
PLAN MINE: Sequence Mining for Plan Failures�

Mohammed J. Zaki, Neal Lesh, and Mitsunori Ogihara
Computer Science Department, University of Rochester, Rochester NY 14627

fzaki,lesh,ogihara g@cs.rochester.edu

Abstract

This paper presents the PLAN MINE sequence mining algo-
rithm to extract patterns of events that predict failures in
databases of plan executions. New techniques were needed
because previous data mining algorithms were overwhelmed
by the staggering number of very frequent, but entirely un-
predictive patterns that exist in the plan database. This paper
combines several techniques for pruning out unpredictive
and redundant patterns which reduce the size of the returned
rule set by more than three orders of magnitude. PLAN MINE
has also been fully integrated into two real-world planning
systems. We experimentally evaluate the rules discovered
by PLAN MINE, and show that they are extremely useful for
understanding and improving plans, as well as for building
monitors that raise alarms before failures happen.

Introduction
In this paper, we present the PLAN MINE sequence discov-
ery algorithm for mining information from plan execution
traces. PLAN MINE has been integrated into two applica-
tions in planning: the TRIPS collaborative planning system
(Ferguson 98), and the IMPROVE algorithm for improving
large, probabilistic plans (Lesh 98).

TRIPS is an integrated system in which a person collab-
orates with a computer to develop a high quality plan to
evacuate people from a small island. During the process
of building the plan, the system simulates the plan repeat-
edly based on a probabilistic model of the domain, includ-
ing predicted weather patterns and their effect on vehicle
performance. The system returns an estimate of the plan’s
success. Additionally, TRIPS invokes PLAN MINE on the
execution traces produced by simulation, in order to ana-
lyze why the plan failed when it did. This information can
be used to improve the plan. PLAN MINE has also been
integrated into an algorithm forautomaticallymodifying a
given plan so that it has a higher probability of achieving its
goal. IMPROVE runs PLAN MINE on the execution traces
of the given plan to pinpoint defects in the plan that most
often lead to plan failure. It then applies qualitative reason-
ing and plan adaptation algorithms to modify the plan to
correct the defects detected by PLAN MINE.

�Supported by NSF grants CCR-9705594, CCR-9701911,
CCR-9725021 and INT-9726724; and U.S. Air Force/Rome Labs
contract F30602-95-1-0025. Copyright 1998, American Associa-
tion for Artificial Intelligence (www.aaai.org). All rights reserved.

This paper describes PLAN MINE, the data mining com-
ponent of the above two applications. We show that one
cannot simply apply previous sequence discovery algo-
rithms (Srikant 96; Zaki 97) for mining execution traces.
Due to the complicated structure and redundancy in the
data, simple application of the known algorithms generates
an enormous number of highly frequent, but unpredictive
rules. We developed a three-step pruning strategy for se-
lecting only the most predictive rules. First, we eliminate
normativerules that are consistent with background knowl-
edge that corresponds to the normal operation of a (suc-
cessful) plan. Second, we eliminate thoseredundantpat-
terns that have the same frequency as at least one of their
proper subsequences. Finally, we keep onlydominatingse-
quences that are more predictive than all of their proper
subsequences. To experimentally validate our approach,
we show that IMPROVE does not work well if the PLAN -
MINE component is replaced by less sophisticated methods
for choosing which part of the plan to repair. We also show
that the output of PLAN MINE can be used to build execu-
tion monitors which predict failures in a plan before they
occur. We were able to produce monitors with 100% preci-
sion, that signal 90% of all the failures that occur. A more
detailed version of this paper appears in (Zaki 98).

Discovery of Plan Failures

We cast the problem of mining for causes of plan failures
as the problem of findingsequential patterns(Agrawal 95).
An itemsetis an unordered collection of items, all of which
are assumed to occur at the same time. Asequenceis
an ordered list of itemsets. A sequence� is denoted as
(�1 7! � � � 7! �n), where each sequence element�j is an
itemset. we say� is asubsequenceof �, denoted as� � �,
if there exist integersi1 < i2 < � � � < in such thataj � bij
for all aj . For example,B 7! AC is a subsequence of
AB 7! E 7! ACD. If � is obtained by removing a sin-
gle item from�, we write it as� �1 �. The supportor
frequencyof a sequence�, denotedfr(�;D) is the frac-
tion of plans in the databaseD that contain� as a subse-
quence. Given a user-specified threshold called themini-
mum support(min sup), we say that a sequence isfrequent
if fr(�;D) � min sup. Theconfidenceof a sequence rule
� ) �, given asfr(� 7!�;D)

fr(�;D) , is the conditional probability

From: KDD-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



of � given that� occurs.
The input to PLAN MINE consists of a database of plans

for evacuating people from one city to another. Each plan
is taggedFailure or Successdepending on whether or not it
achieved its goal. Each plan has a unique identifier, and a
sequence of events. Each event is an itemset composed of
different items such as the action name and outcome, and
a set of parameters specifying the weather condition, vehi-
cle type, origin and destination city, cargo type, etc. While
routing people from one city to another using different ve-
hicles, the plan will occasionally run into trouble. The out-
come of the event specifies the type of error that occurred, if
any. Only a few of the errors, such as a helicopter crashing
or a truck breaking down, cause the plan to fail. However, a
sequence of non-severe outcomes may also be the cause of
a failure. Given a database of plans, the problem of discov-
ering causes of plan failures can be formulated as finding
high confidence rules of the form� ) Failure, where� is
frequent. For example, a rule might be(Move Flat Truck-
1) 7! (Move Overheat Truck-1)) Failure indicating that
the plan is likely to fail ifTruck-1gets aFlat in oneMove
action, and thenOverheatin a subsequent one.

Sequential Pattern Discovery Algorithm We use the
SPADE (Zaki 97) algorithm for efficient discovery of fre-
quent sequences. SPADE uses the observation that the sub-
sequence relation� induces a lattice which isdownward
closedon the support, i.e., if� is frequent, then all subse-
quences� � � are also frequent. SPADE decomposes the
original lattice into smaller sub-lattices, so that each sub-
lattice can be processed entirely in main-memory using a
breadth-first or depth-first search for frequent sequences.
Starting with the frequent single items, during each step
the frequent sequences of the previous level are extended
by one more item. Before computing the support of a new
sequence, a pruning step ensures that all its subsequences
are also frequent, greatly reducing the search space.

Mining Frequent Sequence Rules
We now describe our methodology for extracting the pre-
dictive sequences on a sample plan database. LetDg, and
Db refer to the good and bad plans, respectively. All exper-
iments used an SGI machine with a 100MHz MIPS proces-
sor and 256MB main memory, running IRIX 6.2.

Mining the Whole Database (D = Dg+Db) We used an
example database with 522 items, 1000 good plans and 51
bad plans, with an average of 274 events per good plan, 196
events per bad plan, and an average event length of 6.3 in
both. We mined the entire database of good and bad plans
for frequent sequences. Even at 100% minimum support,
the algorithm proved to be intractable. For example, we
would find more than a 100 length sequence of the form
Move� � � 7! Move, all 2100 of whose subsequences would
also be frequent, since about half of the events contain a
Move. Such long sequences would also be discovered for
other common items such asSuccess, Truck, etc. Note that
none of these rules have high confidence, i.e., none can be
used to predict plan failure, because they occur in all the
good as well as the bad plans. The problem here is that

the common strategy of mining for all highly frequent rules
and then eliminating all the low confidences ones will be
infeasible in this highly structured database.

Mining the Bad Plans (Db) Since we are interested in
rules that predict failure, we only need to consider patterns
that are frequent in the failed plans. A rule that is frequent
in the successful plans cannot have a high confidence of
predicting failure. To reduce the plan-sequence length and
the complexity of the problem, we decided to focus only on
those events that had an outcome other than aSuccess. The
rationale is that the plan solves its goal if things go the way
we expect, and so it is reasonable to assume that only non-
successful actions contribute to failure. We thus removed
all actions with a successful outcome from the database
of failed plans, obtaining a smaller database of bad plans,
which had an average of about 8.5 events per plan.

MS=100% MS=75% MS=60%
#Sequences 544 38386 642597
Time 0.2s 19.8s 185.0s

Table 1: Discovered Patterns and Running Times
Table 1 shows the running times and the total number of

frequent sequences discovered. At 60% support level we
found an overwhelming number of patterns. Even at 75%
support, we have too many patterns (38386), most of which
are quite useless when we compute their confidence relative
to the entire database of plans. For example, the pattern
Move 7! Truck-1 7! Movehad a 100% support in the bad
plans. However, it is not at all predictive of a failure, since
it occurs in every plan, both good and bad. The problem
here is that if we only look at bad plans, the confidence of
a rule is not an effective metric for pruning uninteresting
rules. In particular, every frequent sequence� will have
100% confidence, sincefr(� 7! Failure;Db) is the same
asfr(�;Db). However, all potentially useful patterns are
present in the sequences mined from the bad plans. We
must, therefore, extract the interesting ones from this set.

Extracting Interesting Rules
A discovered pattern may be uninteresting due to various
reasons (Klemettinen 94). For example, it may correspond
to background knowledge, or it may be redundant, i.e., sub-
sumed by another equally predictive but more general pat-
tern. Below we present our pruning schemes for retaining
only the most predictive patterns.

Pruning Normative Patterns Background knowledge
plays an important role in data mining (Fayyad 96). One
type of background knowledge, which we callnormative
knowledge, corresponds to a set of patterns that are unin-
teresting to the user, often because they are obvious. Nor-
mative knowledge can be used to constrain or prune the
search space, and thereby enhance the performance. Typi-
cally, the normative knowledge is hand-coded by an expert
who knows the domain. In our case normative knowledge
is present in the database of good plans,Dg. The good
plans describe the normal operations, including the minor
problems that may arise frequently, but do not lead to plan



failure. We automatically extract the normative knowledge
from the database of good plans as follows: We first mine
the bad plansDb for frequent sequences. We also compute
the support of the discovered sequences in the successful
plans. We then eliminate those sequences that have a high
support (greater than a user-specifiedmaxsupinDg) in the
successful plans, since such sequences represent the normal
events of successful plans. This automatic technique for in-
corporating background knowledge is effective in pruning
the uninteresting patterns. Figure 1 shows the reduction in
the number of frequent sequences by excluding normative
patterns. At 25% maximum support inDg , we get more
than a factor of 2 reduction (from 38386 to 17492 rules).

MaxS=100% MaxS=75% MaxS=50% MaxS=25% MaxS=10% MaxS=0%
1

10

100

1000

10000

100000

N
um

be
r o

f F
re

qu
en

t S
eq

ue
nc

es Initial

Normative

Redundant

Dominant

Figure 1: Effect of Different Pruning Techniques

Pruning Redundant Patterns Even after pruning based
on normative knowledge, we are left with many patterns
(17492), which have high frequency and high confidence,
i.e., they are highly predictive of failure. The problem is
that the existence of one good rule implies the existence
of many almost identical, and equally predictive rules. For
example, suppose(Flat Truck-1) 7! (Overheat Truck-1)is
highly predictive, and that the first action of every plan is
a Move. In this caseMove 7! (Flat Truck-1) 7! (Overheat
Truck-1), will be equally predictive, and will have the same
frequency. The latter sequence is thus redundant. Formally,
� is redundantif there exists� �1 �, with the same support
as� both in good and bad plans (recall that� �1 �, if � is
obtained by removing a single item from�).

Given the high frequency of some actions in our domain,
there is tremendous redundancy in the set of highly predic-
tive and frequent patterns obtained after normative pruning.
Therefore, we prune all redundant patterns. Figure 1 shows
that by applying redundant pruning in addition to normative
pruning we are able to reduce the pattern set from 17492
down to 113. This technique is thus very effective.

Pruning Dominated Patterns After applying normative
and redundant pruning, there still remain some patterns that
are very similar. Above, we pruned rules which had equiva-
lent support. We can also prune rules based on confidence.
We say that� isdominatedby�, if � �1 �, and� has lower
support in good and higher support in bad plans (i.e.,� has
higher confidence than�). Figure 1 shows that dominant
pruning, when applied along with normative and redun-
dant pruning, reduces the rule set from 113 down to only
5 highly predictive patterns. The combined effect of the

/* Mine Bad Plans */
1. I = SPADE (min sup;Db)
/* Prune Normative Patterns */
2.H = f� 2 I j fr(�;Dg) < max supg

/* Prune Redundant Patterns */
3.R = f� 2 H j6 9� �1 � such thatfr(�;Db) = fr(�;Db)

andfr(�;Dg) = fr(�;Dg)g

/* Prune Dominated Patterns */
4. F = f� 2 R j6 9� �1 � such thatfr(�;Db) � fr(�;Db)

andfr(�;Dg) � fr(�;Dg)g

Figure 2: The Complete PLAN MINE Algorithm

three pruning techniques is to retain only the patterns that
have the highest confidence of predicting a failure, where
confidence is given as:

Conf(�) =
fr(� 7! Failure;D)

fr(�;D)
=
j� � Sb 2 Dbj

j� � S 2 Dj
(1)

Figure 2 shows the complete pruning algorithm. An impor-
tant feature of our approach is that all steps are automatic.
The lattice structure on sequences makes the redundancy
and dominance easy to compute. Given the databasesDb

andDg , min sup, andmax sup, the algorithm returns the
set of the most predictive patterns.

Experimental Evaluation
TRIPS and IMPROVE Applications TRIPS is a collab-
orative planning system in which a person and a computer
develop an evacuation plan. TRIPS uses simulation and
data mining to provide helpful analysis of the plan being
constructed. At any point, the person can ask TRIPS to
simulate the plan. The percentage of time that the plan suc-
ceeds in simulation provides an estimate of the plan’s true
probability of success. After a plan has been simulated, the
next step is to run PLAN MINE on the execution traces in
order to find explanations for why the plan failed when it
did. The point of mining the execution traces is to deter-
mine which problems are the most significant, or at least
which ones are most correlated with plan failure. We be-
lieve that this information will help focus the user’s efforts
on improving the plan.

It is difficult to quantify the performance of TRIPS or
how much the PLAN MINE component contributes to it.
However, both seem to work well on our test cases. In one
example, we use TRIPS to develop a plan that involves us-
ing two trucks to bring the people to the far side of a col-
lapsed bridge near the destination city. A helicopter then
shuttles the people, one at a time, to the destination city.
The plan works well unless the truck with the longer route
gets two or more flat tires, which delay the truck. If the
truck is late, then the helicopter is also more likely to crash,
since the weather worsens as time progresses. On this
example, PLAN MINE successfully determined that(Move
Truck1 Flat)! (Move Truck1 Flat)) Failure, as well as
(Move Heli1 Crash)) Failure, is a high confidence rule
for predicting plan failure.

We now discuss the role of PLAN MINE in IMPROVE,
a fully automatic algorithm which modifies a given plan to



initial final initial final num.
plan plan success success plans

length length rate rate tested
IMPROVE 272.3 278.9 0.82 0.98 11.7
RANDOM 272.3 287.4 0.82 0.85 23.4
HIGH 272.6 287.0 0.82 0.83 23.0

Table 2:Performance of IMPROVE(averaged over 70 trials).

increase its probability of goal satisfaction (Lesh 98). IM-
PROVE first simulates a plan many times and then calls
PLAN MINE to extract high confidence rules for predict-
ing plan failure. IMPROVE then applies qualitative rea-
soning and plan adaptation techniques by adding actions
to make the patterns that predict failure less likely to oc-
cur. For example, if PLAN MINE produces the rule(Truck1
Flat)! (Truck1 Overheat)) Failure then IMPROVE will
conclude thateitherpreventingTruck1 from getting a flat
or from overheating might improve the plan. In each it-
eration, IMPROVE constructs several plans which might be
better than the original plan. If any of the plans performs
better in simulation than the original plan, then IMPROVE
repeats the entire process on the plan that performed best
in simulation. This process is repeated until no suggested
modification improves the plan.

Table 2 shows the performance of the IMPROVE algo-
rithm, as reported in (Lesh 98), on a large evacuation do-
main that contains 35 cities, 45 roads, and 100 people. The
people are scattered randomly in each trial, and the goal
is always to bring all the people, using two trucks and a
helicopter, to one central location. For each trial we gen-
erate a random set of road conditions, which give rise to
a variety of malfunctions. Some malfunctions worsen the
condition of the truck and make other problems, such as the
truck breaking down more likely. We use a domain-specific
greedy scheduling algorithm to generate initial plans for
this domain. The initial plans contain over 250 steps.

We compared IMPROVE with two less sophisticated al-
ternatives. The RANDOM approach modifies the plan ran-
domly five times in each iteration, and chooses the modifi-
cation that works best in simulation. The HIGH approach
replaces the PLAN MINE component of IMPROVE with a
technique that simply tries to prevent the malfunctions that
occur most often. As shown in Table 2, IMPROVE with
PLAN MINE increases a plan’s probability of achieving its
goal, on average, by about 15%, but without PLAN MINE
only by, on average, about 3%.

Plan Monitoring We now describe experiments to di-
rectly test PLAN MINE. In each trial, we generate a train-
ing and test set of plan executions. We run PLAN MINE on
the training set and then evaluate the discovered rules on
the test set. We used the same evacuation domain described
above. The training set had 1000 plan traces, with around
5% plan-failure rate. Only 300 of the good plans were used
for background knowledge. We used amin sup of 60% in
the bad plans, and amax sup of 20% in the good plans.

We run PLAN MINE on the training data and use the dis-
covered rulesR to build amonitor– a function that takes
as input the actions executed so far and outputs failureiff

any of the rules inR is a subsequence of the action se-
quence. For example, a monitor built on the rules(Truck-1
Flat) 7! (Truck-1 Overheat)) Failure and(Truck-2 Flat)
7! (Truck-2 Flat)) Failuresounds its alarm ifTruck-1gets
a flat tire and overheats, or ifTruck-2 gets two flat tires.
The precisionof a monitor is the percentage of times the
monitor signals a failure, and a failure actually occurs (i.e.,
the ratio of correct failure signals to the total number of
failure signals). Therecall of a monitor is the percentage
of failures signaled prior to their occurrence. To generate
monitors, first we mine the database of execution traces for
sequence rules. We then build a monitor by picking some
threshold�, varied in the experiments, and retain only those
rules that have at least� precision or confidence (see Equa-
tion 1) on the training data.

Figure 3a shows the evaluation of the monitors produced
with PLAN MINE on a test set of 500 (novel) plans. The
results are the averages over 105 trials, and thus each num-
ber reflects an average of approximately 50,000 separate
tests. The figure clearly shows that our mining and pruning
techniques produce excellent monitors, which have 100%
precision with recall greater than 90%. We can produce
monitors with significantly higher recall, but only by reduc-
ing precision to around 50%. The desired tradeoff depends
on the application. If plan failures are very costly then it
might be worth sacrificing precision for recall. For compar-
ison we also built monitors that signaled failure as soon as
a fixed number of malfunctions of any kind occurred. Fig-
ure 3b shows that this approach produces poor monitors,
since there was no correlation between the number of mal-
functions and the chance of failure (precision).

We also investigated whether or not data mining was re-
ally necessary to obtain these results. The graphs in Fig-
ure 4 describe the performance of the system if we limit the
length of the rules. For example, limiting the rules to length
two corresponds to building a monitor out of the pairs of ac-
tions that best predict failure. Figure 4 shows that the mon-
itors built out of rules of length less than three are much
worse than monitors built out of longer rules. In particular,
the graphs show that there were very few rules of length one
or two with even 50% or higher precision.

Related Work
Sequential PatternsThe problem of mining sequential pat-
terns was introduced in (Agrawal 95). The GSP algo-
rithm (Srikant 96) improved upon the earlier work. Re-
cently, the SPADE algorithm (Zaki 97), was shown to out-
perform GSP by more than a factor of 2. Thefrequent
episodes(Mannila 95; 96) approach discovers the frequent
patterns in long event sequences. The MSDD (Oates 97)
algorithm finds sequences of length two, among blocks of
events that happen at fixed intervals.

The high item frequency in our domain distinguishes
it from previous applications of sequential patterns.
For example, while extracting patterns from mail order
datasets (Srikant 96), the database items had very low sup-
port, so that support values like 1% or 0.1% were used.
For discovering frequent alarm sequences in telecommu-
nication network alarm databases (Hatonen 96) the support



0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(P
re

ci
si

on
/R

ec
al

l/F
re

qu
en

cy
) i

n 
Te

st
 S

et

Min. Precision in Training Set

Precision
Recall

Frequency

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18

(P
re

ci
si

on
/R

ec
al

l/F
re

qu
en

cy
) i

n 
Te

st
 S

et

Failure Count

Precision
Recall

Frequency

Figure 3: a) Using PLAN MINE for Prediction; b) Using Failure Count for Prediction

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

c
is

io
n
 i
n
 T

e
s
t 
S

e
t

Min. Precision in Training Set

Len=1
Len=2
Len=3
Len=4
Len=5

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e

c
a
ll 

in
 T

e
s
t 
S

e
t

Min. Precision in Training Set

Len=1
Len=2
Len=3
Len=4
Len=5

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
re

q
u

e
n
c
y
 i
n
 T

e
s
t 
S

e
t

Min. Precision in Training Set

Len=1
Len=2
Len=3
Len=4
Len=5

Figure 4: a) Precision, b) Recall, and c) Frequency of Discovered Sequences in Test Set

used was also 1% or less.
Planning There has been much research on analyzing
planning episodes to improve future planning perfor-
mance (Minton 90). Our work is quite different in that we
are analyzing the performance of the plan, not the plan-
ner. (McDermott 94) describes a system in which a plan-
ning robot analyzes simulated execution traces of its current
plan for bugs, or discrepancies between what was expected
and what occured. We mine patterns of failure from large
databases of plans that contain many problems, some mi-
nor and some major, and the purpose of analysis is to dis-
cover important trends that distinguish plan failures from
successes. CHEF (Hammond 90) is a case-based planning
system that also analyzes a simulated execution of a plan.
CHEF simulates a plan once, and if the plan fails, applies a
deep causal model to determine the cause of failure.

Conclusions
We presented PLAN MINE, an automatic mining method
that discovers event sequences causing failures in plans. We
developed novel pruning techniques to extract the set of the
most predictive rules from highly structured plan databases.
Our pruning strategies reduced the size of the rule set by
three orders of magnitude. The rules discovered by PLAN -
MINE were extremely useful for understanding and improv-
ing plans, as well as for building monitors that raise alarms
before failures happen.

References
Agrawal, R., and Srikant, R. 1995. Mining sequential patterns.
In 11th Intl. Conf. on Data Engg.

Fayyad, U.; Piatetsky-Shapiro, G.; Smyth, P.; and Uthurusamy,
R. 1996.Advances in KDD. AAAI Press.

Ferguson, G., and James, A. 1998. TRIPS: An Integrated Intel-
ligent Problem-Solving Assistant . In15th Nat. Conf. AI.

Hammond, K. 1990. Explaining and repairing plans that fail.J.
Artificial Intelligence45:173–228.

Hatonen, K.,et al. 1996. Knowledge discovery from telecommu-
nication network alarm databases. InIntl. Conf. Data Engg.

Klemettinen, M., et al. 1994. Finding interesting rules from large
sets of discovered association rules. InConf. Info. Know. Mgmt.

Lesh, N.; Martin, N.; and Allen, J. 1998. Improving big plans.
In 15th Nat. Conf. AI.

Mannila, H., and Toivonen, H. 1996. Discovering generalized
episodes using minimal occurences. In2nd Intl. Conf. on KDD.

Mannila, H.; Toivonen, H.; and Verkamo, I. 1995. Discovering
frequent episodes in sequences. In1st Intl. Conf. on KDD.

McDermott, D. 1994. Improving robot plans during execution.
In 2nd Intl. Conf. AI Planning Systems, 7–12.

Minton, S. 1990. Quantitative results concerning the utility of
explanation-based learning.Artificial Intelligence42(2–3).

Oates, T.; Schmill, M. D.; Jensen, D.; and Cohen, P. R. 1997.
A family of algorithms for finding temporal structure in data. In
6th Intl. Workshop on AI and Statistics.

Srikant, R., and Agrawal, R. 1996. Mining sequential pat-
terns: Generalizations and performance improvements. In5th
Intl. Conf. Extending Database Technology.

Zaki, M. J. 1997. Fast mining of sequential patterns in very large
databases. Tech. Report 668, University of Rochester.

Zaki, M. J.; Lesh, N.; and Ogihara, M. 1998. PLANMINE: Se-
quence Mining for Plan Failures. Tech. Rep. 671, U. Rochester.


