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Abstract 

When mining large databases, the data extraction 
problem and the interface between the database 
and data mining algorithm become important issues. 
Rather than giving a mining algorithm full access to a 
database (by extracting to a flat file or other directly- 
accessible data structure), we propose the SQL Inter- 
face Protocol (SIP), which is a framework for inter- 
action between a mining algorithm and a database. 
The data continues to reside entirely within the data- 
base management system (DBMS), but the query in- 
terface to the database gives the data mining algorithm 
sufficient information to discover the same patterns it 
would have found with direct access to the data. This 
model of interaction brines several advantages; for ex- -- -- 
ample, it allows a mining algorithm to be parallelized 
automatically just by using a parallelized DBMS to 
answer queries. We show how two families of mining 
algorithms may be implemented as “SIPpers,” and we 
discuss related work in databases that should further 
enhance performance in the future. 

Introduction 
Data mining algorithms are commonly expressed as 
nmrrrn.ms that onorate directlv ou a data file. Early =--D ------ 1---d -r--“1_ _----.-~ 
algorithms from machine learning and statistics often 
loaded the entire file into main memory as a first step. 
As we move into industrial applications involving the 
mining of large data warehouses, this model becomes 
insufficient, Today, %mall” data warehouses are on the 
order of ten to twenty gigabytes in size. Not only is it 
infeasible to load such databases into main memory 
to mine the data, it also becomes quite unwieldy to 
manually extract data into flat files for analysis. 

The data mining process begins with precisely stat- 
ing a probiem to be soived, and then deciding which 
data are appropriate to use in building a solution. The 
next step is to obtain the relevant data and process 
them into a form that a data mining algorithm can un- 
derstand. Though often a simple problem technically, 
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in practice this can be an arduous process, rife with 
shortcomings: duplicated data (if extracted into flat 
files), managing sets of files (to overcome some operat- 
ing systems’ filesize limits), having to repeat the entire 
process (if the data model changes), and so forth. 

Not only is it cumbersome to give a mining algorithm 
access to the entire contents of a database, but it is also 
unnecessary. Many mining algorithms are based on re- 
latively simple summary statistics of the database, in 
which case the full information contained in the data- 
base is superfluous. Ideally, we should instead work 
within a framework where the mining algorithm simply 
gets the statistics it needs from a DBMS. This can be 
--I-: ^_.^ A Al. ..A.._ 1, n.... ,,,,,,,A C!nT T,xta,.Copo P,mt,,,l a,Lc;III~“tu blll”U~;ll “UI pL”p”unl uy.u .LII”GjlLuJbb A I”““.d”I 
(SIP). Rather than drinking from the data firehose, the 
mining algorithm can direct the DBMS to process the 
volumes of raw data to calculate the necessary statist- 
ics, and thus the data mining algorithm needs only to 
take a sip of this concentrated extract. 

Information Requirements and SIP 
The key to implementing a mining algorithm as a SIP- 
per will be determining exactly what information the 
algoritliiii needs. .4- ^- -..-,,,, ,,.+ .-” :,,*:,, L-w all anaurpt?, 1olJ u3 rrrmtjuK a 
customer retention problem in newspaper subscribers. 
During the course of building a classification model, 
a mining algorithm might need to know the probabil- 
ity that a subscriber will cancel, given that they are in 
an older age group and have had recent negative inter- 
action with the customer service department. Based 
on this probability and results of previous queries, the 
mining algorithm will issue many new statistical quer- 
ies. As well as querying the probability of a single 
event as above, the algorithm might want to know the 
joint distribution-the probability of observing each of 
the possible combinations of values of CANCEL, AGE, 
and SERVICE. 

The SQL GROUP BY query gives exactly the desired 
results, returning a convenient table of counts showing 
how often any particular combination of the selected 
set of variable values occurred in the entire database, 
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> SELECT CANCEL, AGE, SERVICE, COUNT(*) the fragments to be small and the number of impure 
FROM SUBSCRIBERS queries to be low. 
WHERE DELIVERYTIME=MORNING AND 

PAYSCHEDULE=SPECIAL 
GROUP BY CANCEL, AGE, SERVICE 

Definition 1 A Pure Sip is an SQL query of a 
DBMS by a mining algortihm of the form 
SELECT &f(;r) 
FROM D 
WHERE t+b 
GROUP BY 4 
where f is an aggregation operator (e.g., count, sum, 
avg, stddev, min, max), C$ is a list of attribute names, II, 
is a list of attribute names with associated constraints, 
and D is the name of the relation. 

CANCEL 
---we- 
yes 
yes 
yes 
yes 
no 
no 
no 
no 

AGE 
--- 
old 
old 
Young 
Young 
old 
old 
YOlms 
You% 

SERVICE COUNT 
------- ----- 
positive 430 
negative 2214 
positive 322 
negative 631 
positive 31227 
negative 23419 
positive 11993 
negative 15526 

Figure 1: Example GROUP BY query in SQL, with COUNT 
aggregation. 

or in some selected (using WHERE) subset of the records 
(Ullman 1988). Figure 1 shows an example GROUP 
BY query and result where we restrict our attention 
to morning-delivery subscribers on a special payment 
schedule (which might be the rates offered by a spe- 
cial promotion). The result is a table of counts broken 
down by whether or not the subscriber canceled, their 
age group, and their recent customer service rating. 

Given a set of attribute names I$ and a set of 
attribute-value assignments $, SQL GROUP BY queries 
can easily answer the count query N($I$), which is 
a table of the number of times each possible assign- 
ment of values to the variables in 9 was observed, 
considering only records where + holds. In the ex- 
ample above 4 ={CANCEL, AGE, SERVICE} and 
$ ={DELIVERYTIME = MORNING, PAYSCHED- 
ULE = SPECIAL}. 4 and or ti might be null. When 
6 is null, N(I$) t re urns a single count of all records 
where 3 holds. When I/J is null, N(4) is a count of 
each possible value assignment to variables in 4, count- 
ing over the entire table. When both are null, NO, or 
simply N, is the total number of tuples in the relation. 
We assume that all queries are with respect to a single 
relation. If necessary, we can construct a view to make 
a single relation out of many tables. 

The count query leaves to the mining algorithm the 
job of estimating the probability distribution from the 
counts, which is appropriate. Counts, rather than prob- 
&+liites n7.n olmn ;mnnmt~nt fnr otnt;nt;rcal hwrrnth.an;o , u.lt, WLO” I1LIy”I”u.~Iu IVI U”cc”I”“I~cuI qyy”“II~,u‘u 
tests that some algorithms use during mining. 

We will refer to a query as a sip if it meets certain 
criteria given in the definitions below. A pure sip re- 
turns only statistics, and can answer the N($($J) count 
queries mentioned above. An impure sip returns an 
actual fragment of the database, but the intent is for 

Some data mining algorithms can dmost be imple- 
mented using only pure sips, but occasionally require 
more direct access to the database. For such algorithms 
we use impure sips. 

Definition 2 A k-th Degree Impure Sip is an SQL 
query of a DBMS by a mining algortihm of the form 
SELECT 4 
FROM D 
WHERE II, 
where q5 includes exactly x1 attribute names. 

’ 

Other algorithms, such as neural nets, need access to 
each data record during mining and will not be able to 
work within this framework. For an n-dimensional re- 
lation, the nth degree impure sip is a copy of the entire 
relation, and thus any mining algorithm that normally 
uses flat files could as well be implemented in SIP us- 
ing nth degree impure sips. This obviates the need for 
flat file extracts, but is otherwise uninteresting and is 
not in the spirit of the SIP framework. 

We will next discuss the C4.5 (Quinlan 1993) classi- 
fication tree algorithm and the simple Bayesian classi- 
fier, two examples of algorithms that can be implemen- 
ted as SIPpers. 

The C4.5 Classification Tree Algorithm 
Classification trees predict the class of a record given 
the values of the rest of the attributes by asking a series 
of questions terminating in a prediction. During the 
tree growing phase, most tree-mining algorithms re- 
peatedly select a question to ask at a node (e.g., “what 
is the value of SERVICE?“). Once a question is de- 
termined, the database records are partitioned by the 
answer and child nodes are created for each partition. 
mL,,-.,,", ,,..,n+n .-.- ,...,h ,.L:lA ..,+:1 a. ,+-..,:.., ,..: ILK pL"Lv73 rr;ptxbra "II txlLlI LU11U, Ullbll a abuppnt; ldi- 

terion is met and the node is made into a leaf that 
predicts the most frequent class in that partition. 

During tree growth, C4.5 uses either the information 
gain or the gain-ratio splitting criterion to determine 
which question to use at a node. Recall the newspaper 
customer attrition example. Assume that we are two 
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levels deep in the tree, at a node that is reached when 
DELIVERYTIME = MORNING and PAYSCHED- 
TTTrl n-n??,*-r* T rl-31~ Immmm ~~~~ 1:.,.1. .._ AT_.._ uLb = 3rbrC/rAL. Ine two canaiaate questions are 
the binary split by AGE or SERVICE. C4.5’~ inform- 
ation gain splitting criterion minimizes the conditional 
entropy of the class given the attribute, H(CIX) = 
- c, p(X=x) cc p(C=clX=z) log, p(C=clX=2). 

All of the probabilities involved in this calculation 
can be estimated from counts. To calculate the condi- 
tional entropy of the class given a single attribute, we 
would use a pure sip where 4 contains the attribute 
and the class, and + is the set of constraints defined 
by the path from the current node to the root. The 
example query of Figure 1 does not fit this specifica- 
tion; its 4 includes two attributes. This returns more 
information than we would need to calculate the condi- 
tional entropy for either attribute by itself, but might 
be more efficient than issuing two separate queries. In 
this example, the conditional entropy is smallest for 
SERVICE, which would be picked as the best question 
by information gain. Gain-ratio is similarly based on 
counts that can be obtained from a sip. 

During pruning, the C4.5 algorithm tests the hypo- 
thesis that replacing a node with a leaf will not increase 
the error of the tree. If the hypothesis cannot be re- 
jected, pruning occurs, and the node is replaced with 
a leaf. The hypothesis test is based on counts: in the 
leaf and interior node, it counts the number of training 
records from each class. The counts may be obtained 
through pure sips. (They can also be stored in the tree 
structure during training.) 

The standard approach to splitting on a continuous 
attribute requires a second degree impure SIP to get the 
,t+m;h,,to c,n.-l rlw. rr~ln~n f.w ~11 TLIPnr.4.a l7AWPw3F ml-P- cuV”II&JUU~ CullU bIW”U “CIIIUb” &“I UII IUU”IU6.l. IA”T.U.U’, I-‘LU 
discretization would alleviate the problem, and several 
methods have shown promise (Dougherty, Kohavi & 
Sahami 1995). 

Simple Bayes 
The simple Bayesian classifier directly characterizes 
the conditional distribution of the class given the attrib- 
utes (John & Langley 1995). It makes strict (“simple”) 
assumptions that allow it to build a model by estimat- 
;na nnlxr s wm~ll nmmhm nf naramcstsw~ A lt.hhmlcrh nne LlLb “I”J u “lllcvll ZlUlllUUl “L yLuLL”L”“Y”~Y. 1 ‘A”*l”“b” Vll” 
would think the model too simple to be of any use, 
a surprising characteristic of the algorithm is that it 
works quite well on many problems. 

When mining for predictive patterns such as the 
simple Bayesian classifier, we are interested in the con- 
ditional distribution of the class given the observed at- 
tributes. Bayes’ rule tells us that the conditional distri- 
bution of the class given the attributes, P(CIX), equals 
P(XIC) x P(C)/P(X). By assuming conditional in- 

dependence between the attributes and the class, this 
equals I-Ii P(XiIC) x P(C)/P(X), which is the model 
I-- Al-. I.,-- -:---1- l-B--.--r-- -I---:L!c^- 
1or u1e we slrrlple DitJ”SSlilnll classllleL. 

During mining, Simple Bayes gathers statistics 
(counts) required to model P(C) and P(XIC) for each 
input attribute X. Using count queries and max- 
imum likelihood estimation, we can estimate P(C) as 
N(C)/N. For each nominal or categorical attribute X 
we estimate P(XlC) as N(X,C)/N(C). For continu- 
ous attributes we assume P(XIC=c) is Gaussian and 
we estimate the mean and standard deviation separ- 
ately for each c (which we can also do using GROUP BY 
with the AVG and STDDEV aggregation operators). 

All of the queries used% estimating P(C) and 
P(XIC) can be expressed as pure sips, where the ag- 
gregation function is either COUNT (for categorical at- 
tributes), or AVG and STDDEV (for numeric attributes). 

Many algorithms for building more general Bayesian 
networks, which relax the conditional independence as- 
sumption, are also based on counts and may be ex- 
pressed in the SIP framework. For example, Fried- 
man & Goldszmidt (1996) present a fast algorithm for 
learning more general Bayes nets that could still be 
implemented using only pure sips. 

Related and Future Work 
In SIP, the relationship between mining algorithm and 
database management system is essentially that of cus- 
tomer and vendor. The vendor, the DBMS, needs to 
provide fast and accurate responses. Research in data- 
bases could speed up sips in three ways: by serving 
precomputed results, by extending query optimization 
to handle a set of similar queries issued at once, and 

--- -1 by parallelizing and optimizing the Ul3Mb code. 
In the past two years, a number of researchers in 

databases have focused on efficiently computing ag- 
gregates, an important operation in on-line analytical 
processing (OLAP) databases used for decision sup- 
port. Graefe (1993) d escribes a sort-based and hash- 
based method for efficiently computing the answer to 
a single GROUP BY query, and would thus be useful 
in speeding up a single pure sip. Regarding multiple 
similar queries, Gray, Chaudhuri, Bosworth, Layman, 
Robhart. Vsmlratran P~llnw !b Pirnhwh ~lCKX\ ip&-~- LU”‘“L~“,IY) . Y”‘.s.uYAYV) A VA *.... . & .*_. _“&& \““.z, 
duced the CUBE BY operator. In our terminology, the 
CUBE BY operator takes a set of attributes 4 and re- 
turns the answers to all pure sips (Definition 1) on the 
power set of #,. Sarawagi, Agrawal & Gupta (1996) 
present the PipeSort algorithm for efficiently comput- 
ing the data cube. 

Even more promising is the trend towards off-line 
precomputation of queries, which has been fueled by 
the need for fast responses in decision support systems 
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(e.g., Mervyn’s retail warehouse has 2400 precomputed 
aggregations). Gupta, Harinarayan & Quass (1995) 
describe new query-optimization methods that use pre- 
computed aggregates when available, and Gupta, Har- 
inarayan, Rajaraman & Ullman (forthcoming) describe 
indexing structures for precomputed results. 

Efficiently answering simple count queries is already 
an important topic in databases, because counts are 
used in query optimization, Whang, Kim & Wieder- 
hold (1994) explore the multi-level grid file method for 
precomputing and incrementally updating multidimen- 
sional counts, which is logarithmic in the number of 
attributes. Slower but more exact methods for precom- 
puting and updating statistics are studied in statistical 
databases (Michalewicz 1992). 

Most of the top DBMS vendors have parallelized 
their systems. With a clean and modular interface 
between the mining components and the relational 
DBMS, performance benefits realized by the DBMS 
will immediately benefit the mining process as well. 

Looking at the other aspect of the relationship 
between mining algorithms and databases, a mining 
algorithm might serve a decision support database by 
proposing queries that would be of interest to a hu- 
man expert looking at the same database (Jeffrey Ull- 
man, personal communication), and thus the mining 
algorithm can guide the precomputation process. 

The inspiration for the SQL interface protocol was 
the statistical query model of learning (Kearns 1993). 
Any mining algorithm that fits the statistical query 
model will be SIP-compliant. The idea that most clas- 
sification tree splitting criteria are based on simple 
probability estimates is described in John (1996). 

Conclusion 
As noted by Silberschatz, Stonebreaker & Ullman 
(1995), as databases and data mining algorithms are 
more frequently used together, the interface between 
the two is an important area that merits further re- 
search and development. Since the database com- 
munity has already developed efficient and parallel 
algorithms for building, maintaining, and retrieving 
information from large databases, data mining al- 
gorithms should clearly leverage their efforts. An ob- 
vious approach, embodied in our SQL Interface Pro- 
tocol, is to rely upon a database management system 
to provide the statistics that a mining algorithm needs 
to build a model. For two common families of mining 
algorithms, this is straightforward. Current research 
in databases may provide extensive performance en- 
hancements by precomputing and maintaining answers 
to many possible queries, or by optimizing sets of re- 
lated queries. 
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