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Abstract 

We present a visual tablet for exploring the na- 
ture of a bagged decision tree (Breiman [1996]). 
Aggregating classifiers over bootstrap datasets 
(bagging) can result in greatly improved predic- 
tion accuracy. Bagging is motivated as a vari- 
ance reduction technique, but it is considered a 
black box with respect to interpretation. Current 
research seekine: to explain why bagging works 
has focused ondifferent bias/variance decompo- 
sitions of prediction error. We show that bag- 
ging’s complexity can be better understood by a 
simple graphical technique that allows visualizing 
the bagged decision boundary in low-dimensional 
situations. We then show that bagging can be 
heuristically motivated as a method to enhance 
local adaptivity of the boundary. Some sim- 
ulated examples are presented to illustrate the 
technique. 

Decision trees are flexible classifiers with simple and in- 
terpretable structures (Ripley [1996]). The best known 
methods for constructing decision trees are CART 
(Breiman et al. [1984]) and C4.5 (Quinlan, [1993]). 
Consider a learning sample C consisting of a p-vector 
of input variables and a class label for each of n cases. 
Tree-structured classifiers recursively partition the in- 
put space into rectangular regions with different class 
assignments. The resulting partition can be repre- 
sented as a simple decision tree. These models are, 
however! unstable to small perturbations in the learn- 
ing samples - that is, diffferent data can give very 
different looking trees. 

Breiman [1996a] introduced bagging (bootstrap ag- 
gregation) as a method to enhance the accuracy of 
unstable classification methods like decision trees. In 
bagging, B bootstrap (Efron and Tibshirani [1993]) 
datasets, are generated, each consisting of n cases 
drawn at random but with replacement from ,C. A 
decision tree is built for each of the B samples. The 
predicted class corresponding to a new input is ob- 
tained by a plurality vote among the B classifiers. 
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Consequently, each new case must be run down each 
of the B decision trees and a running tally kept of 
the results. Bagging decision trees has been shown to 
lead to consistent improvements in prediction accuracy 
(Breiman [1996a,b], Quinlan [1996]). 

Bagging takes advantage of instability to improve 
the accuracy of the classification rule, but in the pro- 
cess destroys the simple interpretation of a single de- 
cision tree. Bagging stable classifiers can however 
actually increase prediction error (Breiman [1996a]). 
A flurry of current work to understand the theo- 
retical nature of bagging has focused on different 
bias/variance decompositions of prediction error (Brie- 
man [1996a,b], Friedman [1996], Tibshirani [1996], Ko- 
havi and Wolpert [1996], James and Hastie[l997]). For 
simple risk functions like squared error loss, bagging 
can be shown to improve prediction accuracy through 
variance reduction. But due to the non-convexity of a 
0 - 1 misclassification rate loss function, there is not 
a simple additive breakdown of prediction error into 
bias pius variance. What has been shown is that there 
is an interesting interaction between (boundary) bias 
(the decision rule produced relative to the gold stan- 
dard Bayes rule) and variance of the classifier, and that 
depending on the magnitude and sign of the bias, bag- 
ging can help or do harm. 

Leaving aside the algebraic decompositions, bagging 
is generally regarded as a black box - it’s inner work- 
ings cannot be easily visualized or interpreted. In this 
paper, we use a new graphical display called a classi- 
fication aggregation tablet scan or CAT scan to visual- 
ize the bagging process for low dimensional problems. 
This is a general graphic that can be applied to any 
aggregated classifier. Here however, we focus on de- 
cision trees for the two-class discrimination problem 
with two-dimensional input vectors. 

The CAT Scan 
For each learning sample ,C and set of B bootstrap 
decision trees, a single CAT scan can be produced. 
The CAT scan was constructed using a small multiple 
design (Tufte [1990]) in order to effectively display the 
cumulative effect of bagging. Each CAT scan consists 
of a two-dimensional array of images. The coordinate 
system of each individual image represents the two- 
dimensional input space. 
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Figure 1: CAT scan for adjacent oblique clusters example. 

Nested Oblique 
Clusters 
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Figure 2: CAT scan for nested oblique clusters example. 
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aggregating classifiers. Bootstrap aggregation is just 
one special case. Although presented for the two- 
dimensional case, the CAT scan can potentially be gen- 
eralized to higher dimensions using a grand tour style 
approach. This would involve significantly more com- 
putation and while theoretically feasible, was not the 
main intent of this paper. We sought simply to visu- 
alize the smoothing of a decision boundary by bagging 
and hence focused on low dimensional views and the 
two-class problem. We have oniy explored bagged deci- 
sion trees, but the CAT scan could be used to examine 
other methods where bagging can be potentially detri- 
mental, such as nearest neighbour classifiers (Breiman 
[1996a]). 

What is clear from the studying the simulated ex- 
amples, is that bagging is not a black box. It can be 
thought of a member of the general class of flexible dis- 
criminants (Ripley [1996]). It gives a flexible decision 
boundary with the ability to effectively model oblique 
and nonlinear Bayes rules. 

The decision region for a classification tree is recti- 
linear with segments parallel to the input axes. This 
boundary defines a decision region for each class. A 
bagged decision tree is the union of the intersection of 
m-any of t,h_@e raeions. FQr examepiej if _R = 3 and --cr----- 
the decision regions for the three trees are RI, Rz, 
and Rs, then the bagged decision region would be 
(Rr II R2) u (RI rl Rs) u (Rz n R3). SO that, the 
bagged decision region also has a rectilinear boundary 
composed of axis-parallel segments, as the CAT scans 
clearly show. In principle, a single decision tree could 
give the same decision boundary; but, in practice, they 
do not. 

So why can’t a single tree find the same decision 
boundary as bagging ? To answer this question one 
needs to explore how the respective boundaries differ. 
The obvious difference, apparent on the CAT scans, 
is that the resolution of the bagged boundary is much 
finer. That is, the bagged boundary is composed of 
much smaller segments and thus can capture finer de- 
tail. The main reason, in practice, that a single de- 
cision tree does not give a boundary with this fine 
resolution is that they run out of data. For a single 
tree, the small segments would have to correspond to 
partitions of subsets of the data. But many of these 
small segments would correspond to partitions of sub- 
sets with little or no data in them. In contrast, bagging 
constructs these small segments by the union of the in- 
tersection of many larger partitions and thus does not 
have this problem. 

Even with enough data to make the necessary splits, 
L ,:..e.,, ?l*,:,:,- A,.-^ “,...,A -^+ A..,,:,..+, +l%, L...,..,..,,.l a SllLtjlr; UCL.ISI”II blCt: LULlILl U”lJ uup,lLaw IJut: lm~~nl 
decision boundary without a large increase in variance. 
The size of a decision tree is controlled by the prun- 
ing of a large (maximal) tree. Pruning reduces vari- 
ance and increases accuracy (Breiman et al. [1984]). 
If pruning was to accomodate fine splits of the data in 
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some regions of the input space, it would also accomo- 
date fine splits in other regions. The decision regions 
of such trees would not appear as large homogeneous 
blocks as in row (i) of the CAT scans. They would 
appear more like a checker board pattern. Bagging is 
able to locally adapt (and smooth) the decision bound- 
ary to regions of the input space that require more or 
less complexity. 
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