198 x52:106 x55:77 x23:71 x45:61

- Selection cycle 6: avg train err=5,8e-08, alarms=12, nonz987:
fit = 1.4*x1+0.33*x19+0.053*x43+0.076*x51+0.12*x56-0.011*x17

STOP: err getting worse . . . retract last cycle!

Figure 5: TOPEX example.

Conclusion
This framework supports an anytime approach to
large-scale incremental regression tasks. TTt ’ ’ nigmy-
asymmetric cost can allow useful bounds even when
only a small subset of the relevant features have yet
been identified. Incorporating feature-construction
(e.g. (SM91)) is one key direction for future work.

Acknowledgements
n-a:- -__^- 1. -.,..- -,..P..,-...A l... T,L D ,,.-..,, :,, T ,I.,,.. .LlllS w”ln was pxI”l”KU uy Jtx & r”p,uml”rr l.Jav”La-
tory, California Institute of Technology, under contract
with National Aeronautics and Space Administration.

References
Christopher M. Bishop. Neural Networks for Pattern
Recognition. Oxford University Press, 1995.
Dennis DeCoste. Automated learning and monitoring of
limit functions. In Proceedings of the Fourth International
Symposium on Artificial Intelligence, Robotics, and Au-
tomation for Space, Japan, July 1997.
Scott Falhman and C. Lebiere. The cascade-correlation
learning architecture. NIPS-Z, 1990.
Tin-Yau Kwok and Dit-Yan Yeung. Constructive neural
networks: Some practical considerations. In Proceedings
of International Conference on Neural Networks, 1994.
David A. Nix and Andreas S. Weigend. Learning local
error bars for nonlinear regression. NIPS-r, 1995.
Mark Orr. Introduction to radial basis function networks.
Technical Report 4/96, Center for Cognitive Science, Uni-
versity of Edinburgh, 1996. (http://www.cns.ed.ac.uk/
people/mark/intro/intro.html).
Richard S. Sutton and Christopher J. Matheus. Learning
polynomial functions by feature construction. In Proceed-
ings of Eighth International Workshop on Machine Learn-
ing, 1991.
Andreas S. Weigend and Ashok N. Srivastava. Predicting
conditional probability distributions: A connectionist ap-
proach. International Journal of Neural Systems, 6, 1995.

154 KDD-97

