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Abstract

In this paper we present an approach to indoor classifica-
tion that presupposes a certain amount of prior information
in terms of statistical information about possible interdepen-
dencies among objects and locations. A preselective percep-
tion process (that here is only hinted), using a database of
textures, and built using the energy value computed with a
tree-structured wavelet transform, selects regions in the im-
age and, according to the database, builds an observation state
including also a saliency map of the features of the image.
The process of delivering this information is interleaved with
a process that using a database of interdependencies between
objects and locations, mimicking a memory, forms an hypoth-
esis about the current location. We show that the process of
hypothesis formation converges under specific constraints.

Introduction
The observation process leading from attention to awareness
of the surrounding environment deals with the ability of se-
lecting task-relevant stimuli, while excluding irrelevant per-
ception. This observation process, is preliminary to recog-
nition, as it determines both the contextual conditions and
the necessary stimuli load (see (Rees, Frith, & Lavie 1997;
Lavie 1995)) for recognition. In this paper we report on
a work done for the purpose of studying the observation
process that leads from random visual perception to selec-
tive perception and attention. Without attention is not even
possible to address the recognition problem, unless the sys-
tem has already been driven toward a specific object. At-
tention is a well studied problem both in psychology and
in computer vision. In the earliest approaches (see (Koch
& Ullman 1985; Darrell & Pentland 1995)) attention was
more concerned with the relevance of objects. For exam-
ple (Koch & Ullman 1985) introduced the idea of a saliency
map to encode the saliency of objects in the visual environ-
ment: the maximum value of the saliency map represents
the most meaningful location in the acquired image. On the
other hand the most recent approaches are more concerned
with biologically plausible computational models for atten-
tion (Nikolaidis, Pitas, & Mallot 2000; Itti & Koch 1998;
Itti, Koch, & Niebur 1998; Itti & Koch 2000) and sen-
sors updating (Thrun 2002) to face the drawbacks of task
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dependent processes in which the appearance of objects
might suddenly change, because the observer’s viewpoint
had changed. Most of these approaches rely on specific
methodologies in features extraction.

It is not yet clear how prior knowledge can affect atten-
tion, despite several experiments have reported that memory
of prior perceptual experience plays an important role. How-
ever from a machine point of view any possible, and even
simplest, computation requires prior knowledge of the oper-
ation to be performed, therefore the problem of prior knowl-
edge is ill posed. There is however a question concerning
the amount of constraints prior knowledge would impose on
the selection of a specific feature better than another, if the
prior knowledge is too constraining, especially in the early
stage of perception, some important cue might be lost. For
example if during the phase of selecting meaningful visual
field, is it imposed that an object “cannot” have certain di-
mensions, or “cannot” be in a certain position, this constraint
might induce the rejection of some information that could be
trusted: for example a table turned upside down in a dam-
aged environment. At the same time it is not possible to form
an hypothesis about a current percept if the perceptual pro-
cess is not provided with a basic ontology, i.e. a representa-
tion model handling the perceptual matching. The ontology
is in turn influenced by the perceptual experience, or what
in (Hurley 1998) is called perspectival self-consciousness ;
however it is still controversial whether the perceiver needs,
in order to have the experience, possess the concepts neces-
sary to capture in thought the ways of filling out the space
that would make the experience veridical (e.g. see (Noe,
Pessoa, & Thompson 2000)).

In our approach, we pair a given prior knowledge with a
class of statistical informations, that should play the role of
theperceptual experience. In fact, we think that differently
from the laws ruling actions and world relations and truth,
the perceptual experience is statistical and essentially uncer-
tain, therefore cannot be prescribe by rules of knowledge.

Still, determining a correct balance on both the amount
of knowledge that can be a priori settled and its underlying
ontology, is quite hard and needs a great amount of experi-
mentation.

On the other hand a crucial component in perceptual
matching is how the current task, as a focused stimulus, can
affect both attention and early interpretation of elements in
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the environment. For example (Lavie 1995) reports that dis-
tractors intervene in situation of low perceptual load, when
just a few relevant stimuli are presented.

The problem here is to well understand the interplay be-
tween the stimulus and the expectation of what could been
perceived. If the stimuli are “looking for something” then
the stimuli are, indeed, the constraints we were discussing
before. Since to look for something the target must be al-
ready known.

So it seems that knowledge of the task is helpful to
keep attention and to disambiguate the perceptual informa-
tion. A great amount of work has been done in this di-
rection, from the early work of (Levesque & Scherl 1993;
Bacchus, Halpern, & Levesque 1999; Golden & Weld 1996)
to the more recent works of (Reiter 2001b; Shanahan 2002;
2004). From these and other works, it seems that there is
some agreement about the way perception can affect rea-
soning and vice versa. A common result seems to be that
the perceptual reasoning process is intrinsically hypotheti-
cal and abductive, as it is based upon beliefs and hypothe-
sis formation imposing a continuum back and forth among
focalization-attention-interpretation-action. The process in-
terleaving these different activities serves to adjust param-
eters which is the well known hard problem in perception.
Therefore a possible step toward a meaningful approach to
perception, is to foresee a process that is back and forth and
thus parameters might be adjusted according to the context,
by this process itself.

To introduce our approach to this back and forth pro-
cess using a statistical memory, playing the role of the per-
ceiver perceptual experience, in this paper we present some
ideas concerning a methodology to face the problem of in-
door classification. A preselective perception process (that
here is only hinted), performs image segmentation using
as features arrays the energy value computed with a tree-
structured wavelet transform (Chang & Kuo 1992). The re-
sulting segmentation si then compared to a texture database.
The output of this analysis is an observation state that is fur-
ther processed by probabilistic updating, that uses the statis-
tical memory, mimicking the perceptual experience, to out-
put an hypothesis. We show that the process of hypothesis
formation converges under specific constraints.

Basic ontology
To represent and manage the reasoning process concerned
with perception, so far we have been considering the lan-
guage of the Situation Calculus (Reiter 2001a; Pirri & Re-
iter 1999) and some of its extensions (Pirri & Finzi 1999;
Pirri & Romano 2003; 2002). In the attentional process-
ing for environment localization awareness, to be described
here, two reasoning components are involved: the state ac-
quisition, or how the hypotheses computed according to the
estimation process, that we shall illustrate in the sequel, are
managed, and the back and forth communication to estab-
lish a selective perception. This process would then lead to
a further one dealing with regions clustering and hence with
recognition. The cycle of this specific component of the rea-
soning process is very simple: the information acquired and

elaborated by extracting salient image components is trans-
formed into simple terms of the language, each term is a
name for a category of objects, the knowledge about which
it is needed to localize the current environment; note that a
parameter (or name or denotation) serves the only purpose
of indicating “there could be a desk”, and not the stronger
notion “this is a desk”.

We limit here the discussion to the notion of state and ob-
servation state. The language we consider here is composed
by a finite set of parametersApar = {r1, r2, . . . , rn, . . .} ∪
{A1, A2, . . . , An}, we call this set thedenotationsfor all
the elements that can be indicated in the environment. Note
that these parameters are also handled to classify the textures
database, for extracting the texture features. A second set is
used for the classification purpose. The language also in-
cludes situations, and a countable set of variables to denote
the parameters itself, and to denote the probabilities associ-
ated with each location. Here, in this context, we consider
situations to be terms of the language constructed through
observations. The initial situation isS0, and in particular, a
situation is a history of all the observation actions executed
in a while. At the end of the sequence the database is pro-
gressed, and time is updated. In particular, ifsi is a situation,
and〈b1, . . . , bn, t〉 are the data collected in the observation,
then there is a (suitably defined in the underlining logic) sit-
uationsj , such thatsj = observe(b1, . . . , bn, t) ◦ si, where
observe() is an action, taking as arguments the parameter
of the observation, and◦ is a binary function for composing
terms of the language, and satisfying the condition:

a◦s ≥ s′ ≡ s ≥ s′ anda = a′∧s = s′ ≡ a◦s = a′◦s′ (1)

A situation can be interpreted as an index of the current state,
and time is added under the conditions described in (Reiter
2001a; Pirri & Reiter 2000). We use subscripts to denote
a specific situation, and in particular we assume an implicit
ordering, so thatsi > sj if i > j. For all what concerns
a basic theory of actions we refer the interested reader to
(Reiter 2001a).

In the current simplified language probabilities are terms
of the language that can take as arguments situations, there-
fore we denote withP (ri |X = Aj , s) the likelihood ratio,
of the elementri (i.e. an object in the domain), given that
X = Ai in the situations; heres without subscript is a
variable ranging over situations. By an estimationf we in-
tend a function that behaves like a probability, i.e. it satisfy
the probability axioms, however is generated by a subjective
belief measure induced by observations.

We assume two concurrent processes in the Situation Cal-
culus (Reiter 2001a; Pirri & Reiter 2000). The process con-
cerning perceptual actionsobserve(), having only the effect
to delivering an observation state, that we shall describe in
the sequel, interleaves with the so calledeffect producing
actions; in particular observation actions can be seen as spe-
cial natural actions. The only further constraint needed here
is that while executing observations, the concurrent effect
producing actions should be restrained to some specific set,
that would not affect the observations, for example the sys-
tem should not change abruptly location while is still trying
to form an hypothesis about where it currently is. To this
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end we introduce aflag into the observation state, that notify
when the hypothesis is formed, and a new exploration can
be initiated. To comply with these constraints we introduce
the two following concepts. An operator combining obser-
vation states, and saying that two pieces of information can
be combined only if they have been delivered by an obser-
vation state, as follows:

A(a ◦ s)⊕B(observe(B, . . . , t) ◦ s′) =
a ◦ observe(B, . . . , t) ◦ s′ ≡

a = observe(A, . . . , t′) ∧ t′ > t∧
s = observe(B, . . . , t) ◦ s′

(2)

Here the ellipsis is about the parameters concerning the ob-
servation state. The above sentence means that the fluent
A(), can be combined with the fluentB(), just in case they
are part of the same observation sequence. The operator⊕
is non commutative.

Given the above definition, then we can specify how to
restrain the set of actions interleaving with the observation
sequence. Therefore letA1 . . . , Am be the list of admissible
actions while observing, then the constraint on the interleav-
ing between observations and actions can be expressed as
follows:

Poss(interleave(a ◦ s,B(observe(B, . . . , t) ◦ s′)) ≡
a ◦ s = A(a ◦ s)⊕B(observe(B, . . . , t) ◦ s′)∨∨

i a = Ai

(3)
A very successful approach for estimating and explain-

ing observations, generally used in speech recognition, is
the Hidden Markov Model approach (see (Rabiner & Juang
1986)), that has also been extensively used in computer vi-
sion, both in image classification (see (Li, Najmi, & Gray
1999)) and also to capture the statistical structure of sig-
nals and images (see (Romberg, Choi, & Baraniuk 1999)).
HMM have been further extended to multi-layered models
to cope with processes in which variations happen at differ-
ent scales. Because we were modeling hidden states (i.e.
the current hypothesis), through observations, and because
of the interest and the success of such an approach, we have
been trying to adapt an extension of the HMM, together with
the Viterbi algorithm (Viterbi 1967), to model the belief up-
dating, through observation. Unfortunately it turned out that
it was not appropriate and we could not suitably deal with
the needed updating, according to the flush of information
received by the observations. The main drawback being the
stationarity hypothesis of the HMM, and the independence
of each observation. HMM are stationary, which means that
the transition model from a state to the other is predeter-
mined a priori; so there is no way, once a certain amount of
knowledge, e.g. about a given location or situation, is ac-
quired, to change the transition from one state and the suc-
cessive. While we need to determine the transition dynami-
cally, depending on the current amount of information.

The observation state
We consider an observation as the result of an early image
processing, in which a set of images - acquired at a specified
frame rate – are taken at a given direction. In terms of the

pan-tilt head actions, a direction is specified by the follow-
ing simple actionsleft, straight-left, straight, straight-right,
right, straight-up, straight-down, up-left, up-right, accord-
ing to a precise pan-tilt angle-interval of rotation. Once a
specific area has been analyzed an observation is returned,
the direction observed is inhibited and the focus is shifted
to the next direction. If the observation is too noisy and no
relevant data is returned then the observation is repeated by
a mild angular shift (note that this aspect that we do not treat
here, concerns especially the navigation control in a small
area navigation).

The early image processing based on texture classifica-
tion (see Section ) returns a set of hypotheses concerning
the presence of regions that could belong to specific objects,
together with their position, with respect to the system coor-
dinates, their bounding box, and the action that led to select
these data from the acquired image (e.g.straight-left). This
set of data, forms theobservation state:

Ot =
〈(f(R1, δ(C1), Bi, p1) = ri1 , . . . ,
f(Rk, δ(Ck), Bk, pk) = rik

), t, α〉
(4)

HereRi is the processed region, withδi its position in terms
of thex, y, z coordinates ofCi (the position is acquired by
a range sensor, namely a ’telemeter’, coupled with the cam-
era), the center of the region,Bi its bounding box,rij

is the
j-th object, in the list of denotations, that is supposed to con-
tain or to be contained in the identified region. And finally
pi is the saliency of the region. The notion of saliency, early
introduced in (Baluja & Pommerleau 1995), in connection
with the definition of a saliency map, is computed using a
weighting function balancing context free and context de-
pendent analysis (Pirrone 2003), that combines several im-
age extracted features, associated with a single sub block (a
cluster obtained from image tessellation by suitable region
growing). The formula for saliency (that we do not report
here) shows that among the significant features is symmetry.
The saliency is a scalar reporting the relative importance of
the specified element in the context of the observation, and
in general it should indicate which regions of the input retina
are important in the preselective perception process. The ob-
servation state is, thus, a saliency map of the visual field in
the direction of the specific action performed by the pan-tilt
head. The map is used by the hypothesis formation process
to guide the selection of attended locations.

An example of an observation state is the following:

Ot =
〈(f(R1, δ(65.3, 42, 54), 〈60, 85, 110〉, 0.3) = desk,
f(R2, δ(80, 140, 8), 〈40, 85, 70〉, 0.5) = curtain),

t, straight〉
(5)

Note that the information collected in the information state,
even if it is gathered by different images in a given direction,
returns a region that could be just a small component of the
object or, vice versa, that is contained in an object. These as-
pects that would eventually concern object recognition, are
not relevant here. The only problem in the attentional con-
text is to filter irrelevant perceptions for further image elab-
oration, by trying to generate an awareness about the loca-
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Texture Furniture Wall Pavement . . .
Closet Bed Bookcase Curtain Wallpaper Carpet Brick Tile

0.02 0.13 0 0.01 0.15 0.12 0 0.04

0 0.1 0 0.2 0.1 0.1 0 0

0 0.02 0.1 0.1 0 0.01 0.02 0.27

0.14 0.02 0 0 0 0 0.01 0

0 0 0 0 0.12 0.1 0.37 0

0.01 0 0 0.01 0.01 0 0.12 0.23

0 0.01 0.17 0.02 0 0.01 0.01 0
...

...
...

...
...

...
...

...
...

Table 1: Example from the Textures DB

tion, which is the precondition for attention, and hence for
grouping and recognition. In the next sections we describe
how the observation state is used to form an hypothesis that
would guide the selection process.

Assessing a dataset for prior information
As a data set for assessing the indoor classification theory we
have chosen images of different home locations taken from
several real estate web pages, and digest. The distribution
of each ambient location is drawn with respect to 900 pic-
tures of home interiors collected according to a real estate
stratification of home typologies, made by ranking the ratios
cost supply, e.g a supply of 100 at a cost of 20, and a sup-
ply of 10 at cost 200, with respect of several home features:
living/dining room, 2 bedrooms, etc.

The need for the dataset is twofold:

1. Define a database of textures specialized on home interi-
ors (in order not to resort to the Brodatz texture database,
or others not specifically oriented). The dataset partitions
the texture space into several subregions, each represent-
ing a cluster of visually similar patterns.

2. Define a prior knowledge on home features and condi-
tional probability distributions of home artifacts. The
likelihood ratios (see Table 2) play the role of prior mem-
ories of particular sensory objects, where the sensory per-
ceptual episode is interpreted as the association object-
location. Unfortunately being the process circular these
associations are provided by a dataset instead of from di-
rect learning.

The textures database, can be accessed by an index which
is the texture itself, i.e. the energy value returned by apply-
ing a tree-structured wavelet transform (TSWT) to the tex-
ture (see (Chang & Kuo 1993)). For each texture, we keep
a confidence vector with one element for each indoor object
(see Table 1), denoted in the set of parametersApar. These

values interpret an object belonging probability distribution,
i.e the frequency of objects with that specific texture, w.r.t.
the acquired dataset.

To direct the hypothesis update, we are given a table draw-
ing the probability distribution of home features (bathrooms,
office, bedrooms, living/dining room, etc.) together with the
probability of observing a specific object given the location,
in the initial situation that we denoteS0. Therefore, look-
ing at Table 2 each place has a distribution according to the
strongly biased principle that the sample is representative of
any home typology. Given the data, the probability model
fits a normal distribution, both for each variablexi rang-
ing on the conditional distribution of the indoor objects, and
for the variableX ranging over the locations. For both the
databases we have not added noise, instead we have cor-
rected the data with an empirical bias obtained by the con-
sideration that the data from the real estate are the “best”
available.

Early selective perception based on visual
features

The early selective perception has the role of shaping the vi-
sual information into possible fields of interest toward which
directing the attention. It is therefore the first step in the
perceptual awareness process. Detection of regions of in-
terest is both context free (bottom up), and context depen-
dent (top down). Context free analysis concerns the com-
putation of a set of simple features, like color, motion, tex-
ture, and specific properties like symmetry. A context free
image analysis involves only information related to the im-
age raw data. In particular, in our work we have chosen
to use color and intensity as image features and to char-
acterize the acquired image in terms of them. Therefore,
the image format more suitable for this kind of analysis is
Hue, saturation, and brightness, because it incorporates di-
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X= X= X= X= X= X=
BedR Office Kitchen BathR LivingR Entr

f(X, s)
s0 0.29 0.12 0.25 0.29 0.03 0.02
s1 0.10649 0.19931 0.20984 0.45799 0.02321 0.00314
s2 0.07187 0.53079 0.2049 0.15456 0.03681 0.00106
s3 0.03267 0.68427 0.23197 0.02727 0.02316 0.00064
P (ri|X, s0)
desk 0.1 0.5 0.1 0 0.2 0.1
window 0.21 0.27 0.3 0.1 0.1 0.02
stove 0 0.15 0.83 0 0.01 0.01
monitor 0.09 0.4 0.11 0 0.39 0.01
bed 0.61 0.2 0 0 0.18 0.01
bookcase 0.11 0.57 0.11 0.1 0.1 0.01
door 0.1 0.21 0.23 0.05 0.21 0.2
book 0.2 0.45 0.1 0.05 0.1 0.1
basin 0.09 0.01 0.43 0.46 0 0.01
sofa 0.1 0.2 0.01 0.01 0.5 0.18

r1 p1 r2 p2 r3 p3
O(s0) desk 0.3 monitor 0.47 basin 0.58
O(s1) window 0.24 bookcase 0.32 sofa 0.22
O(s2) book 0.32 door 0.34 book 0.27

Table 2: A table describing a statistical memory including a probability distribution of likelihoods of home locations with
respect to objects, the prior distribution of home locations, and the updates following a sequence of observationsOs0 , Os1 , Os2 .

rectly the features required (see (Pirrone 2003)). The con-
text dependent analysis is based on the successful ideas of
using textures to classify the image content, and in partic-
ular the wavelet transforms that measure the image proper-
ties over domains of varying sizes. The wavelet transform
have been proved to be very useful for texture analysis (see
e.g (Romberg, Choi, & Baraniuk 1999; Laine & Fan 1993;
Chang & Kuo 1992; 1993)) as they cope with the need to
describe the texture accurately by capturing its underlying
structure, and the region boundaries. We use use them, in
texture analysis to classify those areas selected in advance
by the bottom-up approach, and retrieve the correct infor-
mation from the database, in order to label each sub block
in which the image is initially subdivided, with an object
belonging probability distribution. The regions perceived in
the specific image field are clustered according to a proba-
bilistic region growing algorithm, with the K-mean. Finally,
following well known psychological principles ( see (Siegel,
Koerding, & Koenig 2000)), we have provided a weighted
combination of the clustered regions, and the region saliency
is the result of such a combination exploiting the following
major factors: the entropy of the features, and the correlation
among the resulting areas obtained from the context free and
context dependent image analysis. The early pre-selective
perceptual process is not further investigated here.

Disclosing beliefs over a sequence of
observations

Given a sequence of observationsOs1 , . . . , Osn , the first
step toward the agent awareness is to recognize the loca-

tion it is stepping into. In our case, each observation should
be seen as a sort of belief update, a further acquisition of
awareness, despite all the possible errors drawn by the pre-
selective perception delivering the observation itself. In
other words, we want the transition, between a belief state
and the successive, to be determined by the observation, ac-
cording to the objects conditional distribution functions and
the location distribution, given in the initial state.

For the reader convenience we summarize the notation in
the following:

1. L = {Ai, . . . , Am}, with |L| = M , are all the locations
considered, with eachAi denoting a specific location, e.g.
bedroom, bathroom.

2. E = {r1, . . . , rn}, with |E| = N , are all the possible
elements, i.e. the objects in the vocabulary, denoting el-
ements considered from the early texture analysis. E.g.
table, bookcase, etc.

3. E(s) = {r1, . . . , rk} ⊂ E, denotes the set of regions that
could be associated with objects, individuated in situation
s.

4. O(s1), . . . , O(sn) is a sequence of observations, to each
situation is associated an observation.

For example, as indicated in Table 2 there are six locations
(namely bedroom, office, bathroom, kitchen, living-room,
entrance), and the objects considered are ten. TheAi loca-
tions constitute the entire vocabulary of places that can be
identified by the cognitive system, and analogously the set
of ri objects constitutes the whole set of parameters indicat-
ing an object in the home environment. For eachri ∈ E we
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are given a conditional probability distribution, given that
the state of nature isAi and for theAi we are given a prior
probability distribution.

Given an observationOs, in states, and a setE(s) =
{r1, . . . , rk}, of elements reported in the observation state
s, we want to determine both the best explanation for the
current observation, that is the set of possible locations that
explain where the system is, and an updating of the proba-
bilities, in order to narrow the set of possible explanations.
In other words we want that a sequence of observations, that
are supposed to be accomplished in the same location, con-
verges toward a minimal set of hypotheses, or even a single
hypothesis, that would be available at the end of the observa-
tion sequence. The observation state will obviously be noisy,
delivering information probably about non-existing regions,
or definitely wrong information, however on the long run
some reasonable information will be got. However not all
the information can be accepted.

1 Observation conditionsWe distinguish two cases:

1. The observation state is empty, nothing can be concluded,
and thussi+1 = si. Furthermore ifE(si) = ∅ then we let
E(si) = {nil}, with f(nil, si) = ε.

2. The observation state reports information about all the
elements of the parameters set, in this case we consider
the informationinconsistent.

Since the observation state includes a saliency map of the
interesting region found, each elementri is paired with its
saliency, that we denote withpi, observe that0 ≤ pi < 1,
and

∑
i pi = 1. The saliency, as noted above, is obtained

from the probability distribution of the textures, that led to
the decision of choosingri, and from other relevant esti-
mations, such as the saliency of the region grown around the
sub blocks chosen, and the symmetry of the region obtained.

The simplest method to get the hypothesis (i.e. the loca-
tion) that best explains the observation, is the maximum a
posteriori hypothesis, that is, for eachri ∈ E(s), the hy-
pothesis MAP:

P (X = Aj |ri, s) =
P (ri | X = Aj , s)P (X = Aj , s)∑
j P (ri | X = Aj , s)P (X = Aj , s)

ri ∈ E

and
H(A,ri) = argmaxjP (X = Aj |ri, s) ri ∈ E

(6)

HereHA,ri
is the hypothesisA that best explains the ob-

servationri. The drawback with this approach, is that it
disregards the amount of information carried in from the ob-
servation itself, that is, the saliency and the congruence of
the group of objects, and their relevance. Furthermore, by
collecting theMAP hypothesis at each stepsi, we have no
way of updating the probabilities, while we want to have an
estimation of the current location, that could constitutes the
basis for interpreting the next observation. In order to max-
imize the information received in the observation state we
need to consider whether the element that is supposed to be
“there” is relevant to a specific location, and sign it positive
for this location, if this is the case. We state therefore the
following notion ofrelevance to an observation. Given that

E(s) = {r1, . . . , rk} is the set of elements observed, in state
s, the set of relevant observationsR+(X, s), for X ∈ L, is
defined as follows:

R+(X, s) =
{〈X, y〉, X ∈ L, y ∈ E(s) |¬∃X ′.X ′ 6= X∧
P (y |X ′, S0) > P (y |X, S0)}

(7)

An observed elementy ∈ E(s) is relevant toAj in s if
〈X, y〉 ∈ R+(X, s).

Note that∀r ∈ E(s), there is only oneAj , s.t. r is rele-
vant toAj , on the other hand eachAj can have one or more
elementr ∈ E(s) which are relevant to it. The set of all the
relevant pairs for an observation ins is the set

R(s) =
⋃
R+(X, s)

So for example, supposeE(s) = {desk,monitor, basin},
then according to the above definitionR+(Office, s) =
{〈Office, desk〉, 〈Office,monitor〉}, and
R+(Bathroom, s) = {〈Bathroom, basin〉}. We
shall use these positive observations to weight the initial
probability distribution and build an hypothesis in the
form of a probability estimation, that would then affect
the interpretation of the next observations. In particular
if R+(X, s1) is the set of pairs given above, and all it is
known about the current situations1, as a result of the first
observationOS0 , achieved in situationS0, is that there
might be a desk, a monitor, and a basin, then the best
hypotheses are{Office,Bathroom}, note that the MAP
hypothesis isBathroom. On the other hand we do not want
to withdraw the other hypotheses, because some hypothesis
could come up in a further observation. To cope with these
problems, we introduce a specific estimation of the state
achieved in terms of values, obtained by the likelihood
ratios and priors available inS0 (e.g. see Table 2). Let
E−(X, s) be:

|{〈X, y〉|〈X, y〉 6∈ R(s)}|
N

(8)

Where N is the cardinality ofE (i.e. the names for all
the parameters denoting the objects that are looked for in
the indoor environment). We define the following function
γ(X, s)

γ(X, s) =
eβ(X,s)

1− α(X, s)
(9)

Here α(X, s) =
∏

i pi, with pi the saliency of the ele-
ment ri ∈ E(s), 0 < pi < 1 and β is the entropy of
the information contributed by the observation, i.e.β =
−E−(X, s)lnE−(X, s)

The entropy about “what has not been observed” is mean-
ingful, as in fact if there are more thanN/2 positive percep-
tions about the same locationAi, implying thatE−(Ai, s) >
1/2, then the information can be disguising, because it
would mean that several perceptions are either irrelevant or
incorrect. Note also that while for a givenAi,R+(Ai, s) can
be empty,E−(X, s) can never be0, otherwise the observa-
tion state is considered inconsistent (therefore we stipulate
that whenE−(X, s) = 0, ln(0) = 0). Now, if for someAi
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Figure 1: The functionγ

no positive element has been observed theneβ = 1. More-
over, becauseAi has no relevant element, thenpri = 0, for
eachri, it follows that for such anAi, γ(Ai, s) is 1, which
implies that the estimation will not alter the posterior ratios
for such anAi. On the other hand1− α(X, si) ensures that
if the saliency is high thenγ will increase. Therefore these
considerations lead to the following lemma:
Lemma 1 Given theobservation conditions(see Conditions
1), for all si and for all Aj , γ(X, si) ≥ 1. In particular,
1 ≤ eβ ≤

√
2 and0 ≤ α < 1.

A plot of the functionγ, over the setE−(si) increasing from
0.1 to 1 and were the saliency of the observed elements is
given a normal distribution, is shown in Figure 1.

To better illustrate the role ofγ, consider the following
example.

Let s = S0 and suppose that the information available in
S0 is that illustrated in Table 2. Suppose that the observation
stateOS0 includes the following information:

{〈desk, 0.3〉, 〈basin, 0.58〉, 〈monitor, 0.47〉}
Here the above numbers concern the saliency of
each object, computed in the pre-selective atten-
tion step, as briefly explained in Section . Then
s1 is the current state. R+(Office, s1) =
{〈Office, desk〉, 〈Office,monitor〉},
R+(Bathroom, s1) = {〈Bathroom, basin〉}.
For any other location X, R+(X, s1) is empty.
E−(Office, s1) = 8/10, E−(Bathroom, s1) = 9/10,
and for all other locations,E−(X, s1) = 1. To compute
γ(X, s) we need only to considerγ(Office, s1) and
γ(Bathroom, s1), because as we shall see, for all the
others locations for whichR+(X, s1) is empty,γ(X, s1) is
just 1. Now, β(Office, s1) = −8/10ln8/10 = 0.17851,
and β(Bathroom, s1) = −9/10ln9/10 = 0.09482,
for any other location X we have β(X, s1) =
−10/10ln10/10 = 0. On the other hand,
α(Office, s1) = 1 − (pdesk × pmonitor) = 0.859
and α(Bathroom, s1) = 1 − (pbasin) = 0.42, for
any other locationX, α(X, s1) = 1 − 0 = 1. There-
fore γ(Office, s1) = e0.17851/0.859 = 1.39167 and

γ(Bathroom, s1) = e0.09482/0.42 = 2.61778, for any
other locationX, γ(X, s1) = e0/1 = 1.

Note also thatγ(Bathroom, s1) > γ(Office, s1),
meaning that in this caseγ captures theMAP hypothesis,
and the reason why is so, it is because the saliency ofbasin
is quite high.

The role ofγ is to increase the posterior ratios for all lo-
cations involved by the perceptual matching between the ob-
servation and the conditional distributions stored in the sta-
tistical memory (i.e. those inR(s), for the currents, and
for which γ > 1), leaving unchanged the others. Note that
we have definedα(X, s) =

∏
j pj , wherepj is the saliency;

this choice makes the updating change very slow, because of
the product. An alternative solution is to substituteα with a
Gaussian, takingσ to be the variance of the saliency of the
observedri relevant to the specificAj , andµ their mean, but
in the context of this example does not make much of sense.
The above considerations lead to the following lemma:

Lemma 2 If 〈Aj , x〉 6∈ R(si) thenγ(Aj , si) = 1.

Proof. If 〈Aj , x〉 6∈ R(si) then E−(Aj , si) = N and
α(Aj , si) = 0, thus:

γ(Aj , si) =
e−(1 ln 1)

1− 0
=

1
1

= 1

2

In what follows we make some implicit assumption on the
distribution model of the class conditional probabilities, that
we do not discuss here; this assumption amount to the fact
that objects are evenly distributed, so that the system could
use the statistical memory to “remember” each location for
some specific elements, i.e a bedroom for the bed, a kitchen
for the stove, and so on. In other words, given the above
relevancy conditions we expect that if the state of nature is
Aj , independently fromAj prior, there is some feature, ob-
ject,ri peculiar toAj , so that after the observation ofri the
system could come to believe thatAj is an explanation for
its observation.

We shall now consider threeupdate equations, under the
following:

2 Updating conditions Any prior that should be consid-
ered as0 is set toε. f(Aj , S0) = P (Aj , S0), P (ri, S0) =∑

j P (ri |Aj , S0)P (Aj , s0). |E(si)| ≤ M/2, to ensure rel-
evance of information (whereM = |L|, i.e. the number of
locations).

Then for alln > 0:

1. f(Aj |ri, sn) =
P (ri |Aj , S0)f(Aj , sn−1)γ(Aj , sn)

f(ri, sn−1)
2. f(ri, sn) =

∑
j P (ri |Aj , S0)f(Aj , sn−1)

3. f(Aj , sn) =
∑

i f(Aj |ri, sn)f(ri, sn)∑
j

∑
i f(Aj |ri, sn)f(ri, sn)

ri ∈ E(sn)

(10)
If N is the number of parameters, andM is the number of
locations, there arew = N × M + N + M equations and
w unknown, for which there is a real solutionx. It is easy to
see that for anyn, each term insn can be computed by the
initial distribution inS0 and equations (1-3) of 10.
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Lemma 3 For eachn,f(Aj , sn) is a probability function,
such that

∑
j f(Aj , sn) = 1 and0 ≤ f(Aj , sn) ≤ 1.

Proof. f(Aj , sn) is defined in equation (3) of (10). For this
equation we have to consider that the

∑
i (appearing both

in the denominator and the numerator) concerns only those
ri ∈ E(s1), so in particular ifE(s1) = ∅ thenf(Aj , s1) =
0/0, but this is impossible, by the conditions on updating
(see Conditions 2). However

∑
j

∑
i f(Aj |ri, s1)f(ri, s1)

is a normalization factor, therefore the right hand side of
equality (3) of (10) is always of the formKj/K1 + K2 +
. . . + Kj + . . . + Kq, from which the claim follows, given
that the outcome space has cardinalityq.

2

Note that the likelihood ratiosP (ri |Aj , S0) will remain
the same in any state, as they are not affected by the obser-
vations. The last equation of (10), is quite relevant, because
it updates the beliefs of the system about the current location
it is in, and in fact it states that the estimation is established
as if theri ∈ E(sn) would form a partition, bounding all it is
known on the elements inE(sn), i.e. making a closed world
assumption on the observations.

It might be noted thatE(sn) depends only on the current
situation, therefore in the next step, the previous observa-
tions are some how forgotten. This choice can be justified
by the fact that the information gain, obtained from the ob-
servation performed in the previous state is already in the
probability update. Furthermore the history of observations
is not lost because it is maintained in the history of actions,
about which we could not say much in this presentation.

We claim that the probability update increases the values
of those locations for which there have been relevant obser-
vations (see equation (7)).

Lemma 4 Let rk ∈ E(sn). If rk is relevant forAj , in sn,
thenf(Aj , sn) > f(Aj , sn−1).
Proof. First observe that:
• By the observation conditions given in 1, and the updating

conditions (see 2 page 7)E(s) ≤ M/2 , for all s.

•
∑

j

f(Aj , s) = 1, for all s andAj (by Lemma 3).

We show the proof for a simpler case than the general, be-
cause there are so many terms involved in the proof: i.e we
assumeN = {r1, . . . , rn}, M = {A1, A2}, and thus the
set of observed elementsE(sn) = {rk}. The same proof
can be generalized with some work, to the case|M | = m
(this simplified version allows to eliminate thei-summation
in equation (3) of (10)).

Let E(sn) = {rk}. Suppose that〈A1, rk〉 ∈ R+(A1, sn),
and that rk is relevant for A1, we want to show that
f(A1, sn) > f(A1, sn−1). By equations 10, and the fact
thatE(sn) = {rk} we have

1. f(A1|rk, sn) =
P (rk |A1, S0)f(A1, sn−1)γ(A1, s1)

f(rk, sn−1)
2. f(rk, sn) =

∑
j P (rk |Aj , S0)f(Aj , sn−1)

3. f(A1, sn) =
f(A1 |rk, sn)f(rk, sn)∑
j f(Aj |rk, sn)f(rk, sn)

rk ∈ E(sn)

(11)

We now write equation 3, by substituting each term for its
definition:

f(A1, sn) =
P (rk |A1, S0)f(A1, sn−1)γ(A1, s1)

f(rk, sn−1)
f(rk, sn)

∑
j

[P (rk |Aj , S0)f(Aj , sn−1)γ(Aj , s1)
f(rk, sn−1)

f(rk, sn)
]

rk ∈ E(sn)
(12)

Which simplifies to:

f(A1, sn) =
P (rk |A1, S0)f(A1, sn−1)γ(A1, s1)

P (rk |A1, S0)f(A1, sn−1)γ + P (rk |A2, S0)f(A2, sn−1)
rk ∈ E(sn)

(13)
Note that, we have dropped the arguments(Aj , sn) from
γ in the above denominator, for lack of space, and also be-
cause the term withA2 does not multiply forγ: in fact, since
(A2, rk) 6∈ R(sn), by Lemma 2,γ(A2, sn) = 1. To simplify
notation we rename the terms mentioned in (13), as follows:

• γ(A1, sn) → c;

• P (rk |A1, S0) → a;

• f(A1, sn−1) → b.

Furthermore, sinceM = {A1, A2} and by Lemma 3,
f(A2, sn) = 1 − f(A1, sn) and P (rk |A2, S0) = 1 −
P (rk |A1, S0), according to the above renaming, we shall
rename the first term as1−b and the second as1−a. There-
fore, we can re-write (13) as follows:

f(A1, sn) =
abc

abc + (1− a)(1− b)
(14)

Rearranging the denominator we get(abc+1− b−a+ab),
and sinceb is f(A1, sn−1), we divide both the terms of the
equality in (14) byb and we get:

f(A1, sn)
f(A1, sn−1)

=
ac

abc + 1− a− b + ab
(15)

We have, thus, to show that:

ac > abc + 1− a− b + ab (16)

Under the relevance condition thata > (1 − a), andc >
1, consider the following transformations of the inequality
(16), taking into account that botha < 1 andb < 1:

ac− (1− a) > abc− b + ab

a(c− (1− a)
a

) > ab(c− (1− a)
a

)

c > 1 anda > (1− a) impliesc >
1− a

a

(17)

Sincea > ab (because botha < 1 and b < 1), the
claim is verified, and thus we have proved thatf(A1, sn) >
f(A1, sn−1). 2

On the other hand if an observation does not affect a loca-
tion Ai, then by equation (3),f(Ai, sn+1) < f(Ai, sn):
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Lemma 5 Let Aj ∈ E−(Aj , sn), then f(Aj , sn) <
f(Aj , sn+1).

Proof. Let E(sn) = {rk}, with rk not relevant toAj , be-
causeAj ∈ E−(Aj , sn) (see (8) page 6). We shall make the
same simplification on the number of locations and obser-
vations used in Lemma 4. Sincerk is not relevant forA1,
we have to show thatf(A1, sn+1) < f(A1, sn). Consider
equation (12) and its simplification (13), nowγ(A1, sn) =
1, and thus we can drop it, however sincerk is not relevant
for A1 it must be that it is relevant forA2, and thus using the
simplified notation, dividing both the terms of the equality
by b, and rearranging the denominator, we get:

f(A1, sn)
f(A1, sn−1)

=
a

ab + c− ac− bc + abc
(18)

We have, thus, to show that:

a < ab + c− ac− bc + abc (19)

Under the condition thata < 1, b < 1 anda < 1 − a and
1 < c. Consider the following inequalities:

1 < c;
1− b

c
< 1− b; (1− b)a < (c− bc)(1− a)

a− ab < c− ac− bc + abc
(20)

2

The above lemmas show that relevant observations tend
to enforce hypotheses. We want to show under which con-
ditions one hypothesis can emerge over all the other ones.
Our claim is as follows. Suppose that for a given sequence
of observation statesOs1 , Os2 , . . . , Osk

, there are observa-
tions {rj1, . . . , rjn} ⊂

⋃k
i=1 E(si) relevant toAj (that is,

〈Aj , rjp〉 ∈ R+(Aj , si), 1 ≤ p ≤ n, and1 ≤ i ≤ k) ; then
we expect that if the saliency of eachrjp, 1 ≤ p ≤ n, is
meaningful, andAj is at each step a best explanation for the
current observations, thenf(Aj , sk) will be maximal with
respect to all the otherAw 6= Aj , and it will maintain this
position. Which, in the specific example, means that the sys-
tem becomes aware of the location it is currently standing in.
Now, we have been able to prove only the sufficient condi-
tions, not the necessary ones, which means that the condi-
tions we put forward might be unnecessarily stronger than
needed. To this end we first need to introduce a suitable no-
tion of growth for each function in the observation process,
as follows:

3 Growth The specific increment of Aj in
situation si, is defined to be δ(Aj , si) =
γ(Aj , si)

∑
k P (rk|Aj , s0)f(rk, si), with 〈Aj , rk〉 ∈

R+(Aj , si). δ(Aj , si) reflects the amount of observed
elements relevant toAj at each step, and their saliency.
Furthermore we denote with∆(Aj , si) the total increment
of Aj in si, i.e. f(Aj , si)− f(Aj , si−1).

The conditions for convergence are as follows:

4 Convergence conditions Given a sequence
Os1 , Os2 , . . . , Osk

of observations, we say thatAj is
maximalin

⋃
iR(si), if for all 1 ≤ i ≤ k:

Figure 2: Surpass point

1. For all Aw 6= Aj , s.t. P (Aj , S0) ≤ P (Aw, S0), then
there existssi < sk s.t. P (Aw, S0) − ∆(Aj , si) ≤
P (Aj , S0).

2. |R+(Aj , si)| > |R+(Aw, si)|, for all Aw 6= Aj .
3. γ(Aj , si) > γ(Aw, si), for all Aw 6= Aj .

It follows that if Aj is maximal then for allsi in the se-
quence,δ(Aj , si) > δ(Aw, si) for all Aw 6= Aj .

Observe that the first condition is very strong, and it says
that if a sate of nature is very unlikely then its growth slope
must compensate it. In fact, to cope with a sequence of noisy
observations, strong conditions seem necessary. For, sup-
pose that there is a locationAw, with P (Aw, S0) = 0.5,
then any noisy observation concerningAw, would make the
system believe inAw just because it is initially so privileged.
Therefore this condition is also an indication on the initial
structure of the statistical memory (i.e. the class-conditional
probabilities): it should not be biased towards a specific lo-
cation. The other two items say that at each observation
stepOsi

what is noted makesAj more likely, and what is
observed has a meaningful saliency, becauseγ(Aj , si) is
greater than all the otherγ’s.

The above notion is needed to prove that even if
P (Aj , s0) < P (Aw, s0), there is a surpass point, that is a
point sm at whichf(Aj , sm) > f(Aw, sm). This is illus-
trated in Figure 2.

Theorem 1 Let OS0 , . . . , Ost be a sequence of observa-
tions, and letAj be maximal on the whole sequence. Then
the sequence converges onAj as a most likely hypothesis,
having maximal value forf(Aj , st), that is, f(Aj , st) >
f(Aq, st), for all Aq, with q 6= j.

Proof. We give only a sketch of the proof and all its steps.
First observe that ifAj is maximal on the whole se-

quence, then in particularf(Aj , si) ∈
⋃t

i=1R(si), hence
it is monotonically increasing, by Lemma 4. Further-
more at each observation stepsi, someAw 6∈ R(si), be-
causeE(si) < M/2 (see 2 page 7), and thus for Lemma
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5, for someAw, f(Aw, si) < f(Aw, si−1). By the
convergence conditionsand at each stepAj will increase
more than any other increasing function, because of items
2 and 3 of the convergence condition. Finally, even if
limi→∞ f(Am, si) = 1 for all f(Am, si) increasing on the
sequence, since

∑
j f(Aj , si) = 1, the increasing must have

very differentδ, so the setL could be partitioned in three
subsets: the monotonically increasing the monotonically de-
creasing, and those oscillating. For this reason we have first
to show that, ifAj is maximal in the sequence, then as soon
Aj surpasses any other increasing or oscillatingAw, then
Aw will never more reachAj , independently if it is increas-
ing, decreasing or oscillating; in so we get read of the be-
haviour of any other function, whose prior is less or equal
that of Aj . of Aj . Let Aj be maximal on the whole se-
quence of observation states, we need to show that:

1. If f(Aj , si) ≥ f(Aw, si) thenf(Aj , sk) > f(Aw, sk),
for all sk > si.

2. If P (Aj , S0) < P (Aw, S0), then there exists ansm such
thatf(Aj , sm) > f(Aw, sm), S0 < sm ≤ st.

1. Letf(Aj , si) be maximal in the sequence, and suppose
that f(Aj , si) ≥ f(Aw, si), we show thatf(Aj , si+1) >
f(Aw, si+1) and the dominance will persist, for the whole
sequence. We sketch the proof by induction oni with basic
steps1. By substituting in equation (3) in (10) each term
for its definition and considering that both in equation (1)
and (3) of (10), the normalization factors are the same for all
Aw, we can substitute them with a constantS, that we omit,
then we have to show:

γ(Aj , s1)P (Aj , S0)×∑
k P (rk |Aj , S0)f(rk, s1) >

γ(Aw, s1)P (Aw, S0)×
∑

k P (rk |Aw, S0)f(rk, s1)
(21)

Which is verified because by the hypothesisP (Aj , S0) ≥
P (Aw, S0), becauseγ(Aj , s1) > γ(Aw, s1) > 1, by
the convergence conditions, and because|R+(Aj , s1)| >
|R+(Aw, s1)| together with the hypothesis ofAj maximal,
implies that

∑
k P (rk |Aj , S0) >

∑
k P (rk |Aw, S0). For

the induction let us writef(Aj , si+1) as:

1
S

f(Aj , si)
(
δ(Aj , si+1)+

γ(Aj , si+1)
∑

k P (rk|Aj , S0)f(rk, si))
(22)

Where
∑

k P (rk|Aj , S0)f(rk, s1) denotes the set of el-
ements on which there is the increment ofAw and of
all any other increasingAp. Note that δ(Aj , si+1) >
γ(Aj , si+1)

∑
k P (rk|Aj , S0)f(rk, si)). We can write

f(Aw, si+1), in an analogous way:

1
S

f(Aw, si)
(
δ(Aw, si+1)+

γ(Aw, si+1)
∑

k P (rk|Aw, S0)f(rk, si))
(23)

By induction hypothesis, f(Aj , si) ≥ f(Aw, si);
by maximality γ(Aj , si+1) > γ(Aw, si+1), and
again by maximality, δ(Aj , si+1) > δ(Aw, si+1) >
γ(Aw, si+1)

∑
k P (rk|Aw, S0)f(rk, si). Observe

that the terms in both
∑

k P (rk|Aj , S0)f(rk, si)) and

∑
k P (rk|Aw, S0)f(rk, si)) are of no account and they

do not weight on the whole summation, so they could
even be eliminated. Therefore we have proved that
f(Aj , si+1) > f(Aw, si+1), if f(Aj , si) ≥ f(Aj , si).
This, in particular means that, once a maximalf(Aj , si)
becomes greater than somef(Aw, si), it will remain so for
the whole sequence.

2. We want to show that, ifP (Aj , S0) < P (Aw, si) and
Aj is maximal, then the sequence converges tof(Aj , si).
By Lemma 4, it follows that∆(Aj , si) > 0 for all si, and
by the convergence conditions, it follows that there is ansi

such thatf(Aj , s1) + ∆(Aj , si) ≥ f(Aw, s1), therefore by
the first item shown above,f(Aj , si+1) > f(Aw, si+1), and
it will remain dominant. 2

The above theorem states that, given a maximality crite-
rion, it is possible to establish after a given sequencek that
the updating did converge.

Table (2), illustrates the outcomes of a sequence of three
observations, leading to the hypothesis that the current lo-
cation is an office. In Figure 2, is shown that afetr the first
observationf(Office, s1) becomes increasing. So we end
up with a value off(Office, s3) = 0.68427, despite it
never has been maximal according to all the convergence
conditions. In fact, given that the first condition is satis-
fied, in the first observationOffice satisfies the second but
not the third condition. In the second observation,Office
does not satisfy neither the second not the third, and in the
third observation state,Office satisfies the second but not
the third condition. Observe that there is noAj , in this ex-
ample which is maximal along the whole run. This can be
interpreted as follows: we do not know, as far as what has
been proved here, if aftern more observations the system
could end up with a conclusion far different from the one
established after the three shown observations. This suggest
that a sequence starting point could be considered the one
from which one of the posteriors begin to have a maximal
behaviour.

At the end of the process the result is reported to the pre-
selective process in order to proceed to a further verification.
Two possible actions are in order: either the situation is pro-
gressed, and therefore the updated table is recovered as in
the initial situationS0, or a further analysis is performed,
and in such a case the memory maintained is necessary to
proceed toward a verification of the hypotheses.

A video about the indoor classification problem presented
here, and implemented on a pioneer 3DX, can be found
at the page: www.dis.uniroma1.it/∼Alcor, by going on the
“events” page. The work has been exhibited in Milan at the
IST European exposition.

References

Bacchus, F.; Halpern, J.; and Levesque, H. 1999. Reason-
ing about noisy sensors in the situation calculus.Artificial
Intelligence111:171–208.

Baluja, S., and Pommerleau, D. A. 1995. Using a saliency
map for active spatial selective attention: Implementation
& initial results. In Tesauro, G.; Touretzky, D.; and Leen,

82    KR 2004   



T., eds.,Advances in Neural Information Processing Sys-
tems, volume 7, 451–458. The MIT Press.
Chang, T., and Kuo, C. 1992. Tree-sturctured
wavelet transform for textured image segmentation.SPIE
1770:394–405.
Chang, T., and Kuo, C. 1993. Texture analysis and classifi-
cation with tree-structured wavelet transform.IEEE Trans-
action Image Processing2(4):429–441.
Darrell, T., and Pentland, A. 1995. Attention-driven ex-
pression and gesture analysis in an interactive environment.
In Proceedings of the International Workshop on Auto-
matic Face and Gesture Recognition, 135–140.
Golden, K., and Weld, D. 1996. Representing sensing
actions: The middle ground revisited. InKR’96: Principles
of Knowledge Representation and Reasoning. 174–185.
Hurley, S. 1998.Consciousness in Action. Harvard Uni-
versity Press, Cambridge, MA.
Itti, L., and Koch, C. 1998. Learning to detect salient ob-
jects in natural scenes using visual attention. InDARPA98,
1201–1206.
Itti, L., and Koch, C. 2000. A saliency-based search mech-
anism for overt and covert shifts of visual attention.
Itti, L.; Koch, C.; and Niebur, E. 1998. A model of
saliency-based visual attention for rapid scene analysis.
IEEE Transactions on Pattern Analysis and Machine In-
telligence20(11):1254–1259.
Koch, C., and Ullman, S. 1985. Shifts in selective visual-
attention: towards the underlying neural circuitry.Human
Neurobiology4(4):219–227.
Laine, A., and Fan, J. 1993. Texture classification by
wavelet packet signatures.PAMI 15(11):1186–1191.
Lavie, N. 1995. Perceptual load as a necessary condition
for selective attention.Journal of Experimental Psychol-
ogy: Human Perception and Performance21:451–468.
Levesque, H. J., and Scherl, R. B. 1993. The frame
problem and knowledge-producing actions. InProceed-
ings of the National Conference on Artificial Intelligence
(AAAI’93), 689–695.
Li, J.; Najmi, A.; and Gray, R. 1999. Image classication
by a two dimensional Hidden Markov Model. InIEEE In-
ternational Conference on Acoustics, Speech, and Signal
Processing.
Nikolaidis, N.; Pitas, I.; and Mallot, H. 2000.Compu-
tational Vision: Information Processing in Perception and
Visual Behavior. MIT Press.
Noe, A.; Pessoa, L.; and Thompson, E. 2000. Beyond
the grand illusion: what change blindness really teaches us
about vision.Visual Cognition7(1-3):93–106.
Pirri, F., and Finzi, A. 1999. An approach to perception in
theory of actions: Part I.ETAI3:19–61.
Pirri, F., and Reiter, R. 1999. Some contributions to the
metatheory of the situation calculus.Journal of the ACM
46(3):325–361.
Pirri, F., and Reiter, R. 2000. Planning with natural actions
in the situation calculus. 213–231.

Pirri, F., and Romano, M. 2002. A Situation-Bayes view
of object recognition based on symgeons. InThe Third
International Cognitive Robotics Workshop.
Pirri, F., and Romano, M. 2003. 2d qualitative recognition
of symgeon aspects. InSoft Computing Techniques for 3D
Vision - KES2003, 1187–1194.
Pirrone, M. 2003. Active vision and visual attention for
indoor environment classifcation. Technical report, Uni-
versity of Roma ’La Sapienza’.
Rabiner, L. R., and Juang, B. H. 1986. An introduction to
hidden Markov models.IEEE ASSP Magazine4–15.
Rees, G.; Frith, C.; and Lavie, N. 1997. Modulating irrel-
evant motion perception by varying attentional load in an
unrelated task.Science278(5343):1616–1619.
Reiter, R. 2001a.KNOWLEDGE IN ACTION: Logical
Foundations for Building Dynamic Systems. MIT press.
Reiter, R. 2001b. On knowledge-based programming with
sensing in the situation calculus.ACM Trans. Comput.
Logic2(4):433–457.
Romberg, J. K.; Choi, H.; and Baraniuk, R. G. 1999.
Bayesian tree-structured image modeling using wavelet-
domain hidden Markov models. InSPIE Technical Con-
ference on Mathematical Modeling, Bayesian Estimation,
and Inverse Problems, volume 3816, 31–44.
Shanahan, M. 2002. A logical account of perception in-
corporating feedback and expectation. InProceedings of
KR2002. 3–13.
Shanahan, M. 2004. A logic based formulation of active
visual perception. InProceedings of KR2004.
Siegel, M.; Koerding, K. P.; and Koenig, P. 2000. In-
tegrating top-down and bottom-up sensory processing by
somato-dendritic interactions.Journal of Computational
Neuroscience8:161–173.
Thrun, S. 2002. Particle filters in robotics. InProceedings
of the 17th Annual Conference on Uncertainty in AI (UAI).
Viterbi, A. 1967. Error bounds for convolutional codes
an an asymptotically optimal decoding algorithm.IEEE
Transaction on Information TheoryIT-13:260–269.

KR 2004    83  


