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Abstract 

This paper presents first results of an interdisciplinary 
project in scientific data mining. We analyze data 
about the carcinogenicity of chemicals derived from 
the carcinogenesis bioassay program performed by the 
US National Institute of Environmental Health Sci- 
ences. The database contains detailed descriptions 
of 6823 tests performed with more than 330 com- 
pounds and animals of different species, strains and 
sexes. The chemical structures are described at the 
atom and bond level, and in terms of various rele- 
vant strnctural properties. The goal of this paper is 
to investigate the effects that various levels of detail 
and amounts of information have on the resulting hy- 
potheses, both quantitativel? and qualitatively. We 
apply relational and propositional machine learning 
algorithms to learning problems formulated as regres- 
sion or as classification tasks. In addition, these exper- 
iments have been conducted with two learning prob- 
lems which are at different levels of detail. Quanti- 
tatively, our experiments indicate that additional in- 
formation nob necessarily improves accuracy. Q&i- 
tatively, a number of potential discoveries have been 
made by the algorithm for Relational Regression be- 
cause it can utilize aII the information contained in the 
relations of the database as welI as in the numerical 
dependent variable. 

Introduction1 
In science data analysis (Fayyad, Haussler, & Stolorz 
1996), we benefit from the luxury of precision of the 
data and the availability of domain knowledge, but of- 
ten scientific dat(a are complex and highly structured. 
Therefore “a. flat-file form of the data is unlikely to 
be useful”(Fayyad, Haussler, & Stolorz 1996). Such 
data are more naturally represented by relations as is 
done in Inductive Logic Programming (ILP)(Muggle- 
4....- ,nno\ b”ll 1 JYA). 

In this paper we present first results of an interdis- 
ciplinary project in scientific data mining. The goal 
of this project is to develop and apply ILP methods 
for learning structure-activity relationships (SARS) for 
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carcinogenicity. SARs are models that predict the ac- 
tivity of chemicals in organisms from the molecular 
structure. Formally, the problem is to predict numbers 
from “relational structures” (such as labeled graphs), a 
problem also known as Relational Regression (Dieroski 
1995). The data used were derived from the carcino- 
genesis bioassay program, a long-term research study 
performed by the US National Institute of Environ- 
mental Health Sciences (NIEHS). 

Related Work 
Several SAR studies (e.g., (Hirst, King, & Sternberg 
1994)) using ILP methods have been published. Gen- 
erally, the comparisons of ILP algorithms with other 
approaches (linear regression, neural networks) showed 
no statistically significant differences in predictive ac- 
curacies, but ILP-generated theories tend to be more 
comprehensible. This work is also much in the spirit 
of studies comparing various methods (FOIL vs. Pro- 
go1 (Srinivasan, Muggleton, & King 1995), proposi- 
tional learning vs. relational learning (Srinivasan et 
al. 1996)) in the domain of mutagenicity. (King & 
Srinivasan 1997) report on the application of Progol to 
one of the databases also used here. 

Description of the Data 
In this section we describe the datasets used in our 
experiments “as is”, without the data engineering steps 
to define the learning problems. 

Our starting point are two databases: The first 
one (King & Srinivasan 1997)(abbreviated by K&S), 
contains information about the carcinogenicity- of 330 
compounds, as classified by the NIEHS. The sec- 
ond database, the Carcinogenic Potency Database 
(CPD)(Gold 1995) contains information about bioas- 
says including the species, the strain and the sex of the 
animals, and the route of administration of the com- 
pound. 

The chemicals in the K&S database are identified by 
the (unique) CAS registry number. The compounds 
are described at the atom and bond level using two 
relations atom and bond. Atoms are characterized by 
the element, the atom type according to the molecular 
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K&S DB CPD Joined DB 
# examples 330 6823 6823 
# t,uples 21031 6823 27524 
# relations 41 1 42 
# features 38 6 42 

Table 1: Quantit(ative overview of the databases. 

modelling package QUANTA, and the partial charges. 
The bonds are defined as relations between atoms, and 
also have types (according to QUANTA). Additionally, 
the existence of functional groups (such as benzene 
rings and methyl groups) and of so-called Ystructural 
alerts” is represented. Finally, the outcome of the ames 

lest for mutagenicity, which is highly correlated with 
carcinogenicity, has been included. The NIEHS has 
classified these chemicals as non-carcinogenic, equivo- 
cal and carcinogenic. 

Gold’s CPD contains detailed descriptions of bioas- 
says performed by the NIEHS and other organizations. 
For each bioa.ssay, we know the statistical significance 
nf t130 r\ntr*nm~ IPT/nl\ lrlrl t.13l3 tnmrrriamir rlnae frrr "1 "J.l" "U"Y",l‘" \' I W", YALU "*Au "UAAL'""b"l"U UVU" L"I 

50% of the animals (TD50). The unit of the TD50 
is rng/kg body weight/day. The efSect of a compound 
is described by PVal: if the value indicates statistical 
significance, then the compound is carcinogenic. The 
activity of a substance is described by TD50. E.g., if 
the TD50 is very low for the animals in a group, t,hen 
the substance is highly carcinogenic. 

As is, t,he CPD does not contain chemical descrip- 
hors, but, the chemicals used are identified by the CAS 
registry number. So we joined t(he CPD with t#he K&S 
dat,abase via. t,he CAS registry number, and obtained 
a. d&abase cont,aining information about bioassays as 
well as information about, the chemicals used. The 
joined DB is t,he basis for further investigations con- 
cerning species-specific, st(rain-specific, sex-specific and 
route-specific models for carcinogenicity. From a bio- 
logical point, of view, this is one of the novelties of our 
project. Table 1 gives a quantitative overview of the 
three databases. 

Description of the Approach 
In this se&on we describe our approach to analyz- 
ing t,he data.. Our goal is to investigate the effects of 
increasing levels of detail in the data, both in the in- 
dependent, and t,he dependent variables. The dimen- 
sions investigated are chemicals vs. tests as exam- 
ples, classification vs. regression, and propositional 
vs. relational learning. To allow for meaningful com- 
parisons, the examples of the learning problems have 
to be t,he sa.me, and t(he same measures of accuracy 
have to be applied. Therefore, results for chemi- 
cals and tests are not directly comparable. However, 
all combinations E { ~Zassification, reyression} x 
{pro~osz’tion.aZ, relational} are quantitatively compa- 
rable for both chemicals and tests, since classification 
accuracy can also be calculated for regression models. 
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Chem. 

Tests 

Examples 

bependent 
variable for 
classification 
Dependent 
variable for 
regression 
Examples 

Dependent 
variable for 
classification 
Dependent 
variable for 
reeression 

f 1 

! 

1 

Those with valid TD50 1 
only (i.e., only those 
with significant outcome, 
PVal < 0.05). In case of 
conflicting TD50 values: 
one example with 

Table 2: Definitions of the learning problems in our 
study. 

In the following, we will discuss the dimensions inves- 
tigated in this study. A summary of the definitions of 
the learning problems can be found in Table 2. 
Chemicals as Examples/Tests as Examples 
For the first, series of experiments, we used the K&S 
database with chemicals as examples. In the second 
series of experiments, the tests (i.e., individual bioas- 
says) from the joined database were used as examples. 
We focused on a few attributes (species, strain, sex 
and route of administration), and on only those tests 
with carcinogenic substances (PVuE < 0.05). We de- 
fined the dependent variable as the minimum TD50 of 
-11 ,\.rnm,.lnr,+L~+ .Y,.* :,lnnC:nnl ,T+L.M.T:.,:,, : A  tube dose all cxo,rLlplnY IJllcL" o,IG Iu-~IIlJILaI "VII~l""1D~) 1.G.) 

that in at least one case is tumorigenic. 
Classification/Regression 
For the chemicals, we were learning the NIEHS assess- 
ments (non-carcinogenic, equivocal or carcinogenic). 
Basically, this dependent variable is ordinal, but it can 
also be used for classification. Since we are not aware 
of relational learning algorithms dealing with ordinal 
dependent variables, we formulated a regression prob- 
lem by mapping the NIEHS assessment to (-1, 0,l). 
The scale does not play a role because we evaluated the 
results by the relative error (see e.g. (Quinlan 1992)). 
The classification accuracy was calculated in the fol- 
lowing way: if a regression rule predicts a negative 
value, then we predict “non-carcinogenic”, else we pre- 
dict LLcarcinogenic”. 

For tests as examples, we derived the classification 
problem from the regression problem by discretiza- 
tion of the dependent variable. We chose a simple 
discretization of the tumorigenic dose (TD50): if the 
value is bigger than the median, then the exarnple be- 



Examples Form. Task Algorithm(s) 
Chemicals Prop. Class. C4.5, T2 
f-‘hmm;r.~lc PW,r\ RPlPF liiF; I 

Table 3: Algorithms applied to the two learning prob- 
lems and different formulations of them. 

longs to class 1, otherwise it belongs to class 0. 
Propositional Learning/Relational Learning 
To obt,ain a propositional version of the learning prob- 
lems, we utilized the high-level chemical information 
from the K&S database, including functional groups, 
st,ructural alerts and the result of the ames test. The 
ILP setsting includes additional low-level structural de- 
tails about atoms and bonds. 
Algorithms Used 
In Table 3, we present t,he algorithms used for our 
comparative study. For propositional classification, we 
used C4.5 (Quinlan 1993), and T2 (Auer, Maass, & 
TT-IL- ,nnc\ -.,-:-I. z-2 _._^_ r) ,--.-, A-^:-:-- + -^^- l7ATT rI”lLt: lVVU,, WI,,CIl ,IlULlL;t3 I-,c”tx “Gc;,W”I, blw.zii. I’“lLl 
(Quinlan 1990) and P rogol (Muggleton 1995) are state- 
of-the-art, ILP algorithms. M5 (Quinlan 1992) learns 
regression trees with linear regression models in the 
leaves. SRT (Kramer 1996) learns relational regression 
trees. 

Experimental Results 
First we discuss the quantitative results of the exper- 
irnents (see Table 4 and Table 5). For the chemicab, 
we did not observe big differences in accuracy except ~ 
for Relational Regression. ? - ,7 bR.1 achieves (with statis- 
tical significance) the best accuracy for the chemicals. 
Regression seems to perform slightly better than clas- 
sification. However, the biggest difference was between 
using all the information, and using only part of the 
information. 

The theories found by C4.5 and FOIL are relatively 
easy to interpret for an expert, because the conditions 
in the theories relate to the structure of a compound. 
So an expert can easily draw some structures which are 
subsumed by a given rule. Besides, none of the rules 
found are in contradiction to “toxicological common- 
sense”. 

Quantit,atively, the results for the tests are in total 
cont(rast. to t*he results for the chemicals. Here, the 
det,ails providecl do not seem to pay off: propositional 
cla.ssification algorithms are quantitatively superior to 
t,he rest,. This may be due to the huge differences in 
th, TprlKll which m.z,~r P.,,,cP n,.nhlmmc fnr ~~m.r?&nn “Ub 1 U”“, YYIlItil, l,lrvJ x,auucI y”“u’u”‘Y IVI ‘“6’“““‘“” 

algorithms. The bad performance of FOIL may be 
due to the multiple classifications which are counted 
as misclassifications. 

In contrast to C4.5 and FOIL, SRT often uses partial 
charges of atoms in its theories to discriminate the ex- 
amples. Therefore, it appears possible that the effect 
of a chemical depends more on partial charges than on 
chemical structure.3 This interesting issue will be a 
point of departure for further investigations. 

The rules found by C4.5, FOIL and SRT reveal 
that certain functional groups (methyl groups, ben- 
zene rings, 6 membered ring) are, depending on the 
context, in some cases activating and in others deac- 
tivating. This pattern is in accordance with present 
toxicological knowledge. 

Next we present the major discoveries and findings 
from our experiments. One of the authors is an expert 
in toxicology, and interprets the theories induced by 
the learning algorithms. 

Most of the qualitative insights were gained from the 
O----.-l I- - -P -L-.---1----- L--.- appiication of SRT. 3everaI types 01 atoms uave ueeu 

found to be deactivating: atoms of type 8 according 
t,o QUANTA (e.g. “atoms with 2 double bonds on 
a 4 membered ring”), atoms of type 14 (e.g. “atoms 
with double bonds on a 4 membered ring with 3 double 
bonds”), and sulfur atoms. 

These observations can be made both in the appli- 
cation to chemicals and in the application to tests. 

2Tl~e experiment with Progol has been described in “Note that in some sense partial charges are caused by 
(King & Srinivasan 1997). the chemical structure. 

Approach Algorithm Accuracy Rel. E. 
Default 55.00% - 
A -PC l-act G-2 nn , LllllU” .L”U” ,, I, ““.““% I - I 

Propositional C4.5 prune 
Classification C4.5 rules 

T2 
Propositional M5 

58.79% - 
60.76% - 
65.00% - 
69.93% 0.98 

Regression 
Relational FOIL 25.15% - 
Classification Progol 63.00% - 
Relational SRT 72.46% 0.14 
Regression 

Table 4: Quantitative results for chemicals obtained 
by 5-fold cioss-validation. 

The rules found by C4.5 and FOIL are relatively 
lengthy, and do not provide many new insights. The 
rules reflect mostly what we specified as indicators of 
carcinogenicity, namely the ames tests and structural 
alerts. (Note that these algorithms also could have 
used the functional groups.) Some of the theories are 
quite accurate, but they are no real discoveries. An 
extreme example is the theory found by the T2 al- 
mn4thx.m .,,h;,h ;, nrr;ta nec,.r.atn h,.t tv;,,;,l o;n,.o ;t ~“I1UII111) YYIIIbLI ‘0 yLucL cbb~uIcIIut‘) VU” “lIYI.za, “IIltib 1” 

contains the ames test, and tests for structural alerts 
in the second level. 

Kramer 225 



Approach Algorithm Accuracy Rel. E. 
Default 50.00% - 
Propositional C4.5 prune 67.56% - 
Classification C4.5 65.43% - 

T2 59.86% - 
Propositional M5 56.67% 1.23 
Regression 
Relational FOIL 31.39% - 
Classification 
Relational SRT 56.19% 0.77 
Regression 

Table 5: Quantitative results for tests obtained by 5- 
fold cross-validation. 

Although these results might be real discoveries, ad- 
ditional ana.lyses by independent domain experts are 
required to confirm t,hem. 

In general, SRT uses the same properties of com- 
pounds in bot(h applications. Applied to tests, SRT 
additionally uses species, sex or route near the leaves 
of the trees. This way we recognized that mice might 
have a much higher TD50 t(han rats, On the average, 
the ratio TD50,,,,,/TD50,,~ is 1.599. This confirms 
previous findings by Gold and co-workers that rats re- 
act more sensitively towards carcinogens than mice. 

Qualitatively, we observed that propositional learn- 
ing algorithrns utilize chemical knowledge only in the 
form of key at,tributes. Most of the potential discover- 
ies were obta.ined by an algorithm for Relational Re- 
gression which utilizes all t#he available information. 

Further Work and Conclusion 
One of our next steps will be to include the tumorigenic 
site (i.e., the target organ) in the description of the 
bioassays. Since there will be fewer conflicting TD50 
values, rnore examples can be used for learning. 

In summary, we investigated the effects that vari- 
ous levels of d&ail and amounts of information have 
on t,he resulting hypotheses, both quantitatively and 
qualitatively. We applied relational and propositional 
machine learning algorithms to learning problems for- 
rnulated as regression or as classification tasks. In addi- 
t,ion, these experiments have been conducted with two 
learning problems which are at different levels of de- 
tail: first with chemicals as examples, second with tests 
as examples. Quantitatively, our experiments indicate 
that additional information not necessarily improves 
accuracy. Qualitatively, a number of potential discov- 
eries have been made by the algorithm for Relational 
Regression because it can utilize all the information 
contained in the relations of the database as well as in 
the numerical dependent variable. 
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