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Abstract 

A’ mature data mining system ha.3 to interact with 
standard DBMSs. A crucial factor in the performance 
of such a data mining system lies in this interaction. 
The KEso project aims at the deveiopment of such a 
tool and its interaction with the database is restricted 
to two-way table queries; a special kind of aggregate 
query. 
This restriction gives rise to ample possibilities to op- 
timize the computation of such two-way tables, e.g., 
by using parallelisation or by temporary storage of in- 
termediate results. 
However, the size of these two-way tables puts a large 
communication overhead on the database interaction 
of KESO. In this paper we propose to compute (cer- 
tain) aggregates in the database. This approach low- 
--- AL_ -I-- -r IL- -__--_. - --_. IL- _^__ :2---L,-. -..L:,- ers ixe size 01 me query re:su~~s c;u~s;luclavly w~me 
keeping the possibilities for optimization used in the 
current version. 
Keywords: Data Mining Systems, Database Interac- 
tion, Aggregates, Data Cubes 

Introduction 
Data mining is a fast growing research area, c.f., 
(Fayyad & Uthurusamy 1994; 1995; Simoudis et al. 
1996; Fayyad et al. 1996). There are algorithms 
for many applications. A mature data mining sys- 
tem should support a wide variety of such algorithms 
and applications. Moreover, it should work “on top” 
of standard (relational) DBMS% The ESPRIT-IV 
project KESO aims to develop such a tool. 

To achieve this goal, KESO is based upon an induc- 
tive query language. Central to this language is the no- 
tion of “data mining as a search task”. More in particu- 
lar, the %earch space” is characterised by a description 
language and a quality function and the search process 
is specified by an abstract search algorithm and a collec- 
tion of operators. Conceptually, posing a query in the vr-- - nEsO system is done by instantiating these abstract 
concepts with concrete implementations. 
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Crucial for the performance of a data mining sys- 
tem is its interaction with the database. Due to the 
modular view KESO takes towards data mining algo- 
rithms, this interaction is localised in the quality func- 
tion. More in particular, the interaction is restricted 
to two-way table queries, a special type of aggregate 
queries (see Section 2). This allows for different, or- 
thogonal, schemes to optimise the interaction between 
KESO and the DBMS; i.e., to optimize the computa- 
tion of the two-way tables. 

The downside of the two-way tables is however that 
the communication overhead between KESO and the 
DBMS is considerable. In this paper we propose a way 
to reduce this overhead by computing aggregates in the 
database. This proposal leaves the option to use the 
optimization schemes mentioned above open. 

The organisation of this paper is as foiiows. Sec- 
tion 2 presents a brief (and simplified) overview of 
the concepts underlying the KESO system; see e.g., 
(Siebes 1996) f or more details. In Section 3, the three 
database-interaction optimization schemes are intro- 
duced and discussed. In Section 4 we show how to 
gene&se the two-way tables to minimise the commu- 
nication overhead without comprimising the optimisa- 
tion schemes. Section 5 summarises the main results 
of this paper and it presents a discussion on related 
research. 

Without loss of generality ((Abiteboul, Hull7 & 
Vianu 1994)) assume that the database consists of 
one Universal relation DB. DB has schema A = 
{4,...,An), with associated domains Die A database 
db is a multi-set of tuples over D = D1 x . -. x D,. In 
other words, tuples may occur zero or more times in 
the database. 

We use [. . .] to denote multi-sets and {. . .} to denote 
sets. The projection of a tuple on the attributes X is 
denoted by mx. 

Inductive Querying in KESO 
Data mining can be seen as the induction of a model 
from the database. The description language defines 
the set of models KESO considers during the execution 
of a task; each description is a possible (partial) model. 
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The basic description ianguage for KESU is that of 
selections. A selection for DB is a description of the 
form: 

in which r/i C_ Di. Such a selection description $ de- 
scribes all tuples in the database that satisfy the selec- 
gon CQl?;&iOll; $5. Fg’nr example, age E [l&241 A RPI! E -1”--- 
{male} describes the young adult males in a database. 

To restrict the selections, hierarchies Hi can be de- 
fined for each attribute Ai. Without loss of generality, 
we can assume that such hierarchies have been defined 
for all attributes. Thus Al E VI A .* * A A,, E V, is a 
selection description for DB iff Vi E Hi. 

Clearly, the selection description language depends 
both on the database schema DB and on the hierar- 
&& &fined: -However. sincci the rnle nf theqpl twn is , L ----- 1--- - -_- __ 1___L- 1.. _ _L 
merely symbolic in this paper, the description language 
of selection descriptions is denoted by simply Cp. 

While the description language defines the mod- 
els that KESO considers, the quality function deter- 
mines how well a description (model) fits (part of) the 
database. For the purposes of this paper we can for- 
get issues as the syntactic compexity of a model and a 
quality function & determines the quality of a descrip- 
tion $ E @ hawwl nn 2 twn-mrn.w tnhlp ~VPP thP wnnnrt nf YYUVU Y.. . “WY wwy “WV”” v. VI YI.V Ys”frJ,Y, Y .,I 
4. The support of 4 is simply that part of the database 
that is described by 4. In other words, the support of 
I#+ denoted by (4) is defined by: 

(ho = [t E db I +(t>l 
Two way tables have sets of source and target at- 
tributes, denoted by S and T with S,T C_ A. The 
two-way table has as schema S U T U {Count}, where 
Count has the natural numbers as domain. The tuples 
in the two-way table over the support of 4 are those 
tuples r that satisfy: 

1. 3t E (4) : (VA E Su T : nA(t) = X,4(7-)) 
2. TC~~~~(T) = I[t E (4) 1 VA E S u T : nA(t) = nA7-]I 
The target attributes T are parameters that are set 
by the quality function; in other words, T is constant 
during a data mining task. The source attributes S 
denote a context, S is variable during the execution of 
the task, its value is set by the search strategy. For 
given parameters S, T, 4, and db, the two-way table is 
denoted by 2WT(S, T, 4, db) 

.Tbe q,udity fun&ion & furt,har comput,es so-me ag _-_ ___-- 
gregate function F over the two-way table, which yields 
the final quality. 

The quality function determines which descriptions 
are the most interesting (i.e., which models are best), 
finding these very interesting description is the task of 
the KESO system. Sometimes the search space (i.e., 
the description language) is small enough to allow ex- 
haustive search. Other times (such as for association 
rlllcla~ t.hprp ASP nlm-wit.hma t;E.~~ fine! l;h~ np~imsi sdll- --‘““I “I.v*” -* ., y.o” Ay.A---y 
tion. Most often, however, heuristic approaches have 
to be taken. 

AI, , .  HII tnese search aigorithms define (partiaij enumera- 
tions of the description language. More precisely, they 
use a search strategy and operators on the description 
language. 

The search strategy defines the heuristic with which 
the search space is enumerated. Examples are Exhaus- 
tive Search, Hill Climbing, Beam Search, and Genetic 
Algorithms. 

The operators implement the enumeration on the 
search space. For example, a Hill Climbing algorithm 
requires that the quality of the neighbours of the cur- 
rent best description 4 is computed. One way in which 
the neighbours of a description could be defined is as 
follows. For 4 = Al E VI A . . . A A, E V’, the neigh- 
bours of 4 is the set of descriptions 

iA1 E ;;i;\. . .AA,EW:,i3!iEjl,... ,nj : ;;li~V~) 

Or this set could be further restricted by requiring that 
this particular lVi and Vi differ one step in the hierar- 
chy Hi. 

In KESO a data mining task on a database db is thus 
specified by a four-tuple (!P’, &, S, 0) in which q is a 
description language, & a quality function, S a search 
strategy and 0 the set of operators on Q necessary for 
c ti. 

The real power of KESO stems from the fact that we 
can program using tasks as primitives. For example, if 
Ar is a data mining task that discretizes a continuous 
domain and As is a task that creates a classification 
tree, Aa can use Ar whenever a continuous domain 
is encountered. This allows Aa to “discretize on the 
- 5; fly and use in each branch the discretization that is 
best for that branch. In fact, Ar can be used by any 
task that requires discretization. Such “programs” of 
tasks are the inductive queries of KESO. The reader is 
referred to (Siebes 1996) for detailed examples of such 
inductive queries. 

Database Support for Data Mining 
The interaction between the KESO system and the 
DBMS is restricted to the computation of the two-way 
tables. These tables are easily expressed in SQL by: 
SELECT Source, Target, 

COUNT(Source, Target) AS Count 
FROM db 
WHERE r$ 
GROUP BY Source, Target 
So, one way to speed-up the data mining process would 
be to pre-compute these tables, that is to compute a 
data cube as defined in (Gray et al. 1997). However, 
there are two major disadvantages with this approach. 
The first is caused by the “on the fly” discretization 
in KESO. Each such discretixation would add another 
dimension to the cube, thus requiring the computation 
nf a. new cnhct. nf which the nld cuba is nnlv a Sub-cl&e, --- ---.. ----, -- ..---- -- A___ -_- ---- .L ----~ -AL-- 
Computing this new cube is far more expensive than 
computing the two-way table. 
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The second disadvantage is that (if there are no con- 
tinuous attributes) the cube would give the two-way ta- 
bles for the complete search space. Above we already 
mentioned that this search space is often far too large 
to explore completely. In other words, computing the 
cube is computing far too many two-way tables and 
would thus take far too much time. 

The approach taken in KESO uses a lattice struc- 
ture on the two way tables, similar to the lattice in 
(Harinarayan, Rajaraman, & Ullman 1996). Note that 
2WW1, T, 41, db) can be computed from SWT(& U 
Cm T A. \,A A\ aa G.1lrrr.m D>m;ont the Cm nttr;h,,tm uz, L ) q/I Y y/z, W”) CbID I”II”vvU. I L”JGb” “I1.z ua o,U”I‘“U”~D 

out of 2WT(S1 U&, T, $1 V&, db) and sum the counts 
of those tuples that become identical. Then select 
that part of the result that satisfies $11. This ob- 
servation induces the following order on two-way ta- 
bles: PWT(S1,T,r#1,db) 4 2WT(&,T,42,db) iff Sr s 
Sz A $1 + $2. It is obvious that the set of all two-way 
tables forms a lattice under this order. 

This lattice structure is used in two ways in KESO. 
Firstly, it tells us that if the search algorithm telescopes 
in on the database (queries smaller and smaller subsets 
of the rla.ta.haw) it is worthwhile to cache intermediate __ 1__- --1--L- ,-1-L. ._--1_____ ---_ J- _-.---- 
two-way tables since subsequent two-way tables can 
be computed from these intermediate results. Since 
the two-way tables are in general far smaller than the 
database, this speeds-up query processing notably; see 
(Holsheimer, Kersten, & Siebes 1996) for more details 
and performance figures. 

Secondly, KESO sends one batch of two-way queries 
per ‘Lgeneration” of the search process to the database. 
These batches contain two-way queries that are closely 
related. Using the lattice structure, we first compute 
the two-way table for their smallest common ancestor 
and derive from that the necessary two-way tables. 

The important difference between our usage of the 
lattice structure and that in (Harinarayan, Rajaraman, 
& Ullman 1996), is that the authors of (Harinarayan, 
Rajaraman, & Ullman 1996) use the lattice to compute 
which views to store once and for all while we take a 
dynamic approach to view materialisation. We are dy- 
namic by necessity, since we do not know which queries 
will be asked. Since most (heuristic) search processes 
are Markov processes, the best we can do is to stay on 
the heels of the search process. 

A similar observation is that BWT(S,T, 41 V 

42, db) can be computed from PWT(S,T, $1, db) and 
2WT(S, T, ~$2, db) by merging the two tables and sum 
the counts of identical tuples. 

This is important for KESO to run on top of a par- 
allel or a distributed database. It tells us that we can 
compute *the two-way tables on each of the database 
fragments in parallel and subsequently merge the re- 
sults; note, this is also observed in (Gray et aE. 1997). 
As of yet, we do not have experimental evidence that 
this speeds up the mining process, but the advantages 
seem obvious. 

Computing Aggregates in the Database 
The motivation for two-way tables as “the” query on 
which quality functions are based is the fact that all 
statistics that can be derived from the database can 
be derived from two-way tables. This follows from the 
observation that PWT(d, 0, true, db) simply yields the 
set of tuples in the database extended with their mul- 
tiplicity. 

The disadvantage of using two-way tables is the com- 
munication between KESO and the underlying DBMS. 
Although in practice the two-way tables are far smaller 
thnn thn rlntnhnnn UIIul‘l “IIG ucwcn”cwb, “&Lb ““~&IIbrAU 1” .2”IA”‘UCIILII”ICI. In thn nvnvhra=J ia onnnirlcxrnhln 

other words, KESO would become far more efficient if 
the evaluation function itself would be computed in the 
database. In fact, it would be optimal if we could com- 
pute the evaluation function while we are constructing 
the two-way table. What SQL offers in this respect are 
aggregates beyond COUNT and SUM. 

Allowing such aggregation functions in our two-way 
tables does offer huge potential savings in the com- 
munication between KESO and the underlying DBMS. 
Generalising the two-way tables to allow the compu- 
tation of aggregate functions, however, is a potential 
threat to the optimization schemes outlined in the pre- 
vious section. In other words, the savings in communi- 
cation costs could be anihilated by the increase in the 
costs of computing the tables. Clearly, the aggregated 
value itself cannot function as the intermediate result 
that can be re-used for subsequent quality calculations. 
What should be re-used is the table on which this ag- 
gregate is computed. This table itself (the generalisa- 
tion of the two-way table) may be computed using a 
different aggregation function, say G. If we want our 
observations of the previous section to go through, G 
I--- I^ LA /t-7 _^_. ..A -I 1 nnvi ~~“&.3...Z~..,.. ‘ma IJ” “lz) \U’iq CL U‘. IJJ ,,, cmill.l b”‘U~K”G. 

Let X = {Xi,j ( i E (1,. . . ,I},j E (1,. . . , J}} be a 
two-dimensional data set. The aggregate function G 
is distributive if there exists an aggregate function H 
such that 

G(X) = H({G({Xi,j Ii E (1,. . . ,I}}) lj E (1,. . -, J))) 
Examples of distributive aggregate functions are SUM 
and COUNT. 

Clearly, there is no need that F is based on only one 
distributive aggregate function G, it may depend on a 
vector of such functions provided there is a function M 
that combines these aggregated values into one aggre- 
gate value. In the spirit of (Gray et al. 1997), we say 
that an aggregate function F is distributive algebraic 
if there exists an k - tuple of distributive aggregate 
functions (Gr , . . . , Gk) and a function M such that: 

F(X) = M(Gl(X), . . . , Gk(X)) 

Examples of distributive algebraic aggregate functions 
are all the (central) moments of the distribution of at- 
tribute values. 

Finally, we define a Data Mining Measure as an 
1 - tuple of distributive algebraic aggregate functions. 
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Since a distribution is completely characterised by all 
its central moments, a Data Mining Measure is a true 
cmnmal;aat;nn nf a turn-wrav tahln All thn mnro oinco ~.A’U’“a’“U”~“L~ “I .a V..” ..LYJ “WVIU. 1.*x “&.U A4I”I” “III”\I 
the optimisation possibilities for Data Mining Mea- 
sures are the same as those for two-way tables. 

Currently experiments are underway with a version 
of KESO in which the quality functions are based on 
Data Mining Measures rather than two-way tables. 

Conclusions 
Mature data mining tools require interaction with ex- 
isting DBMSs. This paper gives the concepts that un- 
derly the KESO data mining system focussed on this 
intce-wtinn. Mnrwnwr. three ~rt,h~go& annrnn.chen to ---1----d ----. -.-----.-- , .!----.. --x-r- ------- 
the optimization of this interaction that follow natu- 
rally from the KESO framework are discussed. 

All three approaches are based on simple observa- 
tions on the laws that govern the special type of aggre- 
gated queries used by KESO, viz., two-way tables. Two 
of these approaches use a lattice structure on the set of 
two-way tables. The first approach stores intermediate 
results to minimise the number of tuples a two-way ta- 
ble has to be evaluated against. The second approach 
exploits communalities between batches of two-way ta- 
bles, again to minimise the size of the input table for 
these queries. 

The third approach is aimed at parallel and dis- 
tributed databases. It shows how the the two-way com- 
puted on each of the fragments can be combined into 
the final two-way table. 

Subsequently, we have taken this optimization 
framework as fixed and discussed how generalisations 
of the two-way table may optimize the database in- 
t,eraction further. The focuss in this discussion is on 
the communication between KESO and the underlying 
DBMS. It is shown that special types of aggregated 
r...n..;.-m IJ;~L.;h,l,t;OId nlnA I.m.4,. nnnrann~aa"~.,~o..or.rln.,r ~~‘L.2Ei., w*L1cr Y”tbCU”c. wy~“r WYl. cayyt yjLa*r;u bczU0~ vr;ry I”W 
communication overhead while keeping the optimiza- 
tion framework in tact. 

The upshot of this discussion is that the extensions 
that KESO requires of Standard SQL to optimize data 
mining is limited to the careful1 addition of aggregate 
functions; just as is argued in (Gray et aE. 1997). This 
differs considerably from the requirements posed by 
approaches such as DMQL ((Han et aE. 1996)) and M- 
SQL ((Imielinski, Virmani, & Abdulghani 1996)). The 
main reason is that KESO is based on an abstract view 
of data mining algorithms, whereas both DMQL and 
M-SQL are based on the direct implementation of data 
mining algorithms. 

The work in this paper is closely related to the 
work on datacubes as presented in (Gray et aE. 1997; 
Harinarayan, Rajaraman, & Ullman 1996). In fact, 
it combines the best from both papers. From (Hari- 
narayan, Rajaraman, & Ullman 1996) we inherit the 
lattice on views on the datacube. The important dif- 
ference with that paper is that we decide dynamically 
which “views” (=two-way tables) to store temporar- 

ily. Our distributive algebraic queries are completely 
in the spirit of (Gray et aE. 1997). The important dif- 
fm.onc-n 4th thnt n.xncxv. :a thnt mm An *.nt *rm-c-l\--..tn IUIbLlb... ““IULA “llc.u” pc0y.x I” “II.2” **I3 U” lI.“U p’.z-L”“‘pl’I.z 
the complete cube, but only those portions that are 
actually used. An important difference with both pa- 
pers is that this paper clearly shows the connections 
between the datacube and data mining. 

, Currently experiments are underway with a version 
of KESO which uses the generalisations of two-way ta- 
bles introduced in this paper. 

Acknowledgements 
This work is sponsored by the EC under contract Es- 
prit 30596. 

References 
Abiteboul, S.; Hull, R.; and Vianu, V. 1994. Foun- 
dations of Databases. Addison Wesley. 
Fayyad, U. M., and Uthurusamy, R., eds. 
1994. AAAI-$4 Workshop Knowledge Discovery in 
Databases. 
Fayyad, U. M., and Uthurusamy, R., eds. 1995. 
AAAI-95 Conference on Knowledge Discovery and 
Data Mining. 
IT----.-_1 TT ‘hb l-v-L-L_,--- CY-,-:-- r-4 0..---LI. n i c.. -1 rayyau, u. 1~1.; riatetsky-orirLpiro, b.; omym, r., dna 
Uthurusamy, R., eds. 1996. Advances in Knowledge 
Discovery and Data Mining. AAAI/MIT Press. 
Gray, J.; Chaudhuri, S.; Bosworth, A.; Layman, A.; 
Reichart, D.; Venkatrao, M.; Pellow, F.; and Pira- 
hesh, H. 1997. Data cube: A relational aggregation 
operator generalizing group-by, cross-tab, and sub to- 
tals. Data Mining and Knowledge Discovery, An In- 
ternational Journal 1. 
Han, J.; Fu, Y .; Wang, W.; Koperski, K.; and Zaiane, 
0. 1996. Dmql: A data mining query language for 3 . . ,-dye. r,..Y relational databases. In Proceedings of the sf tiM vu- 
96 workshop on KDD, ?? 
Harinarayan, V.; Rajaraman, A.; and Ullman, J. D. 
1996. Implementing data cubes efficiently. In Pro- 
ceedings of the 1996 SIGMOD Conference, 205 - 216. 
Holsheimer, M.; Kersten, M.; and Siebes, A. 1996. 
Data surveyor: Searching the nuggets in parallel. In 
Fayyad et al. (1996). 
Imielinski, T.; Virmani, A.; and Abdulghani, A. 1996. 
Datamine: Application programming interface and 
query language for database mining. In Proceedings 
of the Second internationai Conference on linowiedge 
Discovery and Data Mining, 256 - 261. 
Siebes, A. 1996. Data mining and the KESO project. 
In SOFSEM’96: Theory and Practice of Informatics, 
volume 1175 of Lecture Notes in Computer Science, 
161 - 177. Springer-Verlag. 
Simoudis, E.; Han, J.; Fayyad, U. M.; and Uthu- 
rusam, R., eds. 1996. AAAI-96 Conference on Knowl- 
edge Discovery and Data Mining. 

250 KDD-97 


