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Abstract

Distributed data mining systems aim to discover
(and combine) usefull information that is dis-
tributed across multiple databases. The JAM
system, for example, applies machine learning
algorithms to compute models over distributed
data sets and employs meta-learning techniques
to combine the multiple models. Occasionally,
however, these models (or classifiers) are induced
from databases that have (moderately) different
schemas and hence are incompatible. In this pa-
per, we investigate the problem of combining mul-
tiple models computed over distributed data sets
with different schemas. Through experiments per-
formed on actual credit card data provided by
two different financial institutions, we evaluate
the effectiveness of the proposed approaches and
demonstrate their potential utility.

Introduction

One of the main challenges in knowledge discovery and
data mining is the development of systems capable
of finding, analyzing and exploiting useful information
that is distributed across several databases.

One approach of mining and combining such informa-
tion is to apply various machine learning programs to
discover patterns exhibited in the data and then com-
bine the computed descriptive representations. Com-
bining multiple classification models has been receiv-
ing increased attention(Dietterich 1997). Much of the
work, however, is concerned with combining models
obtained from different subsets (not necessarily dis-
tinct) of a single data set as a means to increase ac-
curacy, (e.g. by imposing probability distributions over
the instances of the training set, or by stratified sam-
pling, sub-sampling, etc.) and not as a means to inte-
grate distributed information. Although the JAM sys-
tem (Stolfo et al. 1997) addresses the later by employ-
ing meta-learning techniques, integrating classification
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models derived from distinct and distributed databases
may not always be feasible.

In all cases considered so far, all classification mod-
els are assumed to originate from databases of identical
schemas. Since classifiers depend directly on the for-
mat of the underlying data, minor differences in the
schemas between databases derive incompatible classi-
fiers, yet these classifiers may target the same concept.
Assume, for instance, two data sets of credit card trans-
actions (labeled fraud or legitimate) from two different
financial institutions (i.e. banks). The learning prob-
lem is to distinguish legitimate from fraudulent use of
a credit card. It is desirable for both institutions to ex-
change their classifiers and hence incorporate in their
system useful information that would otherwise be in-
accessible to both. Indeed, for each credit card transac-
tion, both institutions record similar information, how-
ever, they also include specific fields containing impor-
tant information that each has acquired separately and
which provides predictive value in determining fraudu-
lent transaction patterns. In a different scenario where
databases and schemas evolve over time, it may be de-
sirable for a single institution to combine classifiers from
both past accumulated data with newly acquired data.

Integrating the information captured by such clas-
sifiers is a non-trivial problem that we call, “the in-
compatible schema” problem. (The reader is advised
not to confuse this with Schema Integration over Fed-
erated/Mediated Databases.) In this paper, first we
formulate this problem and then we detail several tech-
niques that “bridge” the schema differences and allow
JAM and other data mining systems to share incom-
patible and otherwise useless classifiers. In the last part
of the paper, we describe our experiments on credit card
data obtained by two independent institutions and we
establish that combining models from different sources
can substantially improve performance.

Database Compatibility

Meta-learning (Chan & Stolfo 1993) is a technique that
addresses the scaling problem of machine learning, i.e.
the problem of learning useful information from large
and inherently distributed databases. The idea is to ex-
ecute a number of concept learning processes on a num-



ber of data subsets in parallel, and combine their collec-
tive results through another phase of learning. Initially,
each concept learning task or base learner, computes
a concept or base classifier that models its underlying
data subset or training set. Next, a separate concept
learning task, called the meta learner, combines these
independently computed base classifiers into a higher
level concept or classifier, called a meta classifier, by
learning from a meta-level training set. This meta-level
training set is basically composed from the predictions
of the individual base-classifiers when tested against a
separate subset of the training data, also called a valida-
tion set. From their predictions, the meta-learner will
detect the properties, the behavior and performance of
the base-classifiers and compute a meta-classifier that
represents a model of the “global” data set.

The JAM system (Stolfo et al. 1997) is designed
to implement meta-learning. Briefly, JAM is a dis-
tributed agent based data mining system that provides
a set of learning agents that compute models (concepts)
over data stored locally at a site and a set of meta-
learning agents for combining multiple models that were
learned (perhaps) at different sites. The system em-
ploys a special distribution mechanism which allows the
migration of the derived models or classifier agents to
other remote sites. The “incompatible schema” prob-
lem, however, impedes JAM from taking advantage of
all available databases.

Problem description Lets consider two data sites
A and B with databases DB4 and DBpg respectively
with similar but not identical schemas. Without loss of
generality, we assume that:

Schema(DBa) = {A1, Aa, ..., An, Apnt1,C} (1)
Schema(DBg) = {Bi, Ba, ..., Bn, Bny1,C} (2)
where, A;, B; denote the i — th attribute of DBy
and DBp, respectively, and C the class label (e.g. the
fraud/legitimate label in the credit card fraud example)
of each instance. Without loss of generality, we further
assume that A; = B;, 1 <i < n. As for the 4,7 and

B, 41 attributes, there are two possibilities:

1. Apy1 # Bpy1: The two attributes are of entirely
different types drawn from distinct domains. The
problem can then be reduced to two dual problems
where one database has one more attribute than the
other, i.e.:

Schema(DBa) {A1, Az, ..., An, Any1,C} (3)
Schema(DBg) = {Bi,Ba2,...,Bn,C} 4)

where we assume that B, ;1 is not present in DBp.!

2. Apy1 = Byy1: The two attributes are of similar type
but slightly different semantics that is, there may be
a map from the domain of one type to the domain
of the other. For example, A, 11 and B,y are fields
with time dependent information but of different du-
ration (i.e. A,4+1 may denote the number of times

'The dual problem has DBp composed with B,41 but
Ap41 is not available to A.

an event occurred within a window of half an hour
and B,,11 may denote the number of times the same
event occurred but within ten minutes).

In both cases the classifiers C4; derived from DBy
are not compatible with DBpg’s data and hence cannot
be directly used in DBp’s site, and vice versa. In the
next section we investigate ways, called bridging meth-
ods, that overcome this incompatibility problem

Bridging Methods

There are several approaches to address the problem de-
pending upon the learning task and the characteristics
of the different or missing attribute A, 1 of DBp:

e A, is missing, but can be predicted: It
may be possible to create an auxiliary classifier,
which we call a bridging agent, from DB, that
can predict the value of the A, ; attribute. To
be more specific, by deploying regression methods
(e.g. Cart (Breiman et al. 1984), locally weighted
regression (C. G. Atkeson 1997), linear regression
fit (Myers 1986), MARS (J.H.Friedman 1991)) for
continuous attributes and machine learning algo-
rithms for categorical attributes, data site A can
compute one or more auxiliary classifier agents C4;’
that predict the value of attribute A,; based on
the common attributes Ay, ..., An. Then it can send
all its local (base and bridging) classifiers to data
site B. At the other side, data site B can deploy
the auxiliary classifiers Ca;’ to estimate the val-
ues of the missing attribute A,y; and present to
classifiers C4; a new database DBpg' with schema

{41,..., 4p, fl,ﬂ_l}. From this point on, meta-
learning and meta-classifying proceeds normally.

e A, 41 is missing and cannot be predicted: Com-
puting a model for a missing attribute assumes a cor-
relation between that attribute and the rest. Nev-
ertheless, such a hypothesis may be unwarranted in
which case we adopt one of the following strategies:

— Classifier agent C4; supports missing val-
ues: If the classifier agent C4; originating from
DB4 can handle attributes with missing values,
data site B can simply include null values in a fic-
titious A, 41 attribute added to DBpg. The result-
ing DBg’ database is a database compatible with
the C'4; classifiers. Different classifier agents treat
missing values in different ways. Some machine
learning algorithms, for instance, treat them as a
separate category, others replace them with the av-
erage or most frequent value, while most sophisti-
cated algorithms treat them as “wild cards” and
predict the most likely class of all possible, based
on the other attribute-value pairs that are known.

— Learning agents at data site B can not han-
dle missing values: If, on the other hand, the
classifier agent C4; cannot deal with missing val-
ues, data site A can learn two separate classifiers,
one over the original database DB,4 and one over



DB,’, where DB, is the DB 4 database but with-
out the A, attribute:

DBa' = PROJECT (A, ...,A,) FROM DBa  (5)

The first classifier can be stored locally for later
use by the local meta-learning agents, while the
later can be sent to data site B. Learning a second
classifier without the A,; attribute, or in gen-
eral with attributes that belong to the intersection
of the attributes of the databases of the two data
sites, implies that the second classifier makes use
of only the attributes that are common among the
participating data sites. Even though the rest of
the attributes may have high predictive value for
the data site that uses them, they are of no value
for the other data site since they were not included
anyway.

e A, is present, but semantically different: It
may be possible to integrate human expert knowl-
edge and introduce bridging agents either from data
site A, or data site B that can preprocess the A, 1
values and translate them according to the A, 1 se-
mantics. In the context of the example described
earlier where the A, 41 and B, fields capture time
dependent information, the bridging agent may be
able to map the B,y; values into A, semantics
and present these new values to the Cu; classifier.
For example, the agent may estimate the number
of times the event would occur in thirty minutes by
tripling the B,,+1 values or by employing more sophis-
ticated approximation formulas using non uniformly
distributed probabilities (e.g. Poisson).

Experiments and Evaluation

To evaluate these techniques, we used 5 inductive learn-
ing algorithms (ID3, C4.5, Cart (Breiman et al. 1984),
Naive Bayes (Minksy & Papert 1969) and Ripper (Co-
hen 1995)) and 2 data sets of real credit card transac-
tions provided by the Chase and First Union Banks.
Each bank supplied .5 million records spanning one
year. Chase bank records were sampled uniformly with
20% fraud versus 80% non-fraud distribution, whereas
First Union data were sampled in a non-uniform man-
ner (many records from some months, very few from
others) with 15% fraud versus 85% non-fraud. Al-
though both sets consist of credit card transactions pre-
labeled as fraudulent or legitimate, the schemas of the
databases were developed separately and each data set
also includes special features. Here, we demonstrate
that these techniques enable the exchange of fraud de-
tectors between the two banks in the hope of catching
more fraud that either bank would be able to do alone.
To evaluate and compare the base- and meta-
classifiers constructed, we adopted three metrics: the
overall accuracy, the (TP — F'P) spread and a cost
model fitted to the credit card detection problem. Over-
all accuracy expresses the ability of a classifier to give
correct predictions, (TP — F'P) denotes the ability of

a classifier to catch fraudulent transactions while mini-
mizing false alarms, and finally, the cost model captures
the performance of a classifier with respect to the goal
of the target application (stop loss due to fraud).
Credit card companies have a fixed overhead that
serves as a threshold value for challenging the legiti-
macy of a credit card transaction. In other words, if the
transaction amount amt, is below this threshold, they
choose to authorize the transaction automatically. Each
transaction predicted as fraudulent require an “over-
head” referral fee for authorization personnel to decide
the final disposition. This “overhead” cost is typically a
“fixed fee” that we call $X. Therefore, even if we could
accurately predict and identify all fraudulent transac-
tions, those whose amt is less than $X would produce
(X — amt) in losses anyway. In these experiments, we
incorporate the threashold values and referral fees in
the detection process and we seek to produce classifiers
and meta-classifiers that maximize the total savings.
The two databases have the following differences:

1. Chase includes two (continuous) features not present

in the First Union data

2. Chase and First Union defines a (nearly identical)

feature with different semantics

For the first incompatibility, we extend the First
Union data set with two additional fields padded with
null values to fit it to the Chase schema and we deploy
classifier agents that support missing values. For the
second incompatibility, we have the values of the First
Union data mapped to the semantics of the Chase data.

The results plotted are averaged over 6 fold cross val-
idation. Figure 1 present the accuracy, the (TP — F'P)
spread and the savings (in dollars) of the Chase (three
upper graphs) and First Union meta-classifiers (three
lower graphs) on Chase and First Union data, respec-
tively. The first (Chase meta-classifiers) rely solely
on First Union base classifiers while the later (First
Union meta-classifiers) depend on Chase base-classifiers
alone. The curves of each figure represent the perfor-
mance of the 5 different meta-learning algorithms as
they combine more base-classifiers. The order of the
base-classifiers selected is determined by a special prun-
ing algorithm that aims to improve the (TP — FP)
rate while maximizing coverage (i.e. the percentage of
transactions classified correctly by at least one base-
classifier) (Prodromidis, Stolfo, & Chan 1998).

The results demonstrate that both Chase and First
Union classifiers can be exchanged and applied to
each of their respective data sets and catch significant
amount of fraud despite the fact that the base classifiers
are trained over data sets with different characteristics,
patterns and fraud distribution.

With two features missing from First Union data,
Chase base classifiers are unable to take full advantage
of their knowledge regarding credit card fraud detec-
tion. To alleviate the problem, we deployed regression
techniques in an attempt to approximate the missing
values for one of the missing features of the First Union
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Figure 1: Accuracy (left), TP — F P spread (middle), and savings (right) of Chase meta classifiers/First Union base classifiers
(top) and First Union meta-classifiers/Chase base classifiers (bottom).

data. In this experiment, we tested two different re-
gression methods, the linear regression fit and regres-
sion trees both available by Splus (Sta 1996). We ap-
plied the two techniques on the different subsets of the
Chase data to generate several bridging models and we
matched each (original) Chase classifier with one bridg-
ing classifier according to their performance on a First
Union validation set. In Figure 2 (first row) we display
the performance (accuracy, TP — F'P spread and total
savings) of the Chase base-classifiers with (black bar)
and without (grey bar) the assistance of these bridging
models. The first 12 bars represent the classifiers de-
rived by the Bayesian learning algorithm when trained
against the 12 different months of data, followed by the
C4.5, Cart, ID3 and Ripper learning algorithms.

The degree the base classifiers can benefit from bridg-
ing classifiers depends on the “importance” of the miss-
ing feature (e.g. its information gain or predictive
value), the “dependence” of this feature to the remain-
ing known attributes, the bias of the bridging learning
algorithm and the quality of the training and testing
data. In this case, as the figures demonstrate, the brid-
ing classifiers are quite beneficial for the majority of the
Chase base classifiers.

After being matched and evaluated, the base-

classifier /bridging classifier pairs can be integrated into
new meta-classifier hierarchies. In the middle row of

Figure 2 we present the performance results of the new
First Union meta-classifiers. By contrasting the accu-
racy (left), the TP — FP spread (middle) and total sav-
ings (right) plots of this figure against the three bottom
plots of Figure 1 we determine that the improved per-
formance of the base-classifiers due to the bridging clas-
sifiers resulted in significantly superior meta-classifiers.
This translates to 6.3% higher accuracy, 32.9% higher
TP — FP spread and $284K in additional savings.

Finally the last row of Figure 2 displays the perfor-
mance of the First Union meta-classifiers when com-
bining all available base-classifiers, both, the local First
Union base classifiers and the Chase base/bridging clas-
sifier pairs. The new First Union meta-classifier is
superior even to the best “pure” First Union meta-
classifiers (i.e. the meta-classifier composed by lo-
cal base-classifiers alone) as reported in (Prodromidis,
Stolfo, & Chan 1998) improving total accuracy by 1.5%,
TP — FP spread by 5.3% and savings by $20K.
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