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Abstract

We present a novel, fast method for association-
mining ill high-dimensional datasets. Our Coinci-
dence Detection method, which combines random
sampling and Chernoff-Hoeffding bounds with a
novel coding/binning scheme, avoids the exhaus-
tive search, prior limits on the order k of discov-
ered associations, and exponentially large param-
eter space of other methods. Tight theoretical
bounds on the complexity of randomized algo-
rithms are impossible without strong input dis-
tribution assumptions. However, we observe sub-
lineal" time, space and data complexity in tests
on constructed artificial datasets and in real ap-
plication to important problems in bioinformatics
and drug discovery. After placing the method in
historical and mathematical context, we describe
the method, and present theoretical and empirical
results on its complexity and error.

Getting information from a table is like extracting
sunlight from a cucumber.

(H. Farquhar, "Economic and Industrial
Delusions", 1891)

Introduction
The measured attributes of individual objects or events
(in general, observations or data records) are said to 
associated or correlated when they occur together in,
or are sinmltaneously absent from, individual records
more often than could reasonably be expected "by
chance" if they were independent of one another. Sta-
tistical association is the signature of a systematic and
structural constraint operating on the population or
system being investigated. The states of the variables
are coupled in a non-random way, and we therefore in-
fer there must be a reason, some causal and consti-
tutive agency or law that is acting to limit the possi-
ble combined states of the variables (the exponentially
vast product space formed by multiplying the number
of possible states of every variable by those of every
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other variable) to just that subspace corresponding to
the combined states observed. The states might be
the recorded states of the different components of a
computer network or automated factory, the combina-
tions of which are crucial in diagnosing a system crash.
Or the states might be the different possible values for
key demographic variables in a huge database of house-
holds, some combinations of which may predict impor-
tant buying or voting patterns.

Thus a fundamental goal of statistical analysis has
been to estimate the shape of the joint distribution,
the location of the the bulk of the "probability mass".
Where are the peaks, the "modes"? These will be the
regularities, the "suspicious coincidences" that provoke
the question "Why?", and may lead to the formula-
tion of physical and deductive (as opposed to merely
statistical) hypotheses. But before speculating about
underlying mechanisms, we first must know where to
direct our curiosity: what (or where) are the "coinci-
dences" that require explanation? In the past this ques-
tion was given little attention, presumably because we
have never lacked for conspicuous regularities that need
explamiug. More to the point, before the computer age,
data collections of such size with so many variables did
not exist. Thus just noticing the regularities in the data
rarely exceeded our perceptual grasp.

Having motivated the problem, we now state it for-
really. Assume that we are given a database of M ob-
jects ~i, each of which is characterized by particular
values aij E Aj for each of N discrete-valued vari-
ables cj ("c" for column). A particular value for 
particular variable is an attribute and denoted at@cj.
We further assume that there is some "true" under-
lying probability distribution P0 which, for all orders
k = 1,2,..., N specifies the probabilities for each pos-
sible k-tuple of attributes. For example, for k = 1, we
have t)(ej) : .Aj [0, 1] .

Table 1 contains a sample dataset for M = 6 rows
(objects, transactions, records) and N = 6 columns
(variables, items, fields). Any multidimensional rela-
tional database can be represented in this simple two-
dimensional format by using some finite alphabet Aj
of discrete symbols to represent the different possible
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coll co12 co13 co14 co15 co16
A B C D E F
W U C V E G
Z L C M W M
V U C V A A
G B C D Z Z
W L C M E Z

Table 1: A toy dataset of M
columns.

= 6 rows and N = 6

(discrete or discretized) values for each of the the 
variables vj, represented as column cj. We use the
term "attribute" to mean a particular value for a par-
ticular variable. (This usage differs from that of some
groups, who use "attribute" for the variable itself and
write of "attribute-value pairs". Other groups use the
term "item" for our "attribute".) In this simplistic
example, the alphabet is the same for each variable.
It appears, that columns 2 and 4 are correlated, with
(B@2, D@4), (L@2, M@4) and (U@2, V@4) as the 
sociated attribute pairs.

There are essentially three possible goals of probabil-
ity density estimation:

1. Estimation of the fully-specified, fully higher-order
joint probability distribution: Estimate a probability
density q0 that closely approximates P0 and spec-
ifies q(~) = q(a~@c~,a~@cc~,...,a~.@c~.) for all k-
tuples c~ of attributes.

2. Hypothesis testing, for particular hypotheses con-
cerning particular variables or particular combina-
tions of variables or values: For example, are the
data consistent with the hypothesis that columns
c~, c~,..., c~ are independent? In database analysis,
one sometimes knows in advance which combinations
of variables are of interest in a particular application.

3. Feature detection, or "association mining": Detect
the most suspicious coincidences. For example, given
a real number 0 E [0, 1], return a list of all k-ary joint
attribute patterns

= (a~@c~, a~@c~,..., a~. @c~.) (1)
such that Prob(Observed(a) I Independent (c~,c~,
...,c~),A/[) < 0, for some Observed number 
occurrences of the pattern a and some model JM
which underlies one’s sampling and hypothesis test-
ing method. That is, find all combinations of at-
tributes which, under some sampling and counting
mechanism, are observed to occur significantly more
often than one would expect given only the marginal
probabilities of the individual attributes.

It has been noted (Lewis 1959; Ku & Kullback 1969;
Miller 1993) that one can approximate the full joint
distribution by use of maximum entropy assumptions

(mainly the inter-column independence assumption)
plus inclusion of a relatively few higher-order joint
probability terms which deviate from these assump-
tions. Hence, full joint modeling reduces to association
mining.

One cannot perform probability density estimation
or association mining by examination of all combi-
nations of variables. To test all possible k-tuples of
variables for "suspicious coincidences" requires at least

O(( Nk ).M)computational steps. To dothisforaU

2 < k _< N is an O(M2N) computation, because one
has to enumerate the powerset of a set of N columns.
This powerset expansion of all joint probability terms,
known variously as the full Gibbs model (Miller 1993)
or the Bahadur-Lazarsfeld expansion, makes any direct,
exhaustive approaches infeasible for all but the most
trivial datasets.

Over the last twenty years, several distinct alterna-
tive approaches to the detection of higher-order cor-
relations in multidimensional datasets have emerged.
One popular approach is to restrict in advance the
width of correlations sought, typically to k = 2 for
pairwise correlations or to k = 1 for no correla-
tions at all. This was the standard until a few years
ago in computational molecular biology (Staden 1984;
Korber et al. 1993), for example.

If one knows or assumes the variables to be sequen-
tially related, as in the speech recognition (Sankoff
et al. 1983) and macromolecular sequence analysis
applications, then one can consider correlations only
among sequential neighbors. This is the idea behind
both "n-gram" approaches and most grammar-based
approaches. Several groups have reported significant
success in modeling protein sequence families and con-
tinuous speech with Hidden Markov Models (HMMs)
(Krogh et al. 1994). For some of the same reasons
why HMMs are very good at aligning the sequences
in the first place, using local sequential correlations,
these methods are less useful for finding the important
sequence-distant correlations in data that has already
been partially or completely aligned. The phenomenon
responsible for this dilemma, termed "diffusion", is ex-
amined in some detail by Bengio and Frasconi (1995).
Essentially, a first-order HMM, by definition, assumes
independence among sequence columns, given a hidden
state sequence. Multiple alternative state sequences
can in principle be used to capture longer-range inter-
actions, but the number of these grows exponentially
with the number of k-tuples of correlated columns.

Many neural network architectures and learning
algorithms are able to capture higher-order rela-
tionships among their inputs (Becker & Plumbley
1996). MacKay’s "density networks", for example, use
Bayesian learning to build componential latent variable
models (MacKay 1994). However, the combinatorial
explosion of priors and hyper-priors that need to be set
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may severely limit the application of this method.

Coincidence Detection: A Novel
Association-Mining Method

Like HMMs and Gibbs models (Miller 1993), the
MacKay approach would benefit from a fast preprocess-
ing stage that could find candidate subsets of correlated
observable variables and allow one to pre-set some of
the priors (or HMM state transitions, or Gibbs poten-
tials) accordingly. Our Coincidence Detection method
is designed to get around the central obstacle to associa-
tion mining: we do not want to specify or limit, a priori,
the number of possible k-tuples of correlated columns,
the width k of any of them, or the degrees of correla-
tion involved; and yet we do not want to explicitly rep-
resent and process latent variables or parameters for
the exponentially-many possible k-tuples. Therefore,
the method nmst be able to recognize the occurrence
of patterns that provide evidence for k-ary correlations
whenever they arise, and to analyze such patterns only
when they arise -- rather than set up data structures
for higher-order patterns that may not ever appear.

A coincidence is defined as the absolute association of
two or more attributes across a subset of observations
(records), whereby whenever one attribute is present
in a data record, so too will be the other attributes in
this coincidence set (cset), and whenever any of these
attributes is absent from a record, so also will be the
other attributes in the cset. A cset is therefore a k-
tuple of attributes found to exhibit absolute association
within a certain set of records. If the records are taken
to be rows of a data matrix, and attributes appear in
columns, and the occurrence ("incidence") of a partic-
ular attribute in a data record is marked by a 1 and its
absence by 0, a cset would be any subset of columns all
of whose binary incidence vectors are identical.

All else being equal, the smaller the subset of records
in question, the more such coincidences we would ex-
pect to occur. We might also expect that csets will
tend to be of greater arity or "width" (larger k-tuples)
in smaller sets of records than would be the case in sam-
ples involving a greater number of observations, since
with each additional record there are more opportuni-
ties for at least one attribute to fail to coincide with
the other k - 1 attributes making up a given cset. And,
as one would expect, the smaller the sample size, the
more likely it is that many of the "coincidences" will
turn out to be spurious or accidental.

Absolute association, or coincidence, has two virtues
that recommend it as a basis for statistical computa-
tions: (1) It is applicable to greater than pairwise cor-
relations or interactions; and (2) It can be detected
automatically - it is not necessary to test every possi-
ble k-tuple of attributes in order to determine which k-
tuples are coincident. However, to be useful, a measure
of statistical association should recognize degrees of as-
sociation. Moreover, there needs to be a means of dis-

tinguishing spurious from significant coincidences. We
can make good these omissions by resampling - taking
numerous random subsets from the database of obser-
vations (sampling with replacement), and counting how
many times, out of the total number of trials, particu-
lar csets occur. Over the course of the resampling trials
many csets will be collected, and some will be found to
recur in a large proportion of the samples. The candi-
date csets can be tested for statistical significance by
comparing their expected frequencies (predicted from
the known frequencies of their individual component
attributes in the database) with the frequencies actu-
ally observed. Significance and confidence levels can be
estimated by standard methods, e.g., Bernoulli’s theo-
rem, Chernoff-Hoeffding bounds, or mutual information
(Kutlback-Liebler distance).

The coincidence detection procedure rests on the sim-
ple principle that global and partial association can be
inferred from local and exact matches in random sub-
sets of the data set. hfferring the probability of an
attribute in a larger population from its observed fre-
quency in many randomly chosen smaller subpopula-
tions is of course the foundation of classical sampling
theory. Coincidence detection differs insofar as its in-
terest is with finding "knots" of interacting attributes
that might only appear in a relatively small proportion
of the data records but whose mutual correlation is,
with respect to their expected correlation, surprisingly
high.

Outline of Procedure

One simple variant of the Coincidence Detection
method has four basic components:
Representation: The occurrences of an attribute in
a set of records are summarized in a binary incidence
vector. An incidence vector of length r has a 1 in the
ith position iff the corresponding attribute, e.g., B@2,
occurs in the ith record in the set.
Sampling: Take r records at a time, from a uniform
distribution.
Binning, and Coincidence Detection: For each
sampling iteration, throw the attributes into bins, ac-
cording to their incidence vectors. These vectors act
like r-bit addresses into a very sparse subset of 2~ ad-
dress space. All the attributes in one bin constitute a
coincidence set, or cset. Record the cset and the num-
ber h:0_< h <r of occurrences. (Note that histhe
number of l’s in the incidence vector "address".)
Hypothesis Tests: After T iterations of sampling and
binning, compare the observed number of occurrences
of each cset with the number expected under the null
hypothesis of statistically independent columns. The
basis for the "expected" part of the hypothesis test is
the probability of a match, or coincidence, of size h in a
given r-sample for a cset a, as defined in Equation (1):

f,~.t~h (e, h, r)
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rt _ .
- h!(r-- h)!p(a)hp(a~@c~’’"

where the joint probability terms reflect the indepen-
dence assumption:

k

p(a~@c~,...,a~@c~) = H p(a~@c~)
l=1

k

= 1](1-
/=1

and 5 means the appearance of any symbol other than
a. A Chernoff-Hoeffding bound (Hoeffding 1963) 
used to implement the hypothesis testing, and so our
procedure produces an estimate of the probability p* of
seeing hobs occurrences of a cset a when the marginal
probabilities of the components, and the independence
assumption, predict only ne=p occurrences. Finally, the
list of observed csets is sorted by their p* values, and the
procedure returns a small list of only the most "inter-
esting" or "surprising" higher-order features, e.g., those
which have p* < 0.001.

How does one go about deciding whether or not to
accept a cset as suspicious, on the basis of T, hobs and
ne=p? Let random variable Xi hold the value hi for each

iteration i, and let X = ~T=I Xi, and note that 0 <
X < T - r. The method of Chernoff-Hoeffding bounds
(Hoeffding 1963) provides the following theorem:

Let X = Xx + X2 + ... + X,~ be the sum of n inde-
pendent random variables, where li <_ Xi < ui for reals
li ("lower") and ui ("upper").

Then
-252Prob[Z - E[X] > 5] < exp(-~i(u i- _ li)2 ). (2)

For our purposes, we set n = T and li -= 0 and ui -- r
for all i = 1, 2,... ,T, and we thereby obtain

-252
Prob[nobs - n~zp > 5] < exp(-~-~r2 ). (3)

A pictorial representation of the main steps in the
algorithm, .using the example introduced in Table 1, is
presented in Figure 1: two iterations of the r-sampling
(for r = 3) on the toy dataset are depicted, top 
bottom. For each iteration, the left-hand box repre-
sents the dataset, with outlined entries representing the
sampled rows. The right-hand-box represents the set
of bins into which the attributes collide. For example,
in the first iteration, B@2 and D@4 both occur in the
first and second of the three sampled rows, so they each
have incidence vector 110 and collide in the bin labelled
by that binary address. Bins containing only a single
attribute are ignored; and "empty" bins are never cre-
ated at all. All bins are cleared and removed after each
iteration, but collisions (coincidences) are recorded 
the Csets global data structure. Arrows indicate coin-
cidences that involve the known-correlated columns 2
and 4.
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Figure 1: Operation of the Coincidence Detection
Method.

An outline of the basic coincidence detection proce-
dure is shown in Figure 2.

Complexity and Error Estimates

The coincidence detection procedure described above
is a heuristic, randomized probabilistic approximation
algorithm. Like all such algorithms, it does not lend
itself to easy analysis, because many of the operations
depend on the particular distribution of objects in the
dataset. In this section, we estimate some bounds on
the time, space, and data complexity of the method in
terms of two distribution-dependent parameters L and
T. We then present derivations and arguments for par-
ticular estimates of the expected values of those cru-
cial parameters under some very broad distributional
assumptions. Ultimately, however, precise analyses of
the behavior of the method can be formulated only from
empirical testing on a wide range of real and synthetic
datasets from the various application domains. Some
such testing is reported below.

Sample Complexity

The Chernoff-Hoeffding formulation of our hypothesis
tests provides simple insights into the sample complex-
ity of the procedure. Suppose some desired confidence
level P* is fixed in advance; by algebraic rearrangement
of Inequality 3 given above, and by using the fact that
E[X] = T. E[h], we obtain estimates for the necessary
number T* of r-samples:

- logP*r 2 + 4XE[h]
T*

4E[h]2

-~ (- log P*r2 (- log P*r2 + SXE[h]))1/2
4E[h]2

(4)
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Procedure to find suspicious coincidences:
0. begin
1. read(DATASET);
2. read(R, T);
3. compute_first_order_marginals(DATASET);
4. csets := {};
5. for iter = 1 to T do
6. sampled_data := rsample(R, DATASET);
7. attributes := get_attributes(sampled_data);
8. all_coincidences := find_all_coincidences(attributes);
9. for coincidence in all_coincidences do
10. if cset_already_exists(coincidence, csets)
11. then update_cset(coincidence, csets);
12. else add_new_cset(coincidence, csets);
13. endif
14. endfor

/* Line 15 Optional */
15.* csets := cull_uninteresting_csets(csets);
16. endfor
17. for cset in csets do
18. expected :=

compute_expected_match_frequency(cset);
19. observed := get_observed_match3"requency(cset);
20. stats :=

update_stats(cset,hypoth_test (expected,observed));
21. endfor
22. print_final_stats(csets, stats);
23. end

Figure 2: The logical structure of a simple variant of
the Coincidence Detection method is illustrated above.

T* therefore grows with the negative log of the confi-
dence level, which in our formulation is given in terms
of the likelihood of the observed data given the inter-
colunm independence assuinption. This logarithmic
sample complexity is fairly typical for algorithms em-
ploying random sampling and tail probability bounds.

Time and Space Complexity

Straightforward analysis of the steps of the algorithm
in Figure 2 suggests a reasonable estimate of the overall
asymptotic time complexity of the method is O(MN 
T(rN +log L,) +LT), where L, is the average size of the
csets table over the T iterations and LT is the final size.
The space complexity can be estimated at O(MN + L),
where L is shorthand for both L. and LT.

The numbers M and N are typically fixed for the par-
ticular application. The more interesting components
in the complexity estimates are L and T. L depends
crucially on the distribution and degrees of correlation
of variables in the dataset. T depends on the user-
defined desired levels of accuracy, as well as on M and
N We explore the possible ranges of L and T in the
following section.

Estimating E[L], the Expected Size of the
Cset Table

Although trivial proofs of meaningless bounds are pos-
sible, it is not possible to prove tight bounds without
data distribution assumptions. In some applications,
such restrictive assumptions may be possible a~ld jus-
tified. However, generally we must focus on empirical
testing. (Please see (Steeg 1996) and forthcoming 
pers for deeper analysis.)

We performed a set of experiments to observe how
the number of stored csets grows as a function of the
number of iterations T and the number of variables
N. An attempt was made to observe in particular
the worst-case behavior, with the assumption that L
is maximal when the columns in the dataset are all
mutually independent. (Dependencies imply redun-
dancy, meaning that the same coincidences occur of-
ten; whereas for independent columns the attribute co-
incidences occur haphazardly and we would therefore
expect more distinct coincidences to occur and hence
more csets to be stored over the many iterations of
sampling and binning. Alphabet size also plays a role:
smaller alphabets tend to produce fewer, wider csets).

Four datasets of independent columns were generated
and tested. The datasets had 50, 100, 200, and 500
columns. Each dataset contained 1000 rows and each
column in every dataset was generated independently
from a reasonable non-uniform distribution. Tests were
also performed on a database of HIV protein sequences,
as part of a protein structure prediction project de-
scribed in (Steeg 1996; Steeg & Pham 1998).

Figure 3 shows a plot of the growth of L as a function
of iteration number t, for N = 200, r = 7 and T =
10,000 iterations. A linear function, interpolated from
a t ..~ 100 neighborhood within the run, is also plotted
for reference and comparison with the plot of L(t).

The important result observed in Figure 3 is the sub-
linear growth of L. One might well imagine worst-case
scenarios involving an exponential explosion of csets.
Not only is the growth in csets better than exponen-
tial, it is better than linear. This would seem to bode
well for practical application of coincidence detection
procedures. As expected, the cset growth functions for
these pathological datasets are closer to linearity than
we observe for the real-world datasets that we have ex-
alnined. The reader may check this by examining Fig-
ure 4, which pertains to the HIV datasets. Further
discussion of this is found in (Steeg 1996).

Another important result is the sublinear growth of
L as a function of N, the number of columns. Figure
5 illustrates clearly that exponential blowup and even
"linear blowup" scenarios are overly pessimistic.

Analysis of Error in the Method -- Types,
Probability, and Bounds

There is a complex space of tradeoffs linking the size
r of samples, number T of samples, and the relative
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Figure 3: This plot illustrates L(t), the size of the Csets
data structure in our coincidence detection procedure,
as a function of the number of r-sample iterations, for
a dataset consisting of 200 independent columns. The
parameter setting r = 7 was used. A linear plot is
shown for comparison.

Figure 5: Plotted above is L(N) for N Independent
Columns. Sub-linear growth of L, the number of
stored csets, as a function of N, the number of column
variables, is observed when the number of iterations
T = 10,000 is held constant.
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Figure 4: Plotted above is L(t) for the HIV protein
sequence dataset, r = 7 was used for this experiment.

risks of different types of error. First, intuitively: the
larger the number T of samples, the smaller is the risk of
overlooking the occurrences of a particular joint symbol
occurrence. The smaller the sample size r, the smaller
is this risk, too. Of course, a high level or small granu-
larity of sampling has a cost: large T and small r raise
the expected time and space complexity because they
increase the expected size of the stored table of provi-
sionally accepted csets.

In order to explore such issues more rigorously, it is
first necessary to understand the coincidence detection
procedure in terms of the three distinct levels of random
sampling:

Level 1: The database itself: We may consider the M
records to have been drawn from some larger underlying
population of Matt objects. Alternative assumptions
include larger but finite Matt, infinite Matt, and the
case wherein Matt = M (i.e., the database is all there

is).
Level 2: The r-sampling: r objects are drawn,

randomly and identically distributed, without replace-
ment, from the M objects in the database.

Level 3: The T iterations: The outer loop of the
procedure iterates over many r-sample events, and
records information on the outcomes. In the currently-
described version of the algorithm, these r-sample
draws are made, independently and identically dis-
tributed, with replacement. The process is modeled
by a multinomial distribution.

Error may be injected at any or all levels of the pro-
cedure, and this greatly complicates any error analy-
sis. In particular, the method requires and makes es-
timates of probabilities at the first and third levels of
sampling: estimates of first-order marginal probabili-
ties of attributes are made at Level 1; and estimates of
the total count of joint attribute coincidences are made
at Level 3. In practice it is often convenient to make a
few explicit simplifying assumptions, one of which is the
treatment of the error at Level 1 as independent from
error at Level 3. For example, in assessing the error in
higher-order joint probability estimates due to the iter-
ation of r-sampling and binning, one might assume that
the single-attribute marginal probabilities input to the
procedure are correct. Our sampling procedures are as
vulnerable to the problems of truly small dataset sizes
as any other estimation procedure; we are currently
developing a formulation which treats the Coincidence
Detection output as a simple statistic within a Bayesian
framework that provides for principled, optimal small-
sample corrections and automatic selection of values for
parameters r and T.

False Negatives: The Masking Problem The ver-
sion of the coincidence detection method described thus
far is particularly prone to a specific kind of false nega-
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rive error. While the expected number of coincidences
for a given cset a predicts the number of all occurrences
of the a, the procedure’s count of observed coincidences
reflects only those instances where the component at-
tributes of (~ occur alone together. That is, if c~ is
defined as in Equation(l), then an observed bin con-
taining just a gets counted towards a’s occurrence to-
tal, whereas a bin containing a along with a’@c’ does
not. Therefore, the support for a’s "suspiciousness" is
underestimated. For a rough estimate of the severity of
the problem, consider the following simplified scenario.
A dataset with a cset ~ and all other n = N- k columns
independent, is r-sampled for T iterations. Suppose c~
occurs as a coincidence in a particular iteration. Hence
it has a binary incidence vector of length r with some
number h of l’s and r-h O’s. Let us pretend for the sake
of simplicity that we have only binary attributes and let
us ignore different individual attribute probabilities --
this will not significantly affect the asymptotic results
derived. The probability that some other attribute a
will have an incidence vector exactly matching that of

is Pmatch = ~. The probability that it will not match

is P,,o = 1 - ~, and the probability that no such at-
tribute a will co-occur exactly with a in this r-sample
iteration is therefore P,~one = (1- ~, )N. Finally, the
probability that some other attribute or attributes will
coincide with c~ in this iteration is

This estimate is sobering; it means that the propor-
tion of coincidences that we are blocked fi’om observ-
ing, with the simple version of coincidence detection
presented in this thesis, grows very fast as the number
of columns grows. These are illustrated in Figure 6.
Note that the expansion of (1 - ~)n, followed by a few
simple algebraic steps, makes it clear that the Psome is

’~ This tells us, for example,dominated by a term ~-.
and so ifthat if we set r = 10, then Psome ~ 1"6"6"6,

N > 500 variables, then a particular interesting cset
may be missed in about one half of all smnples. One
would do well to use a bigger r value and/or perform
more sampling. Another solution is to maintain the
Csets table in a lattice structure, so that increments
made to the stored count for a cset are also propa-
gated to its lower-dimensional component csets. Again,
the theoretical worst case of exponential blow-up makes
its appearance, though this scheme may be efficient in
practice.

The good news is that the rate of growth of this mask-
ing problem is dependent upon the sample-size parame-
ter r: higher r makes for less masking, and hence fewer
extra samples are required to separate signal from noise
-- though one has to ensure the r < < M. This relation-
ship of result quality to choice of r is apparent in our
empirical testing thus far. In our tests on the specially-
constructed data, and on the HIV protein data, the
masking problem has not obstructed us unreasonably

for the values of r and N used.

Discussion and Future Work
Modelers of very large data sets, (e.g., census data or
text corpora) are thwarted in their attempts to compute
very far into a fully higher-order probabilistic model
by both the computational complexity of the task and
by the tack of data needed to support statistically sig-
nificant estimates of most of the higher-order terms.
One reasonable and common solution to this problem
is to compute only a subset of higher-order probabili-
ties, and extract a limited selection of higher-order fea-
tures for construction of a database model. That is our
approach. We suggest that efficient use can be made
of limited computing resources by pre-selecting sets of
higher-order associations using the coincidence detec-
tion algorithm described in this paper, and building
the most significant into query tools and model-based
classifiers and predictors based on existing statistical,
rule-based, neural network or other methods.

A unique strength of the Coincidence Detection
method is that it can discover, e.g., 41-ary correlations
in the same time it takes to find pairwise correlations
of equal statistical significance. This is in contrast with
another class of association mining algorithms (Agrawal
et al.: 1996; Toivonen 1996) that has provided rule-
based system developers with a way to attack large
multidimensional datasets. These other methods build
wide associations (large k) incrementally from narrower
ones. Our method provides an interesting alternative
for more exploratory analysis and discovery. An anal-
ogy may be helpful here: One set of methods (Agrawal
et al. 1996; Toivonen 1996) is like those image com-
pression and transmission methods which make a down-
loaded image appear on your screen one line at a time,
top to bottom. Our method, on the other hand, is
more akin to image transmission wherein the whole pic-
ture appears on your screen immediately, but at a low
resolution which becomes clearer as the downloading
proceeds. Another difference is that these incremen-
tal methods are designed to discover the most frequent
associations, in which, for example, p(A),p(B), and
p(A,B) are all high; whereas our Coincidence Detec-
tion method is designed to discover the most surprising
associations, in which p(A, B) >> p(A)p(B). It must be
noted that additional analysis is required to turn k-ary
associations into directional rules of the form A -+ B,
and to turn an initial set of rules into an optimal ruleset.
However, such analysis is made much more tractable
once the essential higher-order structure of the data -
the cliques of correlated variables - is discovered.

Our method also requires no assumptions about the
number, size or sequential separation of the hidden
higher-order features in the data. However, the rela-
tive advantage of our method is greatest on datasets
in which there exist very strong and significant inter-
attribute correlations, of whatever widths 2 < k < N.
The method is at a disadvantage when applied to data

118 Steeg



Estimated Probability of a Cset Being Masked

/Nulnfl~er of columns N
5O

Sampling size r

Figure 6: Shown above is a 3D plot of the estimated probability of a typical cset (correlated k-tuple of attributes)
being masked in a given r-sample, as a function of r and N. Note that for higher values of r the probability of this
particular kind of error is minimized.

with no correlations, or very weak ones; in such cases,
the number of sampling iterations needed before corre-
lations are detected, or before they can be ruled out,
may be prohibitive.

The simplest, most naive version of the procedure
was shown to perform well in practice at finding highly-
correlated attributes, with observed time and space
complexity better than linear in M and N. Fur-
ther analysis, on a wide variety of different datasets
with very different underlying probability distributions
should produce a richer collection of results, provid-
ing a deeper understanding of the relative merits of
various procedures and assumptions in various applica-
tions. We are currently applying our methods to pro-
tein sequence analysis and structure modeling, as well
as to sever4ul other applications in medicine, business
and engineering. We are also developing very fast par-
aUel hardware implementations, in general and special-
purpose configurations.
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