
Observation Expectation Reasoning in Agent Systems∗
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Abstract

The computational grounding problem – the gap between the
mental models of an agent and its computational model – is
a well known problem within the agent research community.
For years, it has been believed that obscure ontological status
is the principal cause. This acute problem hampers the speed
of agent oriented development. In this work, we propose an
alternative way for modelling intelligent agents through the
concepts of observation and expectation to avoid this prob-
lem.

1 Introduction
The view of agents as intentional systems by Dennett (1987)
has been dominant for many years. Mental attitudes such
as knowledge, belief, desires, hopes, fears, etc. have been
formally analysed to predict the intelligent behaviour of an
agent. Following Hintikka (1962), this study is usually car-
ried out using modal logics with possible-worlds semantics.
In such theories, modal operators are added to represent an
agent’s mental attitudes. However, the three questions raised
by Wooldridge in his thesis (Wooldridge 1992) about the
ontological status of possible worlds remain improperly an-
swered: “Do they really exist? If so, where are they? How
do they map onto an agent’s physical architecture?” This is
usually referred as the computational grounding problem
of agent theories.

Wooldridge (2000) summarised an approach taken in (Fa-
gin et al. 1995; Rosenschein 1985; Wooldridge 1992;
Wooldridge & Lomuscio 2001) towards this problem: to
have a direct interpretation of a modal formula in terms
of program computations. This approach is based on the
assumption that “in general, there is no relationship be-
tween models mod(L) for (a modal logical language) L
(representing a theory of agency) and computations C.”
The best known example given for this approach is epis-
temic logic, the modal logic of knowledge (Fagin et al.
1995). Consequently, this approach classifies a number of
other useful theories of agency such as Cohen-Levesque’s
theory of intention (Cohen & Levesque 1990) and Rao-
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Georgeff’s Belief-Desire-Intention (BDI) logics (Rao &
Georgeff 1991b; 1998) as ungrounded.

In this paper, we defy this assumption and point out two
basic anomalies which affect theories of agency from the
language of specification and the semantic point of view.
First, we trace back to what is known as the asymmetry
problem of modal logic (Blackburn 2000b): Although pos-
sible worlds are crucial to Kripke semantics, nothing in
modal syntax is able to represent them. This results in in-
adequacy and difficulty of using modal logic as representa-
tion formalism and reasoning systems. By adopting Black-
burn et al’s hybrid logics (Areces, Blackburn, & Marx 2001;
Blackburn 2000a; Blackburn & Tzakova 1999), we show
that it is possible to construct a corresponding computational
model for any agent theory specified by a hybrid language.

However, it is also commonly argued that the introduction
of a mechanism to represent possible worlds in modal syntax
may answer the Wooldridge’s third question but does not re-
solve his two first questions about possible worlds. The ap-
proach and theory of knowledge summarised by Wooldridge
(2000) are essentially based on sensory observations. A
crucial assumption in this approach is that “there is no un-
certainty about the result of performing an action in some
state”. Hence if there exists a difference between a belief
and a sensory information, the belief finds no ground in this
framework though the sensory information can be incorrect
or imperfect. Although Wooldridge also claims “dropping
this assumption is not problematic,” there is no pivotal work
showing how useful the introduction of uncertainty would
be providing the grounds for mental attitudes such as beliefs,
desires.

So, what should be the grounds for mental attitudes such
as beliefs, desires? Jakob Fries conceived the existence of
non-intuitive grounds of knowledge and Leonard Nelson ad-
vocated this idea in (Nelson 1949). Close to this approach,
Karl Popper (1969, p. 47) proposed a more specific notion:
the notion of expectations. Each agent is born with expec-
tations, the psychologically or genetically a priori, i.e. prior
to all observational experience. The crucial point of this ap-
proach is: once an expectation is disappointed by observa-
tions, it creates a problem. The process of error elimination
using critique continuously generates new expectations and
also new problems. The growth of knowledge proceeds from
old problems to new problems, by means of conjectures and
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refutations (Popper 1972, pp 258, 259).
The goal of this paper is to introduce a new formal rea-

soning system based on expectations which does not suffer
the fate of the computational grounding problem. In sec-
tion §2, we investigate the expressiveness problem of modal
language to outline a general framework establishing the
relationship between a theory of agency and its computa-
tional model. Section §3 introduces a possible-worlds model
where every possible world has a corresponding grounds
which can be translated to a computational model. In sec-
tion §4, we introduce the observation refutation method as
a fundamental tool in knowledge evolution. Section §5 dis-
cusses further an approach to integrate criticism into the pro-
cess. We then discuss some significant issues in our work
and others in section §6.

2 Closing The Theory and Practice Gap
As discussed in his thesis (Wooldridge 1992) and in a re-
cent work (Wooldridge 2000), Wooldridge claims: there
is no relationship between a set of models mod(L) for a
modal logical language L representing a theory of agency
and a set of computations C which simulates the specified
properties. Hence, Wooldridge opts for the approach in
(Fagin et al. 1995; Rosenschein 1985; Wooldridge 1992;
Wooldridge & Lomuscio 2001) to directly use a computa-
tional model for deriving formulae of the specification lan-
guage. Opposed to this claim, we argue that the relationships
between models (including computational models) preserv-
ing all properties of modal languages have been very well
studied under the notion of bisimulation (Blackburn, de Ri-
jke, & Venema 2001) (cf. p-relations (van Benthem 1983,
Definition 3.7)). Bisimulations are many-to-many relations.
Hence, the problem is not because of the non-existing re-
lationship. It is a selection problem: which corresponding
model is the most appropriate one? The reason revealed by
the study of bisimulation is that modal languages are not ex-
pressive enough to define the various properties of a possible
worlds frame.

Figure 1: Invariance and modal languages

For example, let M be a model which has the natural num-
bers in their usual order as its frame (W = N) and every
propositional symbol is true at every world, and M

′ be an-
other model which has a single reflexive world as its frame
and all propositional symbols are true at this world (see
Figure. 1). Apparently, one is infinite and irreflexive whilst
the other is finite and reflexive. However, they are both in-
distinguishable under the same modal language.

Recognising “the inability to show a one-to-one corre-
spondence between the model theory, proof theory, and the
abstract interpreter”, Rao (1996) attempted to increase the
expressive power for BDI languages. However, the resulting
language AgentSpeak(L) is no longer a modal language.

Blackburn et al, following Prior’s (1967), have thoroughly
studied hybrid logics (Areces, Blackburn, & Marx 2001;
Blackburn 2000a; Blackburn & Tzakova 1999). By uniquely
tagging a label to each world, a bisimulation between two
hybrid models ensures that not only points named by the
same label are linked to each other and but most impor-
tantly only to each other. Hybrid bisimulation therefore be-
comes isomorphic (Areces, Blackburn, & Marx 2001). Cru-
cially, the increase of expressive power comes with no cost:
The satisfiability problem remains decidable in PSPACE-
complete (Areces, Blackburn, & Marx 2001). This approach
is exactly what we, human beings, do when we get lost in a
jungle or in a maze by using landmarks or observing path-
turning angles respectively. This assists us in envisaging the
world structure in our mind as precisely as the real world
that we observe.

3 The Grounds of Knowledge
3.1 Expectation and Observation
In answering the questions about the ontological status of
possible worlds: “Do they really exist? If so, where are
they?” Wooldridge (1992; 2000), following (Fagin, Halpern,
& Vardi 1992), takes computational states as the grounds of
knowledge. The grounds correspond to an agent’s sensory
experience of the real world — intuitive immediate knowl-
edge. This approach offers a powerful analytical tool in var-
ious problems such as knowledge-based protocols. Unfor-
tunately, intuitive immediate knowledge cannot be grounds
for mental states such as beliefs, which can hold false state-
ments according to sensory observations. For example, a
belief statement “David Copperfield cannot fly” may well
become false when one sees his body floating in the air.
Grounds for such statements are discovered, in the Kant-
Friesian school of philosophical theory, as non-intuitive im-
mediate knowledge. According to Nelson (Nelson 1949),
proof, demonstration and deduction are three possible ways
to ground a proposition: 1) proof provides justification us-
ing logical derivation; 2) demonstration verifies judgements
by pointing out the intuition on which they are grounded.
The task is done through sensory observations; 3) Finally,
deduction provides justification on a non-intuitive grounds –
the immediate knowledge of pure reason. This task remains
within the limits of mental self-observation.

Through this analysis, the realm of observation emerges
as an important means for judgements. It represents the
relation between the material world G, on which intuitive
grounds lies, and the mind of each agent ai, on which non-
intuitive grounds lies. Herein, we call the mental state corre-
sponding to the occurrence of each observation expectation.
Formally,

Definition 1. An observation relation O ⊆ G × Ei is a
relation between the real world G and a subset of mental

KR 2004    247



states called expectation set Ei, where i ∈ I is the identity
of an agent ai.

Sensory observations are obtained via sensors (e.g. the
eagle’s eyes ς) where mental self-observations are expressed
through effectors (e.g. wings ε). An important note here is
that sensory observations are full in the sense that they fully
associate the states of the material world and the states of
mind. However, since mental observations are non-intuitive
it does not contain the association with G. Hence, to com-
plete a mental (effective) observation, it must be associated
with at least a sensory observation. Let S =

⋃
i∈I Si and

E =
⋃
i∈I Ei be respectively the sensor and effector sets of

an observation system, where Si and Ei are respectively the
sets of sensors and effectors of an individual agent ai.

The formation of these primitive observations is called an
observation method. An observation method which contains
only one primary sensor or effector is called primitive obser-
vation method M0 (e.g. ε, ς ∈ M0). A more complicated set
of observation methods Mk would arrange the k expecta-
tions of other observation methods in some order to gener-
ate new expectations about the world. These expectations
are also associated with global states to form more complex
observations.

Definition 2. (Observation methods) An observation
method family is a set of observation method sets M =
{Mk}k∈N where Mk is a set of observation methods of arity
k for every k ∈ N

+. M0 = S ∪ E is called primitive obser-
vation method set. Mk is inductively defined as follows:

• e ∈ E for all e ∈ µ0,∀µ0 ∈ M0

• µk(e1, . . . , ek) ⊆ ℘(E) for all µk ∈ Mk and e1, . . . , ek ∈
E

3.2 Expectation Model
Before defining a modal logical language which can also de-
scribe possible worlds in its syntax, in this section, we first
describe the set of possible worlds Gi of an agent ai. Each
possible world g carries the agent ai’s information about its
environment. There are two closely related sources of infor-
mation: from the agent’s set of sensors Si and from the re-
sults of the agent’s effectors Ei. By organising the sources of
information, an agent will obtain certain information about
its environment. For example, when an eagle turns its head,
its eyes obtain information differently; or, when the eagle
flaps its wings, in its mind, the resulting mental state could
be it is already 5 metres away from where it was, but this
can only be verified by its eyes. We call each possible world
(each possible way of organising information sources) an
observation. On the one hand, similar to epistemic logic, the
grounds of sensory observations are information from sen-
sors. On the other, following philosophers Fries, Nelson and
Popper, we ground effective observations on non-intuitive
grounds, inborn expectations. Inborn expectations are ge-
netically given to an agent at its birth. We call the valid set
of formulae at an observation its expectations.

The expectation language L is similar to the language of
propositional logic augmented by the modal operator Ei and
the observation operators @s, where s is an observation la-

bel i.e. an atomic proposition which is true at exactly one
possible world in any model.
Definition 3. (Expectation language) Let Φ be a set of
atomic expectation propositions. Let Ξ be a nonempty set
of observation labels disjoint from Φ. An expectation lan-
guage L over Φ and Ξ where p ∈ Φ and s ∈ Ξ is defined as
follows:

ϕ := s | p | ¬ϕ | ϕ∧ϕ | ϕ∨ϕ | ϕ→ ϕ | 〈Ei〉ϕ | [Ei]ϕ | @sϕ.

Two observations are said to be related if one can be
obtained by changing (adding/removing) the information
sources (sensors/effectors) of the other. In other words, it
is possible to reach the other observation by changing the
information sources from the current one. Let ∼i

e⊆ Gi×Gi

be the set of such related observations. The pair F =
〈Gi,∼

i
e〉 is called an observation frame. The interpreta-

tion of an agent ai’s expectations is defined by the function
π : Φ ∪ Ξ → ℘(Gi). The crucial difference from orthodox
modal logic in this definition is that for every observation
label s ∈ Ξ, π returns a singleton. In other words, s is true

at a unique observation, and therefore tags this observation
(Blackburn 2000a). The triple M = 〈Gi,∼

i
e, π〉 is called an

expectation model.
Definition 4. The semantics of expectation logic L are de-
fined via the satisfaction relation |= as follows

1. 〈M, g〉 |= p iff g ∈ π(p) (for all p ∈ Φ)
2. 〈M, g〉 |= ¬ϕ iff 〈M, g〉 6|= ϕ

3. 〈M, g〉 |= ϕ ∨ ψ iff 〈M, g〉 |= ϕ or 〈M, g〉 |= ψ

4. 〈M, g〉 |= ϕ ∧ ψ iff 〈M, g〉 |= ϕ and 〈M, g〉 |= ψ

5. 〈M, g〉 |= ϕ→ ψ iff 〈M, g〉 6|= ϕ or 〈M, g〉 |= ψ

6. 〈M, g〉 |= 〈Ei〉ϕ iff 〈M, g′〉 |= ϕ for some g′ such that
g ∼ie g

′

7. 〈M, g〉 |= [Ei]ϕ iff 〈M, g′〉 |= ϕ for all g′ such that g ∼ie
g′

8. 〈M, g〉 |= s iff π(s) = {g}, for all s ∈ Ξ, g is called the
denotation of s

9. 〈M, g〉 |= @sϕ iff 〈M, gs〉 |= ϕ where gs is the denota-
tion of s.

where 1 – 7 are standard in modal logics with two additions
of hybrid logics in 8 and 9.

Thus, if [Ei]ϕ is true in some state g ∈ Gi, then if the
agent ai takes any further possible observation g′ from g, ϕ
will be its expectation at g′. For example, let ϕ be “the sun is
shining”. If the eagle is making observation g: taking visual
images, then if it makes a further observation g′, either to
use its eyes again or flap its wings to move forward, it will
still expect the sun to be shining.

An observation statement @sϕ says, whilst taking the ob-
servation named s, the agent ai has an expectation ϕ. The
definition of the observation operator (item 9.) allows the
agent to retrieve information from another observation.

4 Reasoning about Unexpectedness –
Observation calculus

We now come to the heart of the paper. To illustrate why
expectation reasoning is useful, imagine a hungry eagle
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is chasing an agile sparrow in a maze which neither of
them knows how to get through in advance. Suddenly, the
sparrow darts behind a wall and disappears from the ea-
gle’s field of view. Naturally the eagle would very rarely
stop the chase and rest. It continues by making conjec-
tures, its expectations, whereabouts the sparrow is, and acts
accordingly. However, the eagle’s expectations are often
violated. The sparrow may not reappear at the end of
the wall as expected or it may be caught in a dead-end.
By reasoning about such unexpectedness critically, the ea-
gle would be able to eliminate erroneous expectations and
also generate new ones finding a way to catch the spar-
row and get out of the maze. Throughout all of his well-
known books about scientific knowledge, Popper (1959;
1969; 1972) summarised the above reasoning process by the
following schema

P1 → TT → EE → P2

Here P stands for problem, TT stands for tentative the-
ory, and EE stands for error-elimination. The first prob-
lems are created when an agent’s inborn expectations are
disappointed by some observation. The ensuing growth of
knowledge may then be described as the process of correct-
ing and modifying previous knowledge through new obser-
vations using refutation methods.

Analytic semantic tableaux methods are refutation meth-
ods that have received much attention recently in automated
theorem proving. A technique by Fitting (1996), which de-
fers the choice of free-variables until more information is
available, has been used to reduce search space and the non-
determinism inherent in automated proof search. This tech-
nique resembles the ability to use expectations as assump-
tions to delay a current obstructed observation until justi-
fied as well as to use expectations as conjectures to find a
path through a maze in the above example. Among differ-
ent approaches using free variables in the labels of semantic
modal tableaux, Beckert and Goré’s string matching tech-
nique (Beckert & Goré 1997) can be used to describe the
connection between sensory observations and effective ob-
servations. Before introducing our refutation methods, we
now elaborate on a construction for the observation frame in
§3.2 as follows.

Firstly, an observation (a possible world) is described in
detail by a sequence σ of sensors and effectors. For exam-
ple, the eagle’s first observation, looking forward using its
eyes ς ∈ Si, is represented by the string σ = ς . Its next
observation by subsequently using its wings ε is represented
by σ = ς.(ς). The brackets denote that the resulting effect
of ε is non-intuitive and this effect can be verified using the
eagle’s eyes ς . We use [ς] to denote a generic observation
(either sensory or effective observation). An assumption can
be made by substituting a free variable x of the variable set
Ψ at some position in the sequence. Each of these sequences
can be named using the set observation labels Ξ and by the
naming function N .

Definition 5. (Linear observation method syntax) Let Ψ =
{x, y, . . .} be a set of assumptions which are originally not
bound to any sensors or effectors. Let Γ be a set of ob-

servation sequences. A linear observation method can be
expressed by a string σ ∈ Γ defined inductively as follows:

i. ς is an observation sequence for all ς ∈ Si;
ii. If σ is an observation sequence, then so are σ.η (if η ∈

S) and σ.(η) (if η ∈ E);
iii. If σ is an observation sequence, then for all x ∈ Ψ

σ.(x) is also an observation sequence but not σ.x. σ.(x)
stands for all possible successors of the observation se-
quence σ.

iv. prefix(σ) = {τ | σ = τ.θ} is a function which returns
a set of all prefixes of an observation sequence σ.

v. The function N : Ξ → Γ assigns each label in Ξ to an
observation sequence.

Example 1. Let ε be the wings of the eagle in the above ex-
ample and ς be its eyes. Since the eagle’s eyes can verify the
eagle’s position after flapping its wings, we can denote this
effect by (ς). Whilst chasing the sparrow in the cave sys-
tem, the eagle can simply use an observation sequence such
as ς.(ς).ς.(ς) . . . to firstly search for the sparrow by its eyes
and then flap its wings flying towards the sparrow. If the ea-
gle flies into a dark area, its eyes no longer see the sparrow,
and hence it needs to make an assumption x which appears
in the observation sequence as ς.(ς).(x).(ς) . . . By naming
the two sequences as s = ς.(ς) and t = ς.(ς).ς respectively,
we can describe the eagle’s expectation after making an ob-
servation using s as @sq where q means “energy burnt out”.
The agent’s expectation about “the sparrow is caught” p by
taking a further observation to s (creating observation se-
quence t, @s〈Ei〉t) can be expressed using @s〈Ei〉p.

By this novel representation, effective observations and
assumptions have not only found their non-intuitive grounds
but have also been intertwined closely with sensory observa-
tions. This approach hence offers a more powerful analytical
tool to wider range of applications, for example, optimising
knowledge-based protocols in unstable environment, coop-
erative problem solving etc. It also promises the ability to
build grounded semantics for the theory of intention by Co-
hen and Levesque (1990) or BDI logics by Rao and Georgeff
(1991b).

We identify the following properties as essential for an
observation frame. Firstly, once an agent ai is created, its
set of sensors and effectors should be considered as fixed
(e.g. eyes, wings, nose, skin. . . ) However, the agent can
extend its observation further by incorporating sensors and
effectors from other agents in its observation (through mir-
ror, tools. . . ). But any extended observations should be ul-
timately rooted to the agent’s innate set of sensors Si (Def-
inition 6(i)). Secondly, the interpretation should allow the
justification of an expected sensing effect generated by an
effector when it is possible to place the corresponding sen-
sor for that effect (Definition 6(ii)). Thirdly, if any preceding
observation sequence cannot be interpreted (explained), then
there will be no interpretation for any subsequent observa-
tion based on the observation sequence (Definition 6(iii)).
Fourthly, if the agent takes another sensory observation fol-
lowing an interpreted observation sequence then the new
observation sequence must also be interpreted (Definition
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6(iv)). Finally, by taking another observation based on the
current observation sequence, the agent also associates its
expectations with these observations (Definition 6(v)). For-
mally, these properties are stated as follows

Definition 6. An observation interpretation is a pair 〈F , I〉
where F = 〈Gi,∼

i
e〉 is an observation method frame and I

is a function I : LS∪E → Gi ∪ {⊥} which tells how the
real world G is reflected into an agent’s mind through the
sequences of all available sensors and effectors in this ob-
servation frame. Gi is the reflected part of the global world
G in the agent’s ai’s mind through in this observation frame.
An observation method interpretation function must satisfy
the following properties:

i. (Individuality) I(η) ∈ Gi for all η ∈ Si;
ii. (Justification) I(σ.(η)) = I(σ.η) for all σ.(η) and σ.η

in LS∪E;
iii. (Entirety) for all σ ∈ LS∪E, if I(τ) = ⊥ for some τ ∈

prefix(σ) then I(σ) = ⊥;
iv. (Constructability) for all labels τ.η ∈ prefix(σ)∪{σ},

if I(τ) ∈ Gi then I(τ.η ∈ Gi)

v. (Expectability) τ = σ.[η], I(σ) ∈ Gi, I(τ) ∈ Gi iff
I(σ) ∼ie I(τ).

Example 2. If the observation sequence σ = ς1.ς2.ς3
(where ς1 senses hunger, ς2 brings visual images, ς3 brings
touching sense) is satisfied then I(ς1), I(ς1.ς2), I(ς1.ς2.ς3)
must be defined. If we have an observation sequence σ =
ς1.(ς2).ς3, where (ς2) is the effect of flapping wings then
I(ς1.(ς2)) need not be defined (i.e. I(ς1.(ς2)) = ⊥) since
that observation may not be captured or interpreted. How-
ever if it is, especially when σ exists, then by justification
I(ς1.(ς2).ς3) must be interpreted.

With the refinement of observations and observation
methods defined above, we can now describe our refutation
method. An expectation @sϕ can be refuted by constructing
a tableaux proof with @sϕ at its root, where s is a name for
the observation from a built-in sensor ς and ϕ is the unex-
pected information perceived by ς .

Definition 7. (Tableau observation proofs) A sequence
T0, . . . , Tr of tableaux is an observation proof for the un-
satisfiability of a formula ϕ if:

i. T0 consists of the single node @sϕ where s is a name
for some built-in sensor ς ∈ Si.

ii. for 1 ≤ m ≤ r, the tableau Tm is constructed from
Tm−1 by applying an expansion rule in Table 1, the tes-
timony rule, or the discard rule; and

iii. all branches in Tr are marked as atomically closed.

These tableaux are constructed by taking subsequent ob-
servations using the tableau expansion rules given in Ta-
ble. 1. Though all rules look standard in any KE system
(D’Agostino & Mondadori 1994), the tableau modality ex-
pansion rules have some distinctive significance to be dis-
cussed here. Firstly, it is important to note that the only
branching rule in this rule set is PB (principle of bivalence),
which considerably reduces the search space. This rule fur-
ther insists that the choice to pursue a path is dependent on

the truth value of the expectations themselves not on the con-
nectives that link together. This also impacts how the nature
of an assumption changes. Normally, a universal assump-
tion x is introduced into an observation sequence t by the
reduction of universal rules (¬♦- or �-rule). For example,
the eagle may have the expectation “All sparrows are agile”.
Hence, the eagle can assume that in any further observation
it would see agile sparrows. The assumption is no longer
universal (or being freed), when the eagle is able to observe
some sluggish sparrow in one of its further observation. A
system with PB rule can easily show this change. In classic
methods such as Beckert and Goré’s free-variable tableaux
method (Beckert & Goré 1997), it would not be possible to
represent it since the branching rule is based on disjunction
rule.

Secondly, the existential rules (♦− and ¬�−rules) re-
quire specifically that when they are applied to @s〈Ei〉ϕ or
¬@s[Ei]ϕ respectively, some subsequent observation must
be able to perceive ϕ. The label a is defined by N(a) =
σ. dϕe where N(s) = σ and dϕe is a bijection from the
set of formulae to ground observation sequences which can
sense ϕ. Here, dϕe is a Gödelisation of ϕ itself. In Popper’s
language, this means an agent must be able to observe an
instance of ϕ using some specialised tool dϕe.

In a strong observation proof system, all assumptions
must be justified by testimony and discard rules. These rules
are defined as follows
Definition 8. (Testimony rule) Given a tableau T , a new
tableau T ′ = T θ may be constructed from T by applying
a substitution θ to T that instantiates free assumptions in T
with other free assumptions or with sensory observations.
Definition 9. (Discard rule) Given a tableau T and a sub-
stitution δ : U(T ) → S that instantiates universal assump-
tions in T with sensory observations, the discard rule con-
structs a new tableau T ′ from T by marking B in T as
closed provided that:

i. the branch Bδ of T δ contains a pair @sϕ and ¬@sϕ

ii. the observation sequence named by s is ground and jus-
tified.

The main difference between the testimony rule and the
discard rule is that, the testimony rule allows us to replace
any free assumption at any time in a tableau. The main ad-
vantage of this is that it allows us to close a branch of the ob-
servation tableau without obtaining real-world observations.

The tableau construction by applying the tableau rules
above gives us all the formulae in a tableau of the form of ob-
servation satisfaction statements @sϕ or ¬@sϕ. Each time
an expansion rule is applied, one or two formulae yielded
by this rule are added to the set Σ of observation satisfaction
statements. We define the satisfaction by ground observation
for this set as follows
Definition 10. (Ground observation satisfaction) Let Σ be
a set of observation satisfaction statements. We say that Σ
is satisfied by an observation in M, where N(s) is a ground
observation sequence, if and only if for all formulae in Σ:

i. If @sϕ ∈ Σ then M, gs |= ϕ, gs ∈ Gi and
ii. If ¬@sϕ ∈ Σ then M, gs 6|= ϕ, gs ∈ Gi
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Disjunction rules

@s(ϕ ∨ ψ)

¬@sϕ

@sψ
(∨1)

@s(ϕ ∨ ψ)

¬@sψ

@sϕ
(∨2)

¬@s(ϕ ∨ ψ)

¬@sϕ

¬@sψ
(¬∨)

Conjunction rules

¬@s(ϕ ∧ ψ)

@sϕ

¬@sψ
(¬ ∧ 1)

¬@s(ϕ ∧ ψ)

@sψ

¬@sϕ
(¬ ∧ 2)

@s(ϕ ∧ ψ)

@sϕ

@sψ
(∧)

Implication rules

@s(ϕ → ψ)

@sϕ

@sψ
(→ 1)

@s(ϕ → ψ)

¬@sψ

¬@sϕ
(→ 2)

¬@s(ϕ → ψ)

@sϕ

¬@sψ
(¬ →)

Negation rules
@s¬ϕ

¬@sϕ
(¬)

¬@s¬ϕ

@sϕ
(¬¬)

Satisfaction rules
@s@tϕ

@tϕ
(@)

¬@s@tϕ

¬@tϕ
(¬@)

Naming rules

[s on branch]

@ss
(Ref)

@ts

@st
(Sym)

@ts@tϕ

@sϕ
(Nom)

@s〈Ei〉t@tϕ

@s〈Ei〉ϕ
(Bridge)

Modality rules

@s〈Ei〉ϕ

@s〈Ei〉a

@aϕ
(♦)

¬@s〈Ei〉ϕ

@s〈Ei〉t

¬@tϕ
(¬♦)

@s[Ei]ϕ

@s〈Ei〉t

@tϕ
(�)

¬@s[Ei]ϕ

@s〈Ei〉a

¬@aϕ
(¬�)

Principle of bivalence

@sϕ|¬@sϕ
(PB)

Principle of non-contradiction @sϕ

¬@sϕ

×
(PNC)

Table 1: Inference rules for observation system

Here gs is the denotation of s under π. We say that Σ is
satisfiable by observation if and only if there is a standard
expectation model in which it is satisfied by observation.

By the integration of hybrid logics (Areces, Blackburn, &
Marx 2001; Blackburn 2000a; Blackburn & Tzakova 1999),
free-variable modal tableaux (Beckert & Goré 1997), and
the KE system (D’Agostino & Mondadori 1994) we still ob-
tain the following important results:

Theorem 1. (Soundness) Suppose there is a closed tableau
T for ¬@sϕ. Then ϕ is satisfiable.

Proof. Using Smullyan’s unifying notation to reduce the
number of cases and the naming function N to map each
observation sequence to an observation label, we can eas-
ily prove that any extension T ′ of a satisfiable tableau T
by applying the above construction rules is also satisfiable.
Hence, by contradiction suppose ϕ is invalid. Then there is
some model M and an observation (using a built-in sensor)
about the world ς , such that M, w |= ¬@ςϕ. This means that
the tableau T0 consisting of a single node carrying ¬@ςϕ is
satisfiable. Hence, any extension of T0 including T is also
satisfiable. This contradicts with the hypothesis that T is

closed and hence not satisfiable. Thus ϕ must be satisfi-
able.

To show completeness of this system we define Hintikka
sets like hybrid logics (Blackburn 2000a). It is easy to prove
the following lemmas from the definitions:
Definition 11. Let Ξ be a set of observation sequences that
occur in a set of observation satisfaction statements H and
∼o: Ξ×Ξ where s ∼o t iff @st ∈ H . Clearly, from Hintikka
set definition we can see ∼o is an equivalence relation. Let
|s| be the equivalence class of s ∈ Ξ under ∼o. ∼o is called
an observation equivalence relation.
Lemma 1. Two observation sequences are equivalent if and
only if all expectations derived from these observations are
exactly similar. Formally,

s ∼o t⇔ (∀ϕ,@sϕ ∈ H ⇔ @tϕ ∈ H)

Definition 12. Given a Hintikka set H , let M
H =

〈WH ,∼H , πH〉 be any triple that satisfies the following
condition:

1. WH = {|s| | s ∈ Ξ}.
2. |s| ∼H |t| iff @s〈Ei〉t ∈ H
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3. πH(ϕ) = {|s| | @sϕ ∈ H} for all atoms that occur in H

Lemma 2. Any triple M
H = 〈WH ,∼H , πH〉 defined as

above is a standard model.

Lemma 3. If H is an Hintikka set, and M
H = 〈WH ,∼H

, πH〉 is a model induced by H then

i. If @sϕ ∈ H , then M
H , |s| |= ϕ.

ii. If ¬@sϕ ∈ H , then M
H , |s| 6|= ϕ.

Lemma 4. If B is an open branch of the tableau T then the
set H of all formulae on B is a Hintikka set.

Theorem 2. (Strong completeness for grounded observa-
tion system) Any consistent set of expectations in a count-
able language is satisfiable in a countable standard model.

Proof. Suppose E = {@se1, . . . ,@sen} is a consistent set
of expectations. Enumerate through each expectation in this
set and apply inference rules when necessary to construct a
tableau T . Assume that the tableau T is closed. That means,
if an agent observes the world by following any branch B in
T it is always expecting contradicting observations. Obvi-
ously, if the branch B is closed, it must be closed after a
finite number of steps m. As soon as the agent discovers a
contradiction on a path, it immediately stops observing in
that direction. Let min(B) be the set of observations on a
branch B when the contradiction occurs. Let min(T ) be a
tree incorporating all of those branches. By König’s lemma,
it is easy to show that min(T ) is finite.

However, by applying the ∧-rule n − 1 times for the
formula @s(e1 ∧ . . . ∧ en), we also obtain n nodes
@se1, . . . ,@sen on a single branch as we can do with E.
The remaining construction hence is exactly similar to the
construction from the set E. Therefore, we also obtain a
closed tableau T ′. That means @s(e1, . . . en) or equiva-
lently ¬@s¬(e1, . . . en) (by applying ¬¬-rule) is unsatisfi-
able. This means ¬(e1, . . . en) is provable. From definition,
this also means E is inconsistent. From this contradiction,
we can conclude that our assumption that the tableau T is
closed was wrong. T must contain at least an open branch
B. By lemma 4, all the formulae on this B form a Hintikka
set H which then can be used to construct a standard expec-
tation model M

H at observation |s|.

5 Reasoning about unexpectedness:
Criticism

Besides refutation method which provides a useful way to
determine an appropriate theory, criticism plays a significant
role in knowledge evolution. Originating from Kant (1893),
criticism searches for contradictions and their elimination.

We now present a case study to illustrate how the
observation-expectation reasoning system works in a con-
crete problem: the bit transmission problem. The bit trans-
mission problem was first introduced by Halpern and Zuck
(1992) as communications between two processes over a
faulty communication medium. There is no guarantee that
any messages sent by either agent are correctly received.
Hence, when sending out a bit, each agent needs to know
whether the bit they sent is correctly received by the other.

@s〈Ei〉t

@s¬[Ei]recack → sendbit

@s[Ei]recack

@trecack

B1

¬@s[Ei]recack

¬@trecack

@ssendbit

B2Figure 2: Protocol for delay communication medium

Otherwise, they will resend the bit until it is correctly re-
ceived. Halpern and Zuck’s insight was sending acknowl-
edgement messages carrying the knowledge state of the
sender of the message.

However, when the bit takes more than one cycle to be de-
livered, this approach can be inefficient since the sender has
to wait until the bit is received. The problem becomes more
interesting when the channel is working properly at certain
times, while failing at others. Worse, the failures at differ-
ent times may be totally different. The ability of agents to
ignore insignificant errors (since they can correct them from
what they know) and to construct new optimised protocols
in an unstable environment thus becomes more desirable in
such kind of environment.

A solution to the delay communication medium is to con-
tinuously send other bits during the delay time. Let s be
the current observation. If the sender expects the delayed
receipt of acknowledgement would be at observation t de-
noted by @s〈Ei〉t, it would move on to the next observation
and send another bit. Otherwise, it keeps sending the current
bit. We denote this by @s¬[Ei]recack → sendbit. The cru-
cial difference between this and the knowledge-based pro-
tocol is the communication delay. In the knowledge based
reasoning, this time must be known exactly. In expectation
reasoning, t can contain an assumption which can flexibly
be justified. For example, we have the assumption that our
@trecack will be justified by a, @ta where @arecack. Un-
fortunately, an unexpected error occurs. Though the bit has
been sent but at the observation a we cannot receive the ac-
knowledgement as expected. From critical examination, we
can derive that ¬@ta.

This creates another problem: what is an appropriate jus-
tification? In other words, how to make further conjectures?
We are currently investigating the possibility of using the
triadic structure: Thesis-Antithesis-Synthesis by Hegel in
his Science of Logic (Hegel 1929). Unlike classical logic,
where a double negation (“A is not ¬A”) would simply re-
instate the original thesis, Hegel suggested synthesis as the
third emerging element for a higher rationality. Hence, the
contradiction @trecack and ¬@arecack when the justifica-
tion @ta is made, can be analysed in a synthetic observation
c where @c@trecack and @c¬@arecack. This suggests a
way to represent the justification strategy.

6 Discussion
A common approach when using modal logic in formal anal-
ysis of mental attitudes is to give a modal operator for each
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attitude. Then, the relationship of these attitudes are studied
through interaction axioms. Belief-Desire-Intention (BDI)
by Rao and Georgeff (1991b) is one of the most well-known
studies using this approach. Roughly speaking, beliefs rep-
resent the agent’s current information about the world; de-
sires represent the state of the world which the agent is trying
to achieve; and intentions are chosen means to achieve the
agent’s desires. Following the philosopher Bratman (1987),
Rao and Georgeff formalised the constraints (Asymmetry
thesis, non-transference and side-effect free principles) be-
tween these attitudes in (Rao & Georgeff 1991a). The major
drawback of this approach is to find a grounds for such in-
teractions. For example, it is difficult to give an analysis of
why a very hungry eagle is still chasing its prey though it be-
lieves that the chase would take all of its remaining energy. It
is even more difficult to explain when an information should
be considered belief or knowledge. The term expectation
has also been used as a modal operator (David, Brezner, &
Francez 1994) with a weaker meaning (most) than necessity
operator (all). This is achieved via the notion of majority de-
fined by semi-filter. Even though this approach is very inter-
esting, similar to the above approach, it is unable to provide
the grounds for possible worlds.

A more recent work by Brunet (2002) also takes a closer
look at the modal logic approach of observation-based logic.
By defining an ordering of informational content captured
by partial and imperfect observations, Brunet introduces
representation structures as a basis for a knowledge rep-
resentation formalism. Each representation is a set of de-
scriptions from a given point of view. However, since obser-
vations can be partial and imperfect, there could exist sev-
eral points of view for an observation. The set of transfor-
mation functions plays an important role to define such al-
gebraic structures between different representations (points
of views). Although these concepts (observation, point of
view, transformation functions) appear similar to our con-
cepts (observation, expectation, observation methods) in this
paper, there are some differences between the two works.
One of them is that an agent in our framework can use the
expectation language to reason about its observation method
structures. This is done with the adopted feature from hybrid
logic.

In agent system, an agent often has incomplete access to
its environment. Hence, it is significant not only to repre-
sent such situations but also to describe the reasoning pro-
cess an agent takes when dealing with them. VSK logic
(Wooldridge & Lomuscio 2000) is one of the efforts to for-
malise what information is true in the environment, what
an agent can perceive and then know about its environment.
A state of environment is captured into the agent’s mind
using visibility function (a.k.a observation function by van
der Meyden (van der Meyden 1998)). Further, this work
assumes “there is no uncertainty about performing an ac-
tion in some state.” However, we are unaware of any further
work attempt to drop this assumption. Here, we introduce
effective observations which can also be interpreted in many
ways as sensory observations in (Wooldridge & Lomuscio
2000) using an observation interpretation function. The jus-
tification property of this observation interpretation function

is the tool to remove uncertainty from effective observations,
and hence opens a new approach to drop the assumption.

7 Concluding remarks
In this paper, we have elaborated the computational ground-
ing problem by providing an additional ontological grounds:
the non-intuitive immediate knowledge. This is used as
the grounds for effective observations and assumptions.
The observation and expectation concepts can be further
used for describing other concepts such as belief, desire
and intention (Bratman 1987; Cohen & Levesque 1990;
Rao & Georgeff 1991b). One of such attempts was pre-
sented in (Tr`̂an, Harland, & Hamilton 2003). The work ex-
pands further this representation to formally describe part of
Popper’s logic of scientific discovery (Popper 1959). This
includes the observation refutation method, and the process
of error elimination using critique.

Apart from elaborating in more detail the error-
elimination process, another chief issue that we would like
to address in our future work is an efficient implementa-
tion of this novel theoretical foundation. As previously dis-
cussed, the integration of hybrid logics, free-variable modal
tableaux and KE system is very promising. Though KE sys-
tem is space efficient, time efficiency remains a challenge
(Endriss 1999). On the other hand, free-variable modal
tableaux is known for being time efficient. Hence, some
possibilities to improve the complexity and efficiency are
currently being explored.
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