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Abstract

Standard predictive data mining techniques operate on
the implicit assumption of random sampling, but data
bases seldomly contain random samples from the pop-
ulation of interest. This is not surprising, considering
company data bases are primarily maintained to sup-
port vital business processes, rather than for the pur-
pose of analysis. The bias present in many data bases
poses a major threat to the validity of data mining re-
sults. ~Ve focus on a form of selectivity bias that occurs
frequently in applications of data mining to scoring.
Our approach is illustrated on a credit data base of a
large Dutch bank, containing financial data of compa-
nies that applied for a loan, as well as a class label
indicating the repayment behavior of accepted appli-
cants. With respect to the missing class labels of the
rejected applicants, we argue that the missing at ron-
dom (MAR) case becomes increasingly important, be-
cause many banks nowadays use formal selection mod-
els. The classification problem is modeled with mix-
ture distributions, using likelihood-based inference via
the EM-algorithm. Since the distribution of financial
ratios is notably non-normal, class-conditional densi-
ties are modeled by mixtures of normal components as
well. The analysis shows that mixtures of two normal
components usually give a satisfactory fit to the within-
class empirical distribution of the ratios. The results of
our comparative study show the selectivity bias caused
by ignoring the rejects in the learning process.

Introduction

Standard predictive data mining techniques operate on
the implicit assumption of random sampling, but data
bases seldomly contain random samples from the pop-
ulation of interest. This is not surprising, considering
the fact that company data bases are maintained pri-
marily to support vital business processes, rather than
to perform data mining analyses. The bias present in
many data bases poses a major threat to the validity of
data mining results.

Consider the following example to illustrate the prob-
lem. A direct marketing bank receives both written and
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telephonic loan applications. The data of written appli-
cations are always entered into the data base, regardless
of whether the loan is accepted or rejected. In case of
a telephonic application however, the data of the ap-
plicant are not always entered into the data base. If
the bank employee quickly finds out that the applicant
cannot be accepted, the conversation is usually ended
without the data being entered. This allows the bank
employee to help more clients, but clearly data quality
suffers.

There is no generally applicable method to correct
for the multitude of biases that may occur. Instead,
we focus on a particular form of bias that frequently
occurs, particularly in applications of data mining to
scoring.

In credit scoring, loan applicants are either rejected
or accepted depending on characteristics of the appli-
cant such as age, income and marital status. Repay-
ment behaviour of the accepted applicants is observed
by the creditor, usually leading to a classification as ei-
ther a good or bad (defaulted) loan. As repayment be-
haviour of rejects is for obvious reasons not observed,
complete data is available only for accepted applicants.
Since the creditor does not accept applicants at ran-
dom, this constitutes a non-random sample from the
population of interest. Construction of a classification
rule based on accepted applicants only, may therefore
lead to invalid results. This is, in a nutshell, what is
called the reject inference problem in the credit scoring
literature.

In the next section we formulate reject inference as
a problem of learning with missing data. Subsequently,
we discuss the analysis of a credit data base of a large
Dutch bank, using mixture modeling. We compare the
results obtained by using reject inference, to those us-
ing standard supervised learning techniques. Finally we
draw a number of conclusions, and indicate some topics
for further research.

Credit scoring and missing data

In order to structure the following discussion, we distin-
guish between two stages in the credit scoring proces.
The first stage is the selection mechanism that deter-
mines whether an applicant is rejected or accepted by
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tile bank. The second stage is the outcome mechanism
that determines the response of the selected cases. \Ve
also refer to tile first stage as tile missing=data mecha-
nism, since it. determines for which cases the response
is observed in the next stage. Our primary interest is
to model tile outcome mechanism.

We assume some set of variables X is completely ob-
served, and the class label Y is missing for the rejected
applicants. Following the classification used in (Little
& Rubin 1987), we distinguish between the following
situations.

Missing completely at random
The probability that Y is missing is independent of X
and Y. We don’t consider this case any further here,
since it would only apply if the bank were to accept
applications at random.

Missing at random
The probability that Y is missing depends on X but
not on Y. This situation frequently occurs in practice,
since many credit institutions nowadays use a formal se-
lection model. In that case, Y is observed only if some
function of variables occurring in X exceeds a threshold
value, say f (Xs) > c, where X~ C X. The missing-data
mechanism is ignorable for likelihood based inference.
The use of standard supervised learning techniques, ig-
noring the rejected cases altogether, may lead to invalid
results however (Hand & Henley 1993).

Non-ignorably missing
The missing-data mechanism is non-ignorable when it
depends on Z, which includes variables not contained in
X. If the variables in Z supply any ’extra’ informatiou
about class nmmbership, then the probability that Y is
missing (given X), depends on Y as well. This typically
occurs when selection is partly based on characteristics
that are not recorded in X, for example the ’general
impression’ that the loan officer has of the applicant. It
may also occur when a formal selection model is used,
but is frequently ’overruled’ by a loan officer on the
basis of characteristics not recorded in X.

It is required to model the selection mechanism as
well as tile outcome mechanism. For nlethods appli-
cable to scoring when the selection mechanism is non-
ignorable, we refer the reader to (Boyes, Hoffman, 
Low 1989; Copas & Li 1997).

Analysis and Modeling of credit data
hi this section we discuss the analysis of a credit data set
from a large Dutch bank. Since the use of real rejected
applications would make model evaluation inlpossible,
we used accepted applications only, and created a real-
istic selection criterion. As remarked by Hand (Hand
1997), unclassified observations can only help in esti-
mating the outcome mechanism if global pm’ametric
forms are assumed for the class-conditional distribu-
tions. We use mixture distributions (McLachlan & Bas-
ford 1988) to model the outcome mechanism.

200 Feelders

Data description and study design

The data base consists of about 11,000 records contain-
ing financial data over the )’ear 1992 of companies from
several industry branches. All these companies succes-
full)’ applied for a loan of 5 million dutch guilders max-
imum somewhere before 1992. Companies in the loan
portfolio are periodically evaluated by the bank, and
receive a rating from 1 to 7, the lower rating indicating
the better credit risk. For the purpose of this study we
used data flom the retail branch, consisting of about
2,400 records.

In addition to the financial data over 1992, the data
base contains two such ratings for each company: one
for the year ’92 and one for ’94. An artificial group of
’rejected applications’ was created using the 1992 rat-
ing: companies having ratings _> 5 were considered to
be rejected. Consequently, their credit rating in 1994
was pretended to be unknown, and was actually only
supplied to us by the bank after the modeling stage.
The class label assigned to the accepted loans was de-
rived from the credit rating in ’94, with ratings < 5
receiving the label ’Good’, and ratings _> 5 receiving
the label ’Bad’. The rating in 1992 represents the se-
lection mechanism, and the 1994 rating represents the
outcome. The problem then is to predict the outcome,
on the basis of financial data of two ),ears before.

We are particularly interested in the improvement in
predictive performance that may be obtained by includ-
ing the rejects in the analysis. To this end we compare
the performance of a model estimated on the accepted
loans only, to a model estimated on the accepted and
rejected loans together.

Modeling the outcome

For our analysis, we focused on two financial ratios,
debt ratio and working capital/total assets, denoted
by Xa, and X2. Initially, we worked with the data of
known classification; that is, with the loans which had
a known class label of good or bad. An inspection of
the histograms of these two variables for the good and
bad group of loans considered separately suggests that
the group-conditional (marginal) distributions of these
variables are non-normal. Consequently, we adopted
a mixture of 9 normal component densities with un-
equal variances and covariances to model the joint dis-
tribution of these variables. It was concluded that a
mixture of g = 2 normal components suffices for this
purpose. To illustrate the good fit provided by the
two-component normal mixture models to the initially
classified groups of good and bad loans, we have plot-
ted for the first variable the fitted mixture cumulative
distribution function (CDF) versus the empirical CDF
in Figure 1 and 2, corresponding to the good and bad
loans, respectively.

In the sequel therefore, the distribution of the vector
X = (X~, X2)T for the class of good loans is modeled
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Figure h Fitted (thick line) and empirical (dotted line)
cdf of debt ratio for good loans

Figure 2: Fitted and empirical (dotted line) cdf of debt
ratio for bad loans

as
2

fl(x) = ~Trlh¢(X; IZlh, Y]lh), (1)

h=l

where ¢(x; #, E) denotes the (bivariate) normal density
with mean # and covariance matrix E, and where ~rl,
and ~r,2 denote the mixing proportions, which are non-
negative and sum to one. The corresponding mixture
distribution for the class of bad loans is

2

f2(~) : ~h¢(x; mh, r~h). (2)
h:l

In order to include the rejects in our analysis, we
fitted the four-component normal mixture model

2

f( x) = Z Tcifi(x) (n)
i=1

2 2

--- ~ ~ri{Z ~rih¢(Z; #ih, Eih)}, (4)
i----1 h=l

where 7rl and 7r2 = 1 - ~rl denote the proportion of good
and bad loans. The mixture model (4) was fitted 
maximum likelihood via the EM algorithm of (Demp-
ster, Laird, & Rubin 1977) to all the data, including
the rejects; see also (McLachlan & Krishnan 1997) for
a recent account of the EM algorithm.

Results of the analysis
In Table 1, we have listed the estimated means, vari-
ances, and mixing proportions of the four components
in the normal mixture model (4), as obtained on the
basis of accepted (classified) and rejected (unclassified)
loans. In Table 2 we listed the estimates obtained on
the accepted loans only, and Table 3 contains the es-
timates obtained on the complete data, including the

mixing mean variance
component proportions Xx X2 XI X2
11 (good) 0-804 0.358 0.170 0.058 0.062
12 (good) 0.046 -0.320 -0.300 0.092 0.143
21 (bad) 0.140 0.165 0.015 0.007 0.083
22 (bad) 0.010 -0.440 -0.474 0.079 0.104

Table h Component estimates including rejects

true class label of the rejects. To illustrate the bias in
the estimates obtained by working with just the data on
the initially classified loans, we have plotted for the first
variable in Figure 3, the estimate of the two-component
normal mixture density (1) for the class of good loans,
along with the estimated density obtained by working
with just the initially classified group of good loans.

In Figure 4, we give the corresponding plot for the
bad loans. In practice, the classification of the rejected
loans is unknown. But for the data under analysis
here, we do know their true classification. Hence to
illustrate how effectively the unclassified data on the
rejects has been used in forming the estimates of the
class-conditional densities, we have plotted in Figure 5
the density estimates based on all the good loans (that
is, both initial and those in the rejects) along with the
estimate based on the initially classified loans and the
rejects. The plots of the corresponding estimates for the
density of a bad loan is given in Figure 6. The good
agreement between these latter two estimates loans is

mixing mean variance
component proportions
11 (good) 0.965 0.373 ] 0.180
12 (good) 0.035 -0.303 ] -0.274

21 (bad) 09. 10.2051 0.03910.05810.081
22 (bad) 0.046 -0.432 -0.396 0.090 0.125

Table 2: Component estimates on accepted loans
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mixing llleall variance
conlponent proportions X1 ] X-2
11 (good) 0.956 XI0.365 X20.174 0.056 0.061
12 (good) 0.044 -0.284

[
0.285 0.095 0.131

21 (bad) o.903 10.,,51_0.01310.0,010.00.1
"2"2 (bad) 0.037 -0.717 -0.597 0.020 0.100

Table 3: Component estimates on complete data

encouraging.
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Figure 3: Estimated density of debt ratio of good loans
with (thick) and without (dotted) rejects

We let rt be the allocation rule based on just the
initially classified loans, and r.2 the rule based on all the
data (initially classified loans plus rejects). These rules
are formed by replacing tile unknown parameters with
their estimates in the Bayes allocation rule, where an
observation is assigned to the class to which it has the
highest posterior probability of belonging. On applying
these two rules to the rejects, it was found that both
rules allocated all the rejected loans to the good class.
Hence the bad loans among the rejected loans were all
misallocated. As the prior probability for the class of
good loans is so much greater than that for the class of
bad loans, the observed data on a loan has to have a
very small density in the good class for it to be assigned
to the bad class.

Although the two rules rl and r., give the same out-
right assignment of the rejected loans, the estimates of
the posterior probabilities of class membership tend to
be better for the second method that uses all the data
rather than for the first method that uses the data on
just the initially classified loans. A general measure for
the fit of the estimated posterior probabilities of the
rejects is cross-entropy, defined as follows

E = - E t’qn(y") + (1 - tn)ln(1 
.’l

where t" = 1 for good loans and t" = 0 for bad loans,
and yn is the estimated posterior probability of a good

5.72’7 -6.477 -0.227 ;.52-’ 0.273 c,.523 G.77~

Figure 4: Estimated density of debt ratio of bad loans
with (thick) and without (clotted) rejects

Method Rejects All loans
Accepts only 185.96 958.84
Accepts and rejects 184.23 956.50
Complete data 158.10 939.92

Table 4: Cross-entropy on rejects and all loans

loan. The results are depicted in Table 4, with lower
values indicating a better fit.

The leftmost colnnm of Table 4 indicates which data
have been used to fit the model. Cohmm 2 and 3 indi-
cate the cross-entropy of the fitted model on the rejects
and all loans rest)ectively. The overall conclusion is that
including the unclassified rejects gives a slightly better
model fit than the fit obtained when ignoring them al-
together. Both models are however clearly worse than
the model fitted on the complete data.

Conclusions and further research

We presented a mixture modeling apt)roach to learn-
ing fi’om data that suffer fiom a fi’equently occurring
form of selectivity bias. Analysis of a credit data set
demonstrated the bias resulting fi’om ignoring the un-
classified cases. Inclusion of the rejects gave slightly
better results, but there clearly is scope for further im-
provement. We showed that the distribution of financial
ratios can often be modeled adequately by a mixture
of two normal components. This result may be of in-
terest to other applications of data mining in finance,
for example bankruptcy prediction models. It should
be noted however that in credit scoring attributes are
often discrete, and in that case the proper choice of
parametric form is more problematic (Hand 1997). The
approach suggested by (Lawrence & Krzanowski 1996)
appears to be an interesting line of research here.
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Figure 5: Estimated density of debt ratio of good loans
with complete (dotted) and incomplete (thick) 

References

Boyes, W.; Hoffman, D.; and Low, S. 1989. An econo-
metric analysis of the bank credit scoring problem.
Journal of Econometrics 40:3-14.
Copas, J., and Li, H. 1997. Inference for non-random
samples. Journal o/ the Royal Statistical Society B
59(1):55-95.
Dempster, A.; Laird, N.; and Rubin, D. 1977. Max-
imum likelihood from incomplete data via the em al-
gorithm. Journal o/ the Royal Statistical Society B
39:1-38.

Hand, D., and Henley, W. 1993. Can reject inference
ever work? IMA Journal of Mathematics Applied in
Business and Industry 5(4):45-55.

Hand, D. J. 1997. Construction and Assessment of
Classification Rules. Chichester: John Wiley.

Lawrence, C., and Krzanowski, W. 1996. Mixture
separation for mixed-mode data. Statistics and Com-
puting 6:85-92.
Little, R. J., and Rubin, D. B. 1987. Statistical analy-
sis with missing data. New York: John Wiley &: Sons.

McLachlan, G. J., and Basford, K. E. 1988. Mixture
models, in/erence and applications to clustering. New
York: Marcel Dekker.

McLachlan, G., and Krishnan, T. 1997. The EM Al-
gorithm and Extensions¯ New York: John Wiley.

1.4

1.2

1

0.S

0.6

0.4

9.2

-0.727 0.477 -0.227 9.023 0.273 0.523 0.773
X

Figure 6: Estimated density of debt ratio of bad loans
with complete (dotted) and incomplete (thick) 

KDD-98 203


