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Abstract

"One person’s noise is another person’s signal.”
For many applications, including the detection of
credit card frauds and the monitoring of criminal
activities in electronic commerce, an important
knowledge discovery problem is the detection of
exceptional/outlying events.

In computational statistics, a depth-based ap-
proach detects outlying data points in a 2-D
dataset by, based on some definition of depth, or-
ganizing the data points in layers, with the expec-
tation that shallow layers are more likely to con-
tain outlying points than are the deep layers. One
robust notion of depth, called depth contours, was
introduced by Tukey. ISODEPTH, developed by
Ruts and Rousseeuw, is an algorithm that com-
putes 2-D depth contours.

In this paper, we give a fast algorithm, FDC,
which computes the first & 2-D depth contours
by restricting the computation to a small selected
subset of data points, instead of examining all
data points. Consequently, FDC scales up much
better than ISODEPTH. Also, while ISODEPTH
relies on the non-existence of collinear points,
FDC is robust against collinear points.
Keywords: depth contours, computational
statistics, convex hulls

Introduction

Knowledge discovery tasks fall into four general cat-
egories: (a) dependency detection, (b) class identifi-
cation, (c) class description, and (d) exception/outlier
detection. The first three categories correspond to pat-
terns that apply to many, or a large percentage of,
objects in the dataset. The fourth category, in con-
trast, focuses on a very small percentage of data ob-
Jects, which is often ignored or discarded as noise. Some
existing algorithms in machine learning and data min-
ing have considered outliers, but only to the extent of
tolerating them in whatever the algorithms are sup-
posed to do (Angluin & Laird 1988; Ester et al. 1996;
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Ng & Han 1994; Zhang, Ramakrishnan, & Livny 1996).
However, “one person’s noise is another person’s sig-
nal.” Indeed, for some applications, the rare events are
often more interesting than the common ones, from a
knowledge discovery standpoint. Sample applications
include the detection of credit card fraud and the mon-
itoring of criminal activities in electronic commerce.

Most of the existing works on outlier detection
lies in the field of statistics (Barnett & Lewis 1994;
Hawkins 1980). While there is no single, generally ac-
cepted, formal definition of an outlier, Hawkins’ def-
inition captures the spirit: “an outlier is an observa-
tion that deviates so much from other observations as
to arouse suspicions that it was generated by a differ-
ent mechanism” (Hawkins 1980). Accordingly, over one
hundred discordancy/outlier tests have been developed
for different circumstances, depending on: (i) the data
distribution, (ii} whether or not the distribution pa-
rameters (e.g., mean and variance) are known, (iii) the
number of expected outliers, and even (iv) the types
of expected outliers (e.g., upper or lower outliers in
an ordered sample) (Barnett & Lewis 1994). How-
ever, all of those tests suffer from the following two
problems. First, most of them are univariate (i.e., sin-
gle attribute). This restriction makes them unsuitable
for multidimensional datasets. Second, all of them are
distribution-based. In numerous situations, we do not
know the data distribution and have to perform ex-
tensive testing to find a distribution that fits the at-
tribute. Although a unified outlier detection system
(Knorr & Ng 1997) can handle situations where the at-
tribute follows any distribution, like any distance-based
data mining works, the detection requires the existence
of a metric distance function, which is not available
for every dataset. In (Arning, Agrawal, & Raghavan
1996), Arning et al. search a dataset for implicit re-
dundancies, and extract data objects called sequential
exceptions that maximize the reduction in Kolmogorov
complexity. This notion of outliers is very different from
the aforementioned statistical definitions of outliers. As
will be seen shortly, it is also very different from the no-
tion of outliers considered here, primatrily because there
is not an associated notion of depth.

To avoid the aforementioned problems of distribu-



tion fitting and restriction to univariate datasets, depth-
based approaches have been developed. In these ap-
proaches, each data point is assigned a depth. Based
on the assigned depth, data objects are organized in lay-
ers in the data space, with the expectation that shallow
layers are more likely to contain outlying data objects
than are the deep layers. A key property of depth-based
approaches is that location depth is scaling-invariant

A robust notion of depth, called depth contour was
introduced by Tukey (Tukey 1975; 1977). Intuitively, a
point P in space is of depth k if k is the minimum num-
ber of data points that have to be removed to expose
P. Here “minimum” is defined across all the half planes
passing through P. The k-th depth contour marks
the boundary between all points with depth k and all
those with depth k + 1. Figure 1(a) shows the first 20
depth contours for a dataset containing 5,000 points.
In general, depth contour maps gives a nice picture of
the “density” of the outlying regions (Liu, Parelius, &
Singh 1997). In (Ruts & Rousseeuw 1996), Ruts and
Rousseeuw develop an algorithm called ISODEPTH,
which computes 2-D depth contours.

This paper extends the work of Ruts and Rousseeuw
in two key areas. First, ISODEPTH relies on the com-
putation of dividers (to be formally introduced later) for
all n data points in the dataset. Having a complexity at
least quadratic in n, ISODEPTH does not scale up well.
In contrast, to compute the first k& depth contours, our
algorithm FDC restricts the computation to a selected,
much smaller, subset of points, thanks to the construc-
tion of the appropriate convex hulls. Consequently,
FDC can scale up much better than ISODEPTH. Sec-
ond, ISODEPTH relies on the non-existence of collinear
points. Removing all collinear points can be very time
consuming. FDC is robust against collinear points. Fig-
ure 1(b) shows the depth contours computed by FDC
for concentric data points, many of which are collinear.

Algorithm FDC

Definition 1 Given a point cloud D consisting of n
points, a line L is an e-divider of D if there are e points
in D to be left of L, and (n—¢) points in D to the right
of L.

In the spirit of finding outliers, whenever e < (n—e¢),
we say that the e points are to the “outside” of L and
the remaining points to the “inside” of L. Just as an
e-divider L divides the data cloud D into two disjoint
subsets, it divides the convex hull of D into two sub-
regions. We call these the “inside region” and the “out-
side region,” denoted as IR(L) and O R(L) respectively.
Given a collection of e-dividers, we refer to the inter-
section of all their inside regions (i.e., {JIR(L)) as the
e-intersected inside region.

As we shall see later, the only interesting part of an
e-divider is a finite segment of it. We denote a line seg-
ment between points P and @ by (P, Q). The above def-
inition of e-dividers can be extended to line segments.
More specifically, the depth of a line segment is the
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depth of the line that runs through the line segment.
A chain of line segments, denoted as (Py, Ps,..., P,)
(where P; # P; for all i < j), is the set of line seg-
ments (P;, Pjy;) for 1 < i < (n —1). For example,
IR((P1, Pa,...,P,)) denotes the inside region of the
convex hull of D, i.e., the region of all the points in the
convex hull that are to the inside of the chain. As will
be obvious later, every line segment in the chain is an e-
divider. We call the chain an ezpanded e-divider. Given
any number of e-dividers but at least one expanded e-
divider, we refer to the intersection of all their inside
regions as the ezpanded e-intersected inside region.

Figure 2 shows the pseudo code of Algorithm FDC
(to stand for “Fast Depth Contour”), which computes
the first & depth contours of a bivariate point cloud.
While we shall prove the correctness of the algorithm
shortly, the following first gives an example to show how
the algorithm works.

An Example

Consider the situation depicted in Figure 3. Sup-
pose that the point cloud contains many points, among
which only a few are shown. In particular, suppose that
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Algorithm FDC
Input: D = the point cloud; k = an integer.
Gutput: Contours of depth from 0 to k.
1 G = convex hull of D;
2 For(d=0;d<k;) { /* new peel */
21 H=G;
2.2 Output H aa the d-th depth contour;
2.3 If d == k, break; /* Done and Stop */
24 d=d+41; D= D — H; G = convex hull of (the updated) D;
2.5 If [H| == 3, continue; /* degenerate case of having a triangle as the
convex hull */
2.6 For (e=1; e < |H|/2; ) { /* Otherwise: the general case */
2.8.1 For all points P € H {
2.68.1.1 Find the point P, € H (if any) zo that (P, P.) is an e-divider of
the remaining points in H.
2.8.1.2 If every point in G is contained in JR((P, P.)) {
2.6.1.2.1 IR(P]=TIR((P,P.)); AH{P] =@ } [*end if */
2.6.1.3 BElae { /* form an expanded e-divider */
2.6.1.3.1 Enumerate (in a clockwise fashion) all the pointa in G that are
outgide (P, Pe) as @Q1,...,@m.
2.6.1.3.2 Among them, find @Q; that maximizes the angle between the
segment (Q;, P) and (P, P.).
2.6.1.3.3 Among them, find Q; that maximizes the angle between the
segment (Qj, Po) and (P, P). /* Without loss of generality,
agsume that ¢ < 5. */
2.6.1.3.4 IR[P] = IR((P.Qi,...,Qj, Pe)); AH[P] = {Q;,....Q;}i } /*
end else */
} /* end for */
2.6.2 Output the boundary of the region (n
depth contour;
2.6.3 If d == k, break; /* Done and Stop */
2.6.4 /* Otherwise */ d=d+ 1l e=ce+1;
. . . "
265 If UPeH AH[P} # @ { /* G is not contained in the e-intersected

inside region ﬂPeH ITR({P, Pe}) */

2,651 H=HU (UPGH AH[P)); D= D — (UPEH AH[P));
2.6.5.2 G = convex hull of {the updated) D; } /* end if */
} /* end for */

} /* end for */

PGHIR{P]) as the d-th

Figure 2: Pseudo Code of Algorithm FDC

in Step 1 of Algorithm FDC, the convex hull of the en-
tire point cloud is found to be the polygon with vertices
from A to G. In the first iteration of the for-loop in Step
2, this polygon is returned as the zero-th depth contour
in Step 2.2.

Suppose that in Step 2.4, the convex hull of the re-
maining points in the data cloud (i.e., all points except
from A to G) is found to be the polygon with vertices
from H to L. Then in the first iteration of the for-loop
in Step 2.6, all the 1-dividers are found. For instance,
let us consider one case, say A. The 1-divider of A is
(A,C). The inside region TR((A,C)) is precisely the
polygon with vertices A,C, D, E,F,G. This polygon
completely contains the polygon with vertices from H
to L. Thus, Step 2.6.1.2 is executed, but Step 2.6.1.3
is avoided. In fact, this is the case for every point from
A to G and its corresponding 1-divider. Therefore the
region ((\pey IR[P]) computed in Step 2.6.2 is the 1-
intersected inside region formed by all the 1-dividers,
marked explicitly in Figure 3(a). Every point X in-
side this region has at least two points from A to G
that are outside of any line passing through X. And
for any point X outside the region (but inside the poly-
gon with vertices from A to @), there exists at least one
line passing through X that separates exactly one point
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Figure 3: An Example: 1-Dividers and 2-Dividers

among A to G from the rest. The boundary of this
1-intersected inside region gives the contour of depth
equal to 1.

Now in the second iteration of the for-loop in Step 2.6,
the 2-dividers are considered. As shown in Figure 3(b),
this time it 1s no longer the case that every inside region
completely contains the polygon with vertices from H
to L. In other words, the 2-intersected inside region
does not completely contain the latter polygon. As a
concrete example, consider A. As shown in Figure 4,
the 2-divider is (A, D), and the points H,[,J and K
are to the outside of (4, D). Thus, in Step 2.6.1.3.2 the
point that maximize the angle formed by the point,
A and D is computed. In this case, I is the point
(i.e., the angle formed by I, A and D is bigger than
that formed by H, A and D, and so on). Similarly, in
Step 2.6.1.3.3, it is found that J maximizes the angle
formed by the point, D and A. Thus, the original 2-
divider (4, D) is expanded and replaced by the chain
(A, I, J, D). Accordingly, the original inside region with
vertices A, D, E, F, G is expanded to become the poly-
gon with vertices 4, I, J, D, E, F, G. Eventually, in Step
2.6.2, the expanded divider (A, I, J, D) defines part of



Figure 4: An Example (cont’d): Expanding a 2-Divider

the boundary of the contour of depth equal to 2.

To understand why (A, D) should be expanded by
(A, I, J, D) in forming part of the boundary of the con-
tour of depth 2, it is easy to verify from Figure 4 that
apart from B and C, there are at least the additional
points H to K that are outside of (A, D). In contrast,
the chain (A4, I, J, D) ensures that for any point X in
the polygon with vertices A, B,C, D, J and I (and in-
side the contour of depth 1}, there exists at least one
line passing through X that separates B and C from
the rest.

Note that in Step 2.6.5, I and J are added to the the
set of points among which e-dividers are to be found
in subsequent iterations of the for-loop in Step 2.6.
These two points are added because of (A4, D). To com-
plete the example shown in Figure 3(b), point H is also
added because H expands the 2-divider (F, B). Simi-
larly, point K is added because K expands both (B, E)
and (C, F).

So far the example shown in Figure 3 has illustrated
the major parts of the algorithm. But one aspect that
requires further explanation is the case being dealt with
in Step 2.5. Assume that there are 3 extra points
X,Y, Z that form a triangle encompassing the polygon
with vertices from A to G in Figure 3. In this case, the
triangle gives the first convex hull of the dataset, and
is therefore the contour of depth 0. Then it is easy to
verify that the next convex hull — namely, the polygon
with vertices from A to G - is the contour of depth
1. This illustrates why in Step 2.5, if the convex hull
is a triangle, the algorithm can simply proceed to the
remaining points.

Correctness and Analysis of FDC

Consider every instance of the set H as Algorithm FDC
executes. Each instance of H can be labeled as H; . in-
dicating the content of the set at the beginning of the
e-th iteration of the for-loop in Step 2.6, but during the
i-th iteration of the for-loop in Step 2. Under this la-
beling scheme, the set H before entering Step 2.6 (i.e.,
between Steps 2.1 and 2.5) is represented by H; 1. Thus,
as Algorithm FDC executes, it produces the series
Hys,..onHimy, Hayg, ..., Hym,, H3p,y oo A key result

is that there is a one-to-one correspondence between the
series H1.1, ey Hl,mly Hz’l, ey H2,mg, H3,1; ... and
the contours of depth 0, 1, 2, .... In particular, the
list of contours of depth 0, 1, 2, ... is the list:

Hiy, () IR[Pl, () IR[P),..., () IR[P),

PgH,y,3 PeH,,3 PeEH,m,
Hay, () IR[P), () IR[P),..., () IR[P),
P€H3,3 P€Hss "PEHa,m,

For more detail, please read (Johnson, Kwok, & Ng
1998).

Now we consider complexity/efficiency issue. Let n
be the total number points in the data cloud. Let A
denote the maximum cardinality of the first k elements
in the series Hy 1,...,Him,, Ha21,-. oy Hamg,. ... Sim-
ilarly, let g denote the maximum cardinality of the first
k instances G. A complexity analysis of FDC is de-
ferred to a more detailed report /citeNg98. The con-
vex hull computation and maintenance takes O(nlogn+
h log 2n) and the rest of computation, with Step 2.6.1.1
(finding the initial e-dividers) dominating other steps,
takes O(kh3®). This gives an overall complexity of
O(nlogn + hlogin + kh3).

How does the complexity of FDC compare with
ISODEPTH’s O(n%logn)? This comparison boils down
to the relative magnitudes of h, k and n. From the point
of view of finding outliers in large datasets, k is typi-
cally not large (say, < 100, if not smaller) and h (which
is also partly dependent on k) is at least 2-3 orders
of magnitude smaller than n. Thus, for the intended
uses of the algorithms, we expect FDC to outperform
ISODEPTH when 7 is not too small.

Preliminary Experimental Results

Below we present experimental results comparing
ISODEPTH with FDC. We obtained a copy of
ISODEPTH from Ruts and Rousseeuw; the program
was written in Fortran. We implemented FDC in C++,
and used the LEDA library for most computational ge-
ometry operations, such as convex hull computations
and polygon intersections. As for datasets, we used
both real and generated ones. All graphs shown here
are based on generated datasets; but the conclusions we
draw generalize to many real datasets.

Figure 5(a) shows the computation time taken by the
two algorithms to produce depth contours from 0 to
k, with k varying between 1 and 21. The computa-
tion time consists of the CPU time taken to produce
all k depth contours after the data points are loaded.
Figure 5(a) is based on the dataset consisting of 5,000
points shown in Figure 1(a). It is clear that FDC out-
performs ISODEPTH by at least an order of magnitude.
For example, for £ = 21, FDC takes about 25 seconds,
whereas ISODEPTH takes at least 1,400 seconds.

Figure 5(b) shows how the two algorithms scale
up with respect to the size of the dataset, with k
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Figure 5: FDC vs ISODEPTH

get to 21. When there are fewer than 500 points,
the two algorithms are competitive. But with 1,000
points or more, FDC scales up much more nicely than
ISODEPTH does. For instance, FDC is 4 times faster
than ISODEPTH for 1,000 points, but is more than 50
times faster for 5,000 points.

The version of ISODEPTH we have cannot run when
n > 5,000. This is due to the excessive amount of
space used by the program. This is why our head-to-
head comparisons between the two algorithms stop at
5,000. The table below shows that FDC is very scalable
with respect to n. Although the figures are based on a
constant k (depth = 21), FDC also seems to scale up
well with respect to k in Figure 5.

Dataset Size (n) 1,000 | 10,000 | 100,000
Maximum Cardinality (h) | 131 174 199
Computation Time (sec) 17 27 52

Future Work

In the above analysis, we show a kh3 factor in the com-
plexity figure. Even though h is supposedly very small
compared with n and the factor kh poses no problem
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in the many cases we have experimented with, it is con-
ceivable that if k is a large value, then h will be large
as well. As factor kh3 corresponds to the finding e-
dividers, we are investigating how to further optimize
this step.

There is also no easy way to formulate a pattern for
the k values as each dataset has its own characteristics.
One approach is to make use of the value h. We can
specify the number or percentage of data objects we
want, and then compute the depth contour till & meets
the required value.

Lastly, we are working on generalizing the 2-
dimensioanl FDC to 3-dimension. We focus only on
the 3-D case because the geometry computation in high
dimensions is costly and the results are hard to be vi-
suallized.
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