
SIPping from the Data Firehose

George H. John Brian Lent
T’RiIA A l,,Acm R.cm,.an?.r.h P*nt.?e Stanfnrrl TTniversitv lUl”l .-xIIIIayu~~ IC~U~~L~~ “bY”YI irr IAAA--I -AA-, --I- dd

650 Harry Road Department of Computer Science
San Jose, CA 95120 Stanford, CA 94305

{gjohn,lent)@cs.stanford.edd
http://www-cs-students.stanford.edu/"{gjohn,lent}

Abstract

When mining large databases, the data extraction
problem and the interface between the database
and data mining algorithm become important issues.
Rather than giving a mining algorithm full access to a
database (by extracting to a flat file or other directly-
accessible data structure), we propose the SQL Inter-
face Protocol (SIP), which is a framework for inter-
action between a mining algorithm and a database.
The data continues to reside entirely within the data-
base management system (DBMS), but the query in-
terface to the database gives the data mining algorithm
sufficient information to discover the same patterns it
would have found with direct access to the data. This
model of interaction brines several advantages; for ex- -- --
ample, it allows a mining algorithm to be parallelized
automatically just by using a parallelized DBMS to
answer queries. We show how two families of mining
algorithms may be implemented as “SIPpers,” and we
discuss related work in databases that should further
enhance performance in the future.

Introduction
Data mining algorithms are commonly expressed as
nmrrrn.ms that onorate directlv ou a data file. Early =--D ------ 1---d -r--“1_ _----.-~
algorithms from machine learning and statistics often
loaded the entire file into main memory as a first step.
As we move into industrial applications involving the
mining of large data warehouses, this model becomes
insufficient, Today, %mall” data warehouses are on the
order of ten to twenty gigabytes in size. Not only is it
infeasible to load such databases into main memory
to mine the data, it also becomes quite unwieldy to
manually extract data into flat files for analysis.

The data mining process begins with precisely stat-
ing a probiem to be soived, and then deciding which
data are appropriate to use in building a solution. The
next step is to obtain the relevant data and process
them into a form that a data mining algorithm can un-
derstand. Though often a simple problem technically,

Copyright 01997, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

in practice this can be an arduous process, rife with
shortcomings: duplicated data (if extracted into flat
files), managing sets of files (to overcome some operat-
ing systems’ filesize limits), having to repeat the entire
process (if the data model changes), and so forth.

Not only is it cumbersome to give a mining algorithm
access to the entire contents of a database, but it is also
unnecessary. Many mining algorithms are based on re-
latively simple summary statistics of the database, in
which case the full information contained in the data-
base is superfluous. Ideally, we should instead work
within a framework where the mining algorithm simply
gets the statistics it needs from a DBMS. This can be
--I-: ^_.^ A Al. ..A.._ 1, n.... ,,,,,,,A C!nT T,xta,.Copo P,mt,,,l a,Lc;III~“tu blll”U~;ll “UI pL”p”unl uy.u .LII”GjlLuJbb A I”““.d”I
(SIP). Rather than drinking from the data firehose, the
mining algorithm can direct the DBMS to process the
volumes of raw data to calculate the necessary statist-
ics, and thus the data mining algorithm needs only to
take a sip of this concentrated extract.

Information Requirements and SIP
The key to implementing a mining algorithm as a SIP-
per will be determining exactly what information the
algoritliiii needs. .4- ^- -..-,,,, ,,.+ .-” :,,*:,, L-w all anaurpt?, 1olJ u3 rrrmtjuK a
customer retention problem in newspaper subscribers.
During the course of building a classification model,
a mining algorithm might need to know the probabil-
ity that a subscriber will cancel, given that they are in
an older age group and have had recent negative inter-
action with the customer service department. Based
on this probability and results of previous queries, the
mining algorithm will issue many new statistical quer-
ies. As well as querying the probability of a single
event as above, the algorithm might want to know the
joint distribution-the probability of observing each of
the possible combinations of values of CANCEL, AGE,
and SERVICE.

The SQL GROUP BY query gives exactly the desired
results, returning a convenient table of counts showing
how often any particular combination of the selected
set of variable values occurred in the entire database,

John 199

1

:,
From: KDD-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

> SELECT CANCEL, AGE, SERVICE, COUNT(*) the fragments to be small and the number of impure
FROM SUBSCRIBERS queries to be low.
WHERE DELIVERYTIME=MORNING AND

PAYSCHEDULE=SPECIAL
GROUP BY CANCEL, AGE, SERVICE

Definition 1 A Pure Sip is an SQL query of a
DBMS by a mining algortihm of the form
SELECT &f(;r)
FROM D
WHERE t+b
GROUP BY 4
where f is an aggregation operator (e.g., count, sum,
avg, stddev, min, max), C$ is a list of attribute names, II,
is a list of attribute names with associated constraints,
and D is the name of the relation.

CANCEL
---we-
yes
yes
yes
yes
no
no
no
no

AGE

old
old
Young
Young
old
old
YOlms
You%

SERVICE COUNT
------- -----
positive 430
negative 2214
positive 322
negative 631
positive 31227
negative 23419
positive 11993
negative 15526

Figure 1: Example GROUP BY query in SQL, with COUNT
aggregation.

or in some selected (using WHERE) subset of the records
(Ullman 1988). Figure 1 shows an example GROUP
BY query and result where we restrict our attention
to morning-delivery subscribers on a special payment
schedule (which might be the rates offered by a spe-
cial promotion). The result is a table of counts broken
down by whether or not the subscriber canceled, their
age group, and their recent customer service rating.

Given a set of attribute names I$ and a set of
attribute-value assignments $, SQL GROUP BY queries
can easily answer the count query N(I), which is
a table of the number of times each possible assign-
ment of values to the variables in 9 was observed,
considering only records where + holds. In the ex-
ample above 4 ={CANCEL, AGE, SERVICE} and
$ ={DELIVERYTIME = MORNING, PAYSCHED-
ULE = SPECIAL}. 4 and or ti might be null. When
6 is null, N(I$) t re urns a single count of all records
where 3 holds. When I/J is null, N(4) is a count of
each possible value assignment to variables in 4, count-
ing over the entire table. When both are null, NO, or
simply N, is the total number of tuples in the relation.
We assume that all queries are with respect to a single
relation. If necessary, we can construct a view to make
a single relation out of many tables.

The count query leaves to the mining algorithm the
job of estimating the probability distribution from the
counts, which is appropriate. Counts, rather than prob-
&+liites n7.n olmn ;mnnmt~nt fnr otnt;nt;rcal hwrrnth.an;o , u.lt, WLO” I1LIy”I”u.~Iu IVI U”cc”I”“I~cuI qyy”“II~,u‘u
tests that some algorithms use during mining.

We will refer to a query as a sip if it meets certain
criteria given in the definitions below. A pure sip re-
turns only statistics, and can answer the N($($J) count
queries mentioned above. An impure sip returns an
actual fragment of the database, but the intent is for

Some data mining algorithms can dmost be imple-
mented using only pure sips, but occasionally require
more direct access to the database. For such algorithms
we use impure sips.

Definition 2 A k-th Degree Impure Sip is an SQL
query of a DBMS by a mining algortihm of the form
SELECT 4
FROM D
WHERE II,
where q5 includes exactly x1 attribute names.

’

Other algorithms, such as neural nets, need access to
each data record during mining and will not be able to
work within this framework. For an n-dimensional re-
lation, the nth degree impure sip is a copy of the entire
relation, and thus any mining algorithm that normally
uses flat files could as well be implemented in SIP us-
ing nth degree impure sips. This obviates the need for
flat file extracts, but is otherwise uninteresting and is
not in the spirit of the SIP framework.

We will next discuss the C4.5 (Quinlan 1993) classi-
fication tree algorithm and the simple Bayesian classi-
fier, two examples of algorithms that can be implemen-
ted as SIPpers.

The C4.5 Classification Tree Algorithm
Classification trees predict the class of a record given
the values of the rest of the attributes by asking a series
of questions terminating in a prediction. During the
tree growing phase, most tree-mining algorithms re-
peatedly select a question to ask at a node (e.g., “what
is the value of SERVICE?“). Once a question is de-
termined, the database records are partitioned by the
answer and child nodes are created for each partition.
mL,,-.,,", ,,..,n+n .-.- ,...,h ,.L:lA ..,+:1 a. ,+-..,:.., ,..: ILK pL"Lv73 rr;ptxbra "II txlLlI LU11U, Ullbll a abuppnt; ldi-

terion is met and the node is made into a leaf that
predicts the most frequent class in that partition.

During tree growth, C4.5 uses either the information
gain or the gain-ratio splitting criterion to determine
which question to use at a node. Recall the newspaper
customer attrition example. Assume that we are two

200 KDD-97

levels deep in the tree, at a node that is reached when
DELIVERYTIME = MORNING and PAYSCHED-
TTTrl n-n??,*-r* T rl-31~ Immmm ~~~~ 1:.,.1. .._ AT_.._ uLb = 3rbrC/rAL. Ine two canaiaate questions are
the binary split by AGE or SERVICE. C4.5’~ inform-
ation gain splitting criterion minimizes the conditional
entropy of the class given the attribute, H(CIX) =
- c, p(X=x) cc p(C=clX=z) log, p(C=clX=2).

All of the probabilities involved in this calculation
can be estimated from counts. To calculate the condi-
tional entropy of the class given a single attribute, we
would use a pure sip where 4 contains the attribute
and the class, and + is the set of constraints defined
by the path from the current node to the root. The
example query of Figure 1 does not fit this specifica-
tion; its 4 includes two attributes. This returns more
information than we would need to calculate the condi-
tional entropy for either attribute by itself, but might
be more efficient than issuing two separate queries. In
this example, the conditional entropy is smallest for
SERVICE, which would be picked as the best question
by information gain. Gain-ratio is similarly based on
counts that can be obtained from a sip.

During pruning, the C4.5 algorithm tests the hypo-
thesis that replacing a node with a leaf will not increase
the error of the tree. If the hypothesis cannot be re-
jected, pruning occurs, and the node is replaced with
a leaf. The hypothesis test is based on counts: in the
leaf and interior node, it counts the number of training
records from each class. The counts may be obtained
through pure sips. (They can also be stored in the tree
structure during training.)

The standard approach to splitting on a continuous
attribute requires a second degree impure SIP to get the
,t+m;h,,to c,n.-l rlw. rr~ln~n f.w ~11 TLIPnr.4.a l7AWPw3F ml-P- cuV”II&JUU~ CullU bIW”U “CIIIUb” &“I UII IUU”IU6.l. IA”T.U.U’, I-‘LU
discretization would alleviate the problem, and several
methods have shown promise (Dougherty, Kohavi &
Sahami 1995).

Simple Bayes
The simple Bayesian classifier directly characterizes
the conditional distribution of the class given the attrib-
utes (John & Langley 1995). It makes strict (“simple”)
assumptions that allow it to build a model by estimat-
;na nnlxr s wm~ll nmmhm nf naramcstsw~ A lt.hhmlcrh nne LlLb “I”J u “lllcvll ZlUlllUUl “L yLuLL”L”“Y”~Y. 1 ‘A”*l”“b” Vll”
would think the model too simple to be of any use,
a surprising characteristic of the algorithm is that it
works quite well on many problems.

When mining for predictive patterns such as the
simple Bayesian classifier, we are interested in the con-
ditional distribution of the class given the observed at-
tributes. Bayes’ rule tells us that the conditional distri-
bution of the class given the attributes, P(CIX), equals
P(XIC) x P(C)/P(X). By assuming conditional in-

dependence between the attributes and the class, this
equals I-Ii P(XiIC) x P(C)/P(X), which is the model
I-- Al-. I.,-- -:---1- l-B--.--r-- -I---:L!c^-
1or u1e we slrrlple DitJ”SSlilnll classllleL.

During mining, Simple Bayes gathers statistics
(counts) required to model P(C) and P(XIC) for each
input attribute X. Using count queries and max-
imum likelihood estimation, we can estimate P(C) as
N(C)/N. For each nominal or categorical attribute X
we estimate P(XlC) as N(X,C)/N(C). For continu-
ous attributes we assume P(XIC=c) is Gaussian and
we estimate the mean and standard deviation separ-
ately for each c (which we can also do using GROUP BY
with the AVG and STDDEV aggregation operators).

All of the queries used% estimating P(C) and
P(XIC) can be expressed as pure sips, where the ag-
gregation function is either COUNT (for categorical at-
tributes), or AVG and STDDEV (for numeric attributes).

Many algorithms for building more general Bayesian
networks, which relax the conditional independence as-
sumption, are also based on counts and may be ex-
pressed in the SIP framework. For example, Fried-
man & Goldszmidt (1996) present a fast algorithm for
learning more general Bayes nets that could still be
implemented using only pure sips.

Related and Future Work
In SIP, the relationship between mining algorithm and
database management system is essentially that of cus-
tomer and vendor. The vendor, the DBMS, needs to
provide fast and accurate responses. Research in data-
bases could speed up sips in three ways: by serving
precomputed results, by extending query optimization
to handle a set of similar queries issued at once, and

--- -1 by parallelizing and optimizing the Ul3Mb code.
In the past two years, a number of researchers in

databases have focused on efficiently computing ag-
gregates, an important operation in on-line analytical
processing (OLAP) databases used for decision sup-
port. Graefe (1993) d escribes a sort-based and hash-
based method for efficiently computing the answer to
a single GROUP BY query, and would thus be useful
in speeding up a single pure sip. Regarding multiple
similar queries, Gray, Chaudhuri, Bosworth, Layman,
Robhart. Vsmlratran P~llnw !b Pirnhwh ~lCKX\ ip&-~- LU”‘“L~“,IY) . Y”‘.s.uYAYV) A VA *.... . & .*_. _“&& \““.z,
duced the CUBE BY operator. In our terminology, the
CUBE BY operator takes a set of attributes 4 and re-
turns the answers to all pure sips (Definition 1) on the
power set of #,. Sarawagi, Agrawal & Gupta (1996)
present the PipeSort algorithm for efficiently comput-
ing the data cube.

Even more promising is the trend towards off-line
precomputation of queries, which has been fueled by
the need for fast responses in decision support systems

John 201

(e.g., Mervyn’s retail warehouse has 2400 precomputed
aggregations). Gupta, Harinarayan & Quass (1995)
describe new query-optimization methods that use pre-
computed aggregates when available, and Gupta, Har-
inarayan, Rajaraman & Ullman (forthcoming) describe
indexing structures for precomputed results.

Efficiently answering simple count queries is already
an important topic in databases, because counts are
used in query optimization, Whang, Kim & Wieder-
hold (1994) explore the multi-level grid file method for
precomputing and incrementally updating multidimen-
sional counts, which is logarithmic in the number of
attributes. Slower but more exact methods for precom-
puting and updating statistics are studied in statistical
databases (Michalewicz 1992).

Most of the top DBMS vendors have parallelized
their systems. With a clean and modular interface
between the mining components and the relational
DBMS, performance benefits realized by the DBMS
will immediately benefit the mining process as well.

Looking at the other aspect of the relationship
between mining algorithms and databases, a mining
algorithm might serve a decision support database by
proposing queries that would be of interest to a hu-
man expert looking at the same database (Jeffrey Ull-
man, personal communication), and thus the mining
algorithm can guide the precomputation process.

The inspiration for the SQL interface protocol was
the statistical query model of learning (Kearns 1993).
Any mining algorithm that fits the statistical query
model will be SIP-compliant. The idea that most clas-
sification tree splitting criteria are based on simple
probability estimates is described in John (1996).

Conclusion
As noted by Silberschatz, Stonebreaker & Ullman
(1995), as databases and data mining algorithms are
more frequently used together, the interface between
the two is an important area that merits further re-
search and development. Since the database com-
munity has already developed efficient and parallel
algorithms for building, maintaining, and retrieving
information from large databases, data mining al-
gorithms should clearly leverage their efforts. An ob-
vious approach, embodied in our SQL Interface Pro-
tocol, is to rely upon a database management system
to provide the statistics that a mining algorithm needs
to build a model. For two common families of mining
algorithms, this is straightforward. Current research
in databases may provide extensive performance en-
hancements by precomputing and maintaining answers
to many possible queries, or by optimizing sets of re-
lated queries.

Acknowledgments George John’s work was sup-
ported under a National Science Foundation Graudate
Research Fellowship. We thank the MIDAS (Mining
Data At Stanford) group for ideas and encouragement.

References
Dougherty, J., Kohavi, R. & Sahami, M. (1995), Supervised

and unsupervised discretixation of continuous features, in
Machine Learning: Proceedings of the 12th International
Conference, Morgan Kaufmann.

Friedman, N. & Goldszmidt, M. (1996), Building classifiers
using Bayesian networks, in AAAI-96: Proceedings of the
Thirteenth National Conference on Artificial Intelligence,
AAAI Press/MIT Press.

Graefe, G. (1993), “Q uer evaluation techniques for large y
databases”, ACM Computing Surveys 25(2), June,
pp. 73-170.

Gray, J., Chaudhuri, S., Bosworth, A., Layman, A.,
Reichart, D., Venkatrao, M., PeIIow, F. & Pirahesh, H.
(1996)) “Data cube: A relational aggregation operator gen-
erahzaing group-by, cross-tab, and sub totals”, Knoludedge
Discovery and Data Mining l(1).

Gupta, A., Harinarayan, V. & Quass, D. (1995), Aggregate-
query processing in data warehousing environments, in
Proceedings of the 21st Very Large Databases Conference,
pp. 358-369.

Gupta, H., Harinarayan, V., Rajaraman, A. & UIIman,
J. D. (forthcoming), Index selection for OLAP, in Inter-
national Conjerece on Data Engineering.

John, G. H. (1996), Robust linear discriminant trees, in
D. Fisher & H. Lenz, eds, Learning From Data: Artificial
Intelligence and Statistics V, Lecture Notes in Statistics,
Springer-Verlag, New York, chapter 34.

John, G. H. (1997), Enhancements to the Data Mining Pro-
cess, PhD thesis, Computer Science Department, Stanford
University, Stanford, California.

John, G. H. & Langley, P. (1995), Estimating continuous
distributions in Bayesian classifiers, in Eleventh Annual
Conference on Uncertainty in Artificial Intelligence, Mor-
gan Kaufmann Publishers, San Mateo.

Kearns, M. (1993), Effi cient noise-tolerant learning from
statistical queries, in Proceedings of the Twenty-Fifth
Annual ACM Symposium on the Theory of Computing,
ACM, New York, pp. 392-401.

Michalewicz, Z. (1992), Statistical and Scientific Databases,
EIIis Horwood.

QuinIan, J. R. (1993), C4.5: Programs for Machine Learn-
ing, Morgan Kaufmann.

Sarawagi, S., Agrawal, R. & Gupta, A. (1996), On com-
puting the data cube, Technical report, IBM, Almaden
Research Center, San Jose, CA.

Silberschatz, A., Stonebreaker, M. & UIIman, J. (1995),
“Database research: Achievements and opportunities into
the 21st century”, NSF Workshop on the Future of Data-
base Systems Research.

UIIman, J. D. (1988), Principles of Database and
Knowledge-Base Systems: Volume 1: Classical Database
Systems, Addison-Wesley.

Whang, K.-Y., Kim, S.-W. & Wiederhold, G. (1994), “Dy-
namic maintenance of data distribution for selectivity es-
timation”, VLDB Journal, Jan, pp. 29-51.

202 KDD-97

