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Abstract 
Scalability determines the potential in distributing 
h&h rlata anrl rnmnrlt,af.inn in cln.+n. mining. “.,“.I . . ..Avw -_..a “.,--I..v-“e-- ^- --2- -----o. The 
PADMA (PArallel Data Mining Agents) architecture 
will be described, along with experiments on text to 
address scalability. PADMA agents offer parallel data 
access, and hierarchical clustering, with results visual- 
ized through a JAVA web-interface. 

Introduction 
1 Data mining involves extracting, analyzing, and pre- 
senting data in concise and useful forms. Data sources 
are tending to be distributed remotely from users. By 
offering remote access and analysis through multiple 
agents, a wider variety of sources can be accessed, and 
more computing power can be applied. When agents 
are located with data sources, a concise response will 
minimize network usage. This is a key to scaling as 
networks tend to be the biggest bottlenecks. 

In PADMA, agents access local data to produce anal- 
yses orders of magnitude smaller than the original data. 
These results can be economically communicated for 
collaborative data analysis, and web based interactive 
visualization. This paper describes the initial imple- 
mentation of PADMA for unstructured text data min- 
ing Thnnmh PAnMA ia nnt rlnmain an&fir nnrl ia . Ill”U~‘L 1 .a LYllllL IY &IVY U”~~&LuL-A YyuY’*~v, w--u A” 

currently expanding for structured and numeric data. 
The next section covers related works. An archi- 

tecture section focuses on distributing data and work 
among agents. A section describes text analysis in 
agents. Web interface descriptions are followed by scal- 
ability experiments and conclusions. 

Related Work 
Two threads support the many domains influencing 
PADMA: (1) agent based information processing, and 
131 naralld rnmnnt.inw This s&infi h&$!y reviews \“, y- w-*u* uv.--r y”**-o. _- .__..- 
these fields in the area of data mining. 

An introduction to intelligent agents can be found in 
Maes (1994, Foner (1993). Demand for adaptive sys- 
tems lead to agents in automated mail filtering (Maes, 
1994), and meeting scheduling (Kozierok & Maes, 
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1993). The Amalthea system (Moukas, 1996) uses 
agents to discover and filter the world-wide-web. User 
feedback on agent efficacy drives evolutionary learning 
algorithms which generate new agents. McElligott and 
Sorensen (1994) proposed an evolutionary, connection- 
ist approach for filtering, using machine learning to find 
document representations under user supervision. 

Parallel data mining of large databases is growing. 
Holsheimer et al. (1996) developed Data Sumreyor, a 
mining tool and parallel database server with high level 
rule induction. Zaki et al. (1996) focuses on optimiza- 
tion of parallel rule induction. The PARKA project 
(Anderson et al., 1994) demonstrates large scale par- 
allel mining. The Conquest system (Shek et al., 1996) 
-.-T-- .~ .l:+..rL..l-~ _^^_^ :-d.:cc^ -1-L- -sm-,- :A:-.- _L -,,,,., mine5 ai56riuubeu geuswaucnlr; ua~a, explu~~lng p,a~a~la~ 
queries. GA-MINER (Radcliffe, 1995) determines data 
representations, then detects patterns with a parallel 
genetic algorithm. GA-MINER scalability was studied 
for shared and distributed memory machines. 

PADMA Architecture 
Figure 1 shows PADMA’s overall architecture. The 

main components are, (1) data mining agents, (2) agent 
coordinating facilitator, and (3) user interface. 

Data mining agents extract and share high level in- 
fnrmat.irm The init,inl data minincs xwntq qnnr.iali7e in A,,..I~-.“” &..&.. ...--_ ____ “_-_ --rd-r---------D -O---A L =--- 1_1- ___ 
clustering (grouping) text, reporting members and the 
most representative words for each cluster. 

The facilitator gives user requests and feedback to 
agents, and merges concise, high level results. Requests 
are in Structured Query Language. Feedback on rep- 
resentative word quality adds training to the initially 
unsupervised analysis. Results allow a graphic view, 
and a list of representative words for each cluster. 

The graphical user interface is web-based, allow- 
ing remote interaction. An HTML/CGI/JAVA mix is 
moving to JAVA over socket communications. 

Agents and facilitators use the Parallel Portabie Fiie 
System (PPFS), developed by the University of Illinois 
at Urbana-Champaign (Huber, Elford, Reed, Chien, 
& Blumenthal, 1995). MPI (Message Passing Inter- 
face) provides interprocess communication. PPFS and 
MPI form an extensible, object-oriented infrastructure 
in C++. PADMA currently runs on a Sun Spare work- 
station cluster and on an IBM SP-2, but can port to 
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Figure 1: The PADMA architecture. 

distributed machines with MPI and Unix file I/O . Par- 
allel access, and analysis by agents is covered next. 

Parallel Data Access 
On a large scale, access time is a critical limiting factor. 
Parallel access may help decrease response times (De- 
witt & Gray, 1992). Also, Inter agent communication 
is slower than memory access and should be limited. 

Each agent has its own disk for local operations. 
This provides parallel data access. Striped and blocked 
algorithms are used to distribute documents among 
agents. The agents and the facilitator also maintain file 
caches. Cache management, e.g. FIFO replacement, 
write-back and prefetching, maximize cache benefits. 

Agents in PADMA also provide paraiiei reiational 
database functionality. Each corpus is stored as a re- 
lational database table with document number, text, 
ngrum vector attributes. A subset of SQL is sup- 
ported, including creation/deletion of tables and hash 
indices, and parallel select and join. PADMA uses 
intra-operator parallelism. 

SQL queries allow a focus on special conditions. The 
NGRAM = ELECTRON condition selects data sets 
with the feature NGRAIMinstantiated to ELECTRON. 
In a query and analyze (cluster), a table subset is se- 
lected and reanalyzed-without creating a new table. 
Agents locally select and analyze data, only needing 
to communicate concise results to the facilitator. This 
scalable parallel select was used in experiments. 

There are three major algorithms for table joins (De- 
witt, 1991; Schneider, 1989). Nested-join cross com- 

pare tables with complexity O(n2). Sort-merge join re- 
duces complexity to O(n log n) by sorting both tables 
on join attributes, then comparing by binary search. 
Hash-join can be fastest, but is ineffective for non- 
equijoin operations. PADMA uses sort-merge join. 

A fragment and replicate strategy parallelizes the 
sort-merge join. Each agent joins a pair of fragments, 
then broadcasts to the other agents. After inter-agent 
comparisons, the facilitator merges results. 

In PADMA, agents primarily analyze local data and 
communicate a small or null “concept graph” to the 
facilitator. The facilitator combines concept graphs 
and sends results to the user interface. Scalability is 
achieved by minimizing communication and is best ap- 
preciated in the context of the text analysis modules. 

The first type of analysis in PADMA’s data mining 
agents is clustering. Clustering groups items based on 
similarity. A feature vector is formed to from the values 
of features extracted from items in a data base. Simi- 
larity is then measured geometrically, with closer vec- 
tors being more similar. Mathematics has an abstract 
definition of ‘measure’, which supports many ways to 
measure. For text, Euclidean distance is too sensitive 
fn clnnnnmt. aiw hnt. t.hp n.ncrle b&yepc kp10 f&gre “., xv”I*.-v--” “--.-) --” ---- --‘-b-~ 
vectors tells if two items have features in similar pro- 
portions. PADMA uses the cosine measure taken from 
a dot product of feature vectors, with a value of the 
cosine of the angle between feature vectors. 

For scalability, data is partitioned into blocks, and 
each block is partially clustered. Partial clustering only 
considers a small portion of the greatest similarities in 
each pass, but reduces a block to a smaller number 
of items and clusters. In subsequent passes, blocks will 
combine in a pyramid hierarchy. Each agent can locally 
construct a hierarchy, and need only communicate a 
small amount of information (a concept graph) from 
the top of its hierarchy. For a large number of agents, 
facilitators may continue the hierarchy to reduce the 
information sent to the user interface. 

As ciusters grow, statistics can be used to character- 
ize the features that are most important to similarity 
within a cluster. In the case of text, a set of represen- 
tative words can be extracted. The clustering can start 
without prior knowledge of a set of texts, but can learn 
a set of most important words. The user may then su- 
pervise by giving feedback on the quality of the words 
judged important to clusters. Such training improves 
the systems judgment for future clustering, an can be 
applied to new data sets in the same domain. 

Scalability is achieved by localizing data access, and 
limiting communication to small, distilled analyses. 
O ther analytical methods may be added as long as they 
can extract information in a hierarchy. The user inter- 
face has the core capability of displaying hierarchies of 
information, and can be specialized to display results 
of future analytical tools. 
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Figure 2: Web based interface of PADMA. 

Web Interface For Visualization 
The interface is built on HTML and JAVA frames. 
Currently, JAVA controls remote C++ code through 
a CGI script, though we are migrating to socket com- 
munication. The initial parallel version described in 
this paper has five major operations: (1) create, (2) 
delete, (3) read, (4) query, and (5) cluster. 

Clustering and Querying (with automatic clustering 
on the query results), provide text analysis. The area 
of a light blue outer circle reflects the number of docu- 
ments in a cluster, the inner red dot shows how many 
children are connected from the next lower level. The 
user may move up or down in the hierarchy a level 
at a time, or move down to see only the children of 
a selected cluster. Representative words can be seen 
for any selected cluster. On the bottom level, the user 
may retrieve the documents in a cluster. 

Experiments 
As an initial performance study, we performed three 
different experiments to assess the performance and 
scalability of the PADMA system. We measured the 
execution times for clustering all the documents in a 
corpus as well as clustering a subset of the documents 
related through a select or join operation. Throughout 
the experiments PADMA agents and the facilitator are 
configured to use 2MB write-back caches. In all the 
experiments we used the TIPSTER text corpus of size 
36MB containing 25273 text documents. It’s striped 
across all agents with a striping factor of 1. 
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Figure 3: PADMA Performance 

The exneriments are. carried nut nn the 128 m-de -__- -‘-~- _____ -__1L 2-- --1___-- --1 ___ 1--- --_ ___-- 
IBM SP2 at Argonne National Laboratory. On this 
machine, 120 nodes are used as compute nodes and the 
remaining 8 nodes are used as dedicated I/O servers. 
Each compute node has its own I/O subsystem which 
uses its own local disk, and the I/O servers have faster 
I/O subsystems. On this machine, all PADMA compo- 
nents run on the compute nodes. PADMA data mining 
agents use the input/output subsystem of the nodes 
they are executing on for storing and retrieving the 
documents. The IBM SP2 was in multi-user mode dur- 
ing the experiments. 

The experimental results are presented in Figure 3. 
The graph corresponding to Cluster, shows the time 
it takes for clustering the whole corpus. Since each 
agent clusters its portion of the documents indepen- 
dently, there is no interprocess communication involved 
in clustering except sending the clustering results to the 
facilitator. As a result of this we got a linear speedup 
for the clustering algorithm which demonstrates its 
scalability. We even got a super-linear speedup when 
the number of agents is increased from one to two pos- 
sibly due to memory effects. 

Figure 3 dso shows ihe graph correspon&ng to Se- 
lect Cluster, which refers to the time it takes to apply 
a select query to a corpus and cluster the resulting 
documents. As we mentioned earlier, this combined 
operation helps the user to focus on the documents he 
wants to explore rather than considering all the docu- 
ments in the whole corpus. In this experiment we used 
the following SQL query, 

SELECT DOCNO,TEXT,NGRAM FROM TIP- 
STER WHERE NGRAM = ELECTRON 
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where the NGRAM = ELECTRON condition refers to 
selecting the documents that are related with keyword 
electron. 15084 documents in the TIPSTER corpus 
matched this select query. Then these documents are 
clustered using the regular clustering algorithm. This 
process in done on the fly, i.e. on each agent as soon 
as matching documents are found they fed into the 
clustering module. 

The graph corresponding to Join Cluster refers to 
the time it takes to apply a join query and cluster the 
resulting documents. In this experiment we used the 
following SQL query, 

SELECT TIPSTER.DOCNO, TIPSTER.TEXT, 
TIPSTER.NGRAM, AUTHORS. CITY FROM 
TIPSTER, 
AUTHORS WHERE TIPSTER.AUTHOR = AU- 
THORS.AUTHOR AND AUTHORS.CITY = 
LONDON AND TIPSTER.NGRAM = ELEC- 
TRON 

where TIPSTER.AUTHOR = AUTHORS.AUTHOR 
AND AUTHORS.CITY = LONDON AND TIP- 
STER.NGRAM = ELECTRON condition refers to se- 
lecting the documents that are written by authors from 
Tnnrlnn c~nrl rolstnrl 4th lr~'~nvn~rl alas+-nm Sinrn Tx,P U"llU"ll W‘lU ~.dLW"~,u ""I"L& IZUJ """MU YYUlrY, "I". VLL1.2" ""U 

store each corpus as a separate relational database ta- 
ble, for this experiment we were able to add an AU- 
THOR attribute to the TIPSTER table which stores 
the names of the authors of the documents. In addition 
we used an AUTHORS table that has AUTHOR and 
CITY attributes. This table consists of 28 tuples. It’s 
also striped across all agents with a striping factor of 1. 
15084 documents matched this join query. Then these 
documents are clustered using the regular clustering 
algorithm. This process in done on the fly, i.e. on each 
agent as soon as matching documents are found they 
fed into the clustering module. 

In this section we presented the initial experimen- 
tal results about the performance of the PADMA sys- 
tem. These results demonstrated its scalability. In 
these experiments we used a single corpus of size 36 MB 
and two different select and join queries. In addition 
we only used striped data distribution and write-back 
caches, and we didn’t perform any prefetching. 

Conclusions And Future Work 
This paper introduced PADMA, an agent based archi- 
tecture for parallel data mining. The PADMA sys- 
tem demonstrated that agent based data mining tools 
are suitable for exploiting benefits of parallel comput- 
ing. Main characteristics of PADMA are: (1) par- 
allel query processing & data accessing, (2) parallel 
data analysis (3) interactive data/cluster visualization. 
PADMA is still under development. A module for su- 
pervised learning of piece-wise linear classifiers using 
feedback from the user is already developed and incor- 
porated in PADMA. We are currently in the process 
of adding numeric data handling capabilities. A paral- 

lel/distributed genetic search engine will be added to 
support future machine learning algorithms. 

Acknowledgments 
National Center for Supercomputing Applications and 
United States Department of Energy funding. IBM 
SP2 time, granted by Argonne National Laboratory. 

References 
Anderson, W., Hendler, J., Evett, M., & Kettler, B. 

(1994). Massively parallel matching of knowledge 
structures. USA: AAAI/The MIT Press. 

Foner, L. N. (1993, May). What’s an agent any- 
way? - a sociological case study. ftp://media- 
lab.media.mit.edu/pub/Foner/Papers/What’s- 
an-Agent-Anyway-Julia.ps. 

Holsheimer, M., Kersten, M., & Siebes, P. (1996). 
Data surveyor: Searching for nuggets in paral- 
lel. Advances in Knowledge Discovery and Data 
Mining. 

Huber, J., Elford, C., Reed, D., Chien, A., & Blu- 
menthal, D. (1995). PPFS: A high performance 
portable parallel file system (Technical Report --..... wl-TyT - ,.- _^^^ \ -P. - ulu~mh-fC-93-19uY). wi Dept., UiUC. 

Kozierok, R., & Maes, P. (1993). A learning interface 
agent for scheduling meetings. In Proceedings of 
the 1993 International Worlcshop on Intelligent 
User Interfaces (pp. 81-88). ACM Press, New 
York. 

Maes, P. (1994, July). Agents the reduce work 
and information overload. Communications of 
the ACM (Vol. 37, No. 7). 

McElligott, M., & Sorensen, H. (1994). An evolu- 
tionary connectionist approach to personal in- 
formation filtering. In INNC 94 (Fourth Irish 
Neural Network Conference) (pp. 141-146). 
ftp://odyssey.ucc.ie/pub/filtering/INNC94.ps. 

Moukas, A. (1996). Amatthaea: Information dis- 
covery and filtering using a multiagent evolving 
ecosystem. MIT Media Laboratory. 

Radcliffe, N. (1995). Ga-miner: Parallel data mining 
with hierarchical genetic algorithms final report 
(Technical Report EPCC-AIKMS-GA-MINER- 
REPORT 1.0). Quadstone Ltd. 

Shek, E., Mesrobian, E., & Muntz, R. (1996). 
On heterogeneous distributed geoscientific query 
processing. In Proceedings of 6th International 
Workshop on Research Issues in Data Engineer- 
ing: Interoperability of Nontraditional Database 
Systems (pp. 107-116). 

Zaki, M., Ogihara, M., Parthasarathy, S., & Li, W. 
(1996). Parallel data mining for association rules 
on shared-memory multi-processors (Technical 
Report 618). CS Dept., University of Rochester. 

214 KDD-97 


