
A Robust System Architecture for Mining Semi-structured Data

Lisa Singh, Bin Chen, Rebecca Haight, Peter Scheuermann, Kiyoko Aoki

Northwestern University
2145 Sheridan Road
Evanston, IL 60208

{lsingh, bchen, rhaight, peters, kaoki}@ece.nwu.edu

Abstract
The value of extracting knowledge from semi-structured
data is readily apparent with the explosion of the WWW
and the advent of digital libraries. This paper proposes a
versatile system architecture for text mining that maintains
structured data components in a relational database and
unstructured concepts in a concept library. After a detailed
explanation of our system architecture, we briefly describe
IRIS, our prototype rule generation system

Introduction

Although much attention has been given to extracting
knowledge from structured data, more and more tools that
extract knowledge from semi-structured data are
becoming available. The shift in focus is due in large part
to the explosion of the World Wide Web (WWW) and the
advent of digital libraries. Data from these arenas is
potentially an invaluable source for analysis and decision
support.

The success of a text mining tool is dependent upon the
ability to accurately represent document content and
efficiently generate rules. This paper proposes a scalable
and versatile system architecture for text mining that
provides us with the infrastructure necessary to
accomplish these goals.

Figure 1 illustrates the high-level system architecture
proposed in this paper. The rule generator is the central
component in the design. It parses a request submitted by
the user and determines an execution strategy based on
specified constraints. The strategy indicates the retrieval
order and the amount of data requested from the concept
library and the database. If necessary, additional up-to-
date information is requested from the information
discovery module. The rule generator processes all this
information and generates rules (association,
classification, etc.) in response to user requests.

This system design has a number of advantages. First, a
distinction is made between structured attributes that
occur regularly across a document set and terms or
phrases that are less structured and occur unpredictably.

Copyright © 1998, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

The former is placed in
the database, while the
latter is stored in the
concept library.
Distinguishing these two
types of data allows us to
represent them more
accurately, thereby
giving us the ability to
generate more interesting
rules. Second, the
concept library
differentiates concepts
associated with different
domains. This in turn
implies that the final set of rules is semantically more
accurate than those systems that do not maintain a concept
structure or provide only a single ontology. Third, since
only a ‘meaningful’ subset of information from a
document is stored in the concept library and the database,
our document representation is more compact than storing
the complete document locally. Next, for static domains
where the content of documents remains constant over
time, we need only parse the local or remote documents
once off-line. Consequently, the execution time of the
parsing algorithm does not affect the user response time.
For more dynamic domains, document content may
change. In this case, only documents that have changed
recently need to be parsed again. Finally, any database,
e.g. relational, object-oriented, semi-structured, can be
used as the database component illustrated in Figure 1.
Therefore, the data mining architecture presented here can
be built above existing databases. Once the database
returns data about the more structured components of the
dataset, the semi-structured data mining tool uses it in
conjunction with concept knowledge attained from the
concept library to efficiently generate inductive rules.

The remainder of this paper is organized as follows.
Section 2 presents some background concepts and related
literature. In section 3, our semi-structured data mining
tool architecture is proposed and discussed in detail.
Section 4 briefly describes IRIS, our prototype rule
generation system built according to this system
architecture. Finally, section 5 presents our conclusions.

Graphical User
Interface

Rule
Generator

Concept
Library Database

Information
Discovery Module

Document
Collection

Figure 1: System Architecture

From: KDD-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Background Concepts & Related Literature

Magazine articles, research papers, and World Wide
Web HTML pages are traditionally considered semi-
structured data. Each of these examples contains some
clearly identifiable features, e.g. author, date, publisher,
WWW address. In this paper, we refer to these
identifiable features as structured attributes or structured
objects, depending on the type of database the features are
stored in. Each document also includes blocks of text that
are considered unstructured components of the document,
e.g. abstract, headings, and paragraphs. We define an
unstructured concept to be any meaningful word, phrase,
acronym, or name extracted from these unstructured
blocks of text.

Many types of rules can be created using semi-
structured data. To date, researchers have focused on
generating association, trend, classification, and clustering
rules from text (Amir, Feldman, and Kashi 1997; Feldman
and Hirsh 1996; Lent, Agrawal, and Srikant 1997; Lagus
et al. 1996; Singh, Scheuermann, and Chen 1997; Tresch,
Palmer, and Luniewski 1995). One of the distinctions
between rule generation algorithms for structured data and
semi-structured data involves the need to add concept
information into a rule. For example, association rules are
of the form A ⇒ B. Within the structured domain,
(Agrawal, Imielinski, and Swami 1993) defines both A
and B to be sets of structured values for a single attribute.
Within the semi-structured domain, (Singh, Scheuermann,
and Chen 1997) define both A and B to be sets of
unstructured concepts and structured values within and
across attributes.

Because of space limitations, we cannot go through
detailed examples of each rule type. We refer the readers
to papers focusing on semi-structured rule generation
algorithms (Amir, Feldman, and Kashi 1997; Feldman
and Dagan 1995; Feldman and Hirsh 1996; Lent,
Agrawal, and Srikant 1997; Singh, Scheuermann, and
Chen 1997). Instead we briefly identify four
considerations unique to the semi-structured domain that
should be addressed when designing a data mining
architecture.

• Unstructured concepts exist within documents and
therefore, should be represented in a data model.

• Semantic knowledge about relationships among
concepts is important, but costly as an online process.

• Since background knowledge can exist for structured or
unstructured data, a system should be flexible enough to
store multiple formats of background knowledge.

• Searching the document space for all combinations of
structured value − concept pairs requires exponential
time. Therefore, within the semi-structured domain
providing users with a mechanism for constraining the
search space is the norm.

These considerations associated with the semi-
structured domain support our claim that a specialized
architecture for semi-structured data mining is useful. To

date, we are unaware of any other specialized
architectures proposed for semi-structured data mining
applications.

Proposed Architecture

There are five major components in the architecture
presented in Figure 1: the graphical user interface (GUI),
the rule generator, the concept library, the database, and
the information discovery module. The GUI allows the
user to specify attributes and concepts he wants to use as
constraints when generating rules. The rule generator
processes this information, sends data requests to the
concept library and the database, and determines a
meaningful set of rules. The database contains the
structured data values extracted from the text, as well as
mappings between tuples and documents. The concept
library maintains general and specialized unstructured
concepts, relationships among concepts, and mappings
between concepts and documents. The information
discovery module extracts concepts and structured values
from a document collection and updates the database and
the concept library as necessary. The remainder of this
section details the features of each of these components.

Concept Library Architecture
The concept library consists of three components: the

concept dictionary, the specialized concept guides, and
the concept indices. The concept dictionary contains
common concepts extracted from a basic dictionary. In
contrast, each specialized concept guide maintains
domain specific concepts. Both the concept dictionary and
the specialized concept guide maintain relationships
among concepts. Finally, the concept indices maintain
lists of document ids associated with each concept in the
concept library. Figure 2 shows the relationships among
these three components.

Our concept library architecture distinguishes general
concepts from specialized concepts associated with a
particular domain, e.g. computer science document
collection, on-line coffee shops or wineries. As an
example, suppose our domain is on-line coffee shops.
Then a general or generic concept may be coffee bean,
while latte could be considered a specialized concept.

(Singh 1997) found that a large percentage of the useful
concepts
appearing within
a document
collection are part
of a common set.
This common set
involves concepts
with semantic
relationships that
appear in an
ordinary
dictionary.

Specialized
Concept
Guide

Specialized
Concept
Guide

Specialized
Concept
Guide

Concept
Dictionary

Concept
Index

Concept
Index

Concept
Index

Concept
Index

Figure 2: Concept Library Components

Therefore, by maintaining the concept dictionary, we can
eliminate the process of regenerating this common set or
rediscovering relationships among concepts every time a
new domain is added to our system. For each set of
related concepts, the relationship type is also maintained.
Example relationship types include: broad-narrow
(Parent-child), related (sibling), synonym, antonym, and
part-to-whole.

Important domain specific concepts exist outside of this
common set and are, therefore, not included in the
concept dictionary. For example, in a medical database,
disease names can be very specialized. Also, in some
cases a concept that exists in the concept dictionary may
have a different semantic meaning within a specialized
document collection. In the concept dictionary, the
concept thread refers to a thin fibrous strand, while in the
computer science domain, the same concept refers to a
mini process. We must be able to account for these
differences across domains. Therefore, our specialized
concept guide maintains domain specific concepts and
relationships. The concepts in a specialized concept guide
include terms, phrases, proper names, and acronyms.
(Only terms and phrases exist in the concept dictionary.)

A concept index identifies associations between
concepts and documents by mapping each concept to a set
of documents that contain the concept. As illustrated in
Figure 2, a separate concept index is maintained for the
concept dictionary and each specialized concept guide.

Database
Because structured attributes occur regularly across

documents within a domain, each one is included in the
database schema. Determining this schema for every
domain is a preprocessing step. (Meaningful information
not represented in the database is captured in the concept
library.) Once this information is extracted from a
document, rules can be generated using structured
attribute values without rescanning the document.

Each document is tagged with an id, thereby allowing
us to easily identify data associated with a particular
document. Every tuple representing a set of structured
attributes has a document id associated with it. One
problem typical with the WWW domain involves having
different information on the same HTML page. In our
model, this is represented as multiple tuples or concept
sets within the same document. For example, on-line
stores usually have information about multiple products
on the same page. If each tuple represents a different
product, then our model must capture the distinction
between unique information associated with each product.

Suppose a winery maintains the following product
descriptions on a single WWW page:

Wine 1 $150 Cabernet Sauvignon
Rich purple/ruby color with a dark cherry…

Wine 2 $125 Chardonnay
Full of flavor and fruit with moderate oak…

Our system should be able to distinguish wine 1 from

wine 2. For this reason, we incorporate the notion of a
subdocument. Each of the previous product descriptions is
considered a subdocument. Similar to a document, every
subdocument is represented with a unique id. A table in
the database maps subdocuments to documents. Both the
concepts in the concept library and the tuples in the
database may be mapped to a subdocument instead of a
document. Further, tuples are not duplicated in the
database for a document and subdocument. The tuple is
associated with the lowest subdocument level. An index
that maintains a mapping between different document /
subdocument pairs is the only additional overhead. This
scheme allows us to distinguish information within a
page, while still maintaining the flexibility to view
information at the page level.

Another problem associated with HTML documents is
that the document content can change over time. To
account for this, we maintain a database field that
contains an expiration date. The information discovery
module ensures valid data in the database and the concept
library.

Rule Generator
At a high level,

the rule generator
runs a data mining
algorithm given a
set of user specified constraints. Figure 3 shows the
components of the rule generator. The parser takes user
specified information from the GUI and massages it for
the optimizer. The optimizer looks at the type of rule the
user wants to generate, the constraints specified, and
determines which of its execution plans is most efficient.
For example, suppose only structured values are specified
by the user, but he wants to generate rules involving the
specified value over an unconstrained concept domain. A
strategy that identifies a common document set by
initially retrieving the document lists associated with each
structured value prior to retrieving the document lists
associated with the entire concept space will be less costly
than one that begins by retrieving the document lists
associated with the concept space. This results because
this execution reduces the candidate document space
considerably. Finally, once the optimizer has determined
the most efficient execution plan, the processor executes
the plan and returns the results to the GUI. While
executing the plan the processor verifies that the related
documents have not expired. If they have, it sends a
request to the information discovery module to update the
information in the system for the expired documents. In
this manner, a lazy update scheme of the database and
concept library is employed.

Information Discovery Module
The information discovery module finds and parses

documents. Figure 4 illustrates the components of the
information discovery module. The key component of this

OptimizerParser Processor

Figure 3: Rule Generator
Components

module is the extractor. It populates the database and the
concept library for every specialized domain. Each
domain has a unique extraction program or set of
programs that are knowledgeable about the organization
of information in that domain. In other words, a domain
expert gives specifications that can be used as a template
for identifying structured values. An unsupervised domain
specific extraction program can then use this knowledge

to populate both the
database and the
concept library.

The discoverer and
the refresher are
specifically included
for more dynamic

domains, e.g. WWW. The discoverer is an intelligent
agent that looks at different search engines and tries to
find pages associated with different specialized domains.
If it finds something new, it informs the extractor, so that
the document can be parsed. The extractor and the
discoverer are both off-line processes that do not affect
the performance of the rule generation algorithms.
Further, because each document is only parsed once, the
time needed to extract concept and tuple information is
reasonable.

The refresher employs a dual update scheme to keep
the data in the database and the concept library consistent.
The first scheme is a proactive one that periodically
checks the expiration date of the data and updates it if the
expiration date is approaching. Since it is not always
possible to keep everything up to date, the refresher may
receive requests from the processor to update data in the
database and the concept library.

User Interface
The user interface needs to be flexible enough to allow

users to specify the following criteria: domain of interest,
type of rule, attribute type, attribute value, concept value,
confidence, support, and background knowledge.

The rule generator generates rules based on the input
provided by the user. The user is not required to provide

all of the criteria specified. For example, if he wants to
generate rules using only structured values, no concepts
need to be provided. If he wants to generate rules about a
set of concepts, no structured values are necessary. In this
manner, rules about any subset or superset of data
components can be generated. Unconstrained or partially
constrained classification and association rule generation
can also be requested. If the user wants to generate rules
involving some specified concepts over the entire domain
of an attribute, he need only specify concepts of interest
and request generation of a partially constrained rule set
(i.e. a rule set only constrained by concepts).

Initial Prototype

We have developed IRIS (Inductive Rule Identification
System), a prototype system that implements the
architecture presented in section 3. For this prototype we
are using an Oracle 7 DBMS to store our structured
attribute values. We use linear hash tables to store the
information in the concept library. The storage mirrors
that of the extended concept hierarchy (ECH) as presented
in (Singh, Scheuermann, and Chen 1997), where a
separate ECH exists for each specialized concept guide.
The initial prototype domain is winery WWW pages.

The list of concepts and relationships in the concept
dictionary was developed using WordNet. WordNet,
created at Princeton University, contains lexicographer
files that organize nouns, verbs, adjectives, and adverbs
into groups of synonyms and describes relations between
synonym groups (Miller et al. 1990). All the terms that
are not on our stoplist are maintained in the concept
dictionary.

In contrast, the information in the specialized concept
guide is extracted from the documents themselves. During
the extraction process, we compare each meaningful
concept to concepts in the concept dictionary. If the
concept is in the concept dictionary, we initially assume it
is a general concept. If the concept is not in the concept
dictionary, it is placed in the specialized concept guide.
As concepts are added, their specialized relationships to
other concepts are determined using weighted frequency
of co-occurrence measures (Salton and McGill 1983).
Because this does not always result in semantically
consistent relationships, we are investigating other
approaches for generating specialized relationships,
including synonym detection using natural language
processing. Clearly if ontological information exists for a
specialized domain, it should be incorporated into the
specialized concept guide.

To populate the database and the specialized concept
guide, we identified online wineries using WWW search
engines. We then developed a template for extracting
structured values. During the same pass of the document,
our extraction tool also identified meaningful unstructured
concepts. Using HTML tags and some natural language
processing, the weight or importance of each concept
within a document was determined. We then employ a

ExtractorDiscoverer Refresher

Figure 4: Information Discovery
Module Components

Figure 5: IRIS Input Interface

heuristic that uses this information along with frequency
of occurrence information to identify relationships among
domain concepts. Figure 5 illustrates our user input
interface and some sample input values from the winery
domain. This GUI is implemented using JAVA. Figure 6
shows the output interface with some sample output. In
this example, rule 1 is a general rule that uses all the
values specified by the user. Rule 2 is a child rule that
incorporates knowledge about the child concept gold
medal. For more details about rule types and the
algorithm used to generate these rules, refer to (Singh,
Scheuermann, and Chen 1997).

Conclusions

This paper proposes a system architecture for a semi-
structured data mining tool. This architecture incorporates
a compact representation of textual data that is stored in
the concept library and the database. If both structures are
not maintained, the final rule set is less efficient to
generate. Without a database, numeric and categorical
data is more difficult to handle. Without a concept library,
the final rule set is not as semantically rich. We also
believe there are a number of advantages to maintaining a
distinction between the concept library and the database.
First, it enables us to maintain unstructured concepts that
are typically neglected in other representations of semi-
structured data. Second, we can use the same concept
library irrespective of the structure of the database. Third,
we do not need to physically store the concept library and
the database at the same site. As more and more domains
are added to the text mining system, e.g. IRIS, it may be
advantageous to store data on multiple servers. Moreover,
separating the library allows us to easily add ‘above’
already existing databases. Along with the ability to
accurately represent semi-structured data, our
infrastructure distinguishes specialized domain concepts
from general concepts, maintains a list of concept
relationships, updates information that has expired, and
generates different types of rules. Finally, the modularity
of the architecture facilitates the addition of new domains.
No restructuring is necessary. A new specialized concept

guide is created to store the concept information and new
tables are created to maintain the structured data values.

References

Agrawal R., Imielinski T., and Swami A. 1993. Mining
Association Rules Between Sets of Items in Large
Databases. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, 207-
216. Washington, DC: ACM Press.

Amir, A., Feldman, R., and Kashi, R. 1997. A New and
Versatile Method for Association Generation. In
Proceeding of Principles of Data Mining and Knowledge
Discovery, 221-231. Trondheim, Norway: Springer.

Feldman, R. and Hirsh, H. 1996. Mining Associations in
the Presence of Background Knowledge. In Proceedings
of the International Conference on Knowledge Discovery
in Databases, 343-346. Portland, Oregon: AAAI Press.

Lent, B., Agrawal, R., and Srikant, R. 1997. Discovering
Trends in Text Databases. In Proceedings of the
International Conference on Knowledge Discovery in
Databases. Newport Beach, Calif.: AAAI Press.

Lagus, K., Honkela, T., Kashi, S., and Kohonen, T. 1996.
Self-organizing Maps of Document Collections: A New
Approach to Interactive Exploration. In Proceedings of
the International Conference on Knowledge Discovery
and Data Mining, 238-243. Portland, Oregon: AAAI
Press.

Miller, G., Beckwith, R., Fellbaum, C., Gross, D. and
Miller., K. 1990. Introduction to WordNet: An On-line
Lexical Database. International Journal of Lexicography
3(4): 235-244.

Singh, L. 1997. Automatic Preprocessing &
Transformation of Semi-Structured Data for Data Mining
Applications. Master’s Thesis, Dept. of Electrical
Engineering and Computer Science, Northwestern Univ.

Salton, G. and McGill, M. 1983. Introduction to Modern
Information Retrieval. New York, New York: McGraw-
Hill.

Singh, L., Scheuermann, P., Chen, B. 1997. Generating
Association Rules from Semi-structured Documents Using
an Extended Concept Hierarchy. In Proceedings of the
International Conference on Information & Knowledge
Management. Las Vegas, Nev.: ACM Press.

Tresch, M., Palmer, N., and Luniewski, A. 1995. Type
Classification of Semi-structured Documents. In
Proceedings of the International Conference on Very
Large Data Bases, 263-274.Zurich, Switzerland: Morgan
Kaufman.

Figure 6: IRIS Output Interface

